
18.466 Notes, Feb. 19, 2013, R. Dudley

Sufficiency

This topic corresponds to Section 1.5 of Bickel and Doksum. In this
handout, starred sections contain measure-theoretic material which is
not in Bickel and Doksum. These sections will not be covered on exams
or problem sets. They are included so as to have mathematically more
complete or correct formulations. Unstarred sections will be close to
Bickel and Doksum’s presentation.

1. Introduction

R. A. Fisher, a leading British statistician, in a 1922 article, called
a statistic sufficient “when no other statistic which can be calculated
from the same sample provides any additional information as to the
value of the parameter to be estimated.” Fisher’s very interesting but
rather informal definition was formalized later, as we’ll see. Statistics
can be real- or vector-valued or can even have function values. For
now, here is an

Example. (This is essentially Example 1.5.4 of Bickel and Doksum.)
Suppose X1, ..., Xn are i.i.d. with a N(µ, σ2) distribution, with µ and
σ2 both unknown. Let X := (X1, ..., Xn) and θ := (µ, σ). Then the
likelihood function of X and θ (the joint density, evaluated at the
observed Xj) is
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This likelihood function f(X, θ) depends on X only by way of the 2-
dimensional vector-valued statistic T (X) = (T1(X), T2(X)) where

T1(X) :=
n

∑

j=1

Xj, T2(X) :=
n

∑

j=1

X2
j .

T (X) is (or will be, after further definitions) an example of a sufficient
statistic in this case.

It will always be true that if a likelihood function f(X, θ) can be
written as G(T (X), θ) for some statistic T , then T will be sufficient.
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But more generally, suppose f(X, θ) can be written as

(2) f(X, θ) = G(T (X), θ)h(X)

where h doesn’t depend on θ. Then for any two values θ1 and θ2 of θ,
the likelihood ratio

f(X, θ1)

f(X, θ2)
=

G(T (X), θ1)

G(T (X), θ2)

depends on X only through T (X). So, for one thing, to find the maxi-
mum likelihood estimate of θ given X (if it exists), it’s enough to know
T (X). It turns out that the same is true for any other inference we
may want to make about θ given X. Specifically, suppose we have a
factorization (2) of a likelihood function f(X, θ) and we have a prior
probability density π(θ) for θ. Then for a given X, we get the pos-
terior density πX(θ) by taking π(θ)f(X, θ) and normalizing it to be a
probability density with respect to θ, giving

(3) πX(θ) =
π(θ)f(X, θ)

∫

π(φ)f(X,φ)dφ
.

Considering the “bivariate” probability density π(θ)f(X, θ), πX is the
conditional density of θ given X. (Here X and θ may each be multidi-
mensional.) Now, for a given X, h(X) has a fixed value, which gives a
constant multiple in both the numerator and denominator of (3) and so
divides out. So f(X,ψ) can be replaced by G(T (X), ψ) for ψ = θ or φ
in (3). Thus the conditional distribution of θ given X is the same as its
conditional distribution given T (X), and so in this sense also, we see
how T (X) is sufficient. This relates to the paragraph “Sufficiency and
Bayes models” on p. 46 of Bickel and Doksum, containing Theorem
1.5.2.

To continue with the previous example of normal likelihoods (1), now
suppose σ2 is fixed and known, say σ = 1 for simplicity, so µ is the
only unknown parameter. The likelihood function becomes, for T1(X)
and T2(X) defined after (1)
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= G(T1(X), µ)h(X)

where it’s arbitrary which factor (2π)−n/2 belongs to, G(T1(X), µ) is
proportional to exp(µT1(X) − nµ2/2) and h(X) is proportional to
exp(−T2(X)/2). So, for known σ, T1(X) is a sufficient statistic for
µ, as is X = T1(X)/n, the sample mean.

When σ is unknown, X is still the maximum likelihood estimate of
µ, but for further inference about µ, such as confidence intervals in the
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frequentist view or its posterior distribution in the Bayesian view, we
need not only T1(X) but also T2(X).

2. *Measure-theoretic background

References to “Dudley (2002)” are to my book Real Analysis and
Probability, Cambridge University Press edition. Facts from there can
probably also be found in other texts.

Let S be any set. A collection B of subsets of S is called a σ-algebra
if it satisfies the following conditions:

(a) The empty set ∅ and S are in B;
(b) The complement Ac := S \A is the set of all x in S not in A.

If A is in B, so is Ac.
(c) For any sequence A1, A2, . . . of sets in B, the union

⋃∞
n=1 An, in

other words the set of all x such that x ∈ An for some n, is also
in B.

It follows easily from the definition that any intersection of σ-algebras
of subsets of S is a σ-algebra of subsets of S. The collection 2S of
all subsets of S is a σ-algebra. Thus for any collection A of subsets
of S, there is a smallest σ-algebra including A, called the σ-algebra
generated by A, namely, the intersection of all σ-algebras including A,
one of which is 2S. If S is the real line R then an important σ-algebra
of subsets of S is the Borel σ-algebra generated by the collection of all
open intervals (a, b) for a < b in R.

If S is a set and B is a σ-algebra of subsets of S then (S,B) is called
a measurable space.

If (S,B) is a measurable space then a function µ on B is called a
measure if:

(d) 0 ≤ µ(A) ≤ +∞ for all A ∈ B;
(e) µ(∅) = 0;
(f) For any sequence A1, A2, . . . , of sets in B which are disjoint, in

other words Ai∩Aj = ∅ whenever i 6= j, we have µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An).
Then (S,B, µ) is called a measure space.

A measure µ is called finite if µ(S) < +∞. A finite signed measure is
a function µ from B into the real numbers satisfying (e) and (f) above.
It can be shown (by the Hahn–Jordan decomposition; Dudley, 2002,
Theorem 5.6.1) that equivalently µ ≡ µ+ − µ− where µ+ and µ− are
finite measures.

A main example of a measure space is given by S = R, with B as the
Borel σ-algebra, and µ as Lebesgue measure λ, which equals the length
for intervals.
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A measure space (S,B, µ) is called a probability space, and µ is called
a probability measure, if and only if µ(S) = 1. Then µ is often written
as P , or as Q if two probability measures are considered, or sometimes
as Pr.

Several of the above notions are actually needed to give the usual
axiomatization of probability as in beginning probability courses.

If (S,B) is any measurable space, then a real-valued function f on S
is called measurable if for any Borel set A ⊂ R, f−1(A) := {x : f(x) ∈
A} ∈ B. It turns out to be equivalent that for any t ∈ R, f−1((t,∞)) :=
{x : f(x) > t} ∈ B. A random variable is a measurable function X
on a probability space. (Ω,B, P ). The expectation or mean of X is
defined by EX =

∫

X dP if X is either nonnegative or integrable.
If S is a countable set such as the set N of nonnegative integers, then

the usual σ-algebra on S will be the collection 2S of all its subsets. A
measure µ on such a set will be called discrete. Then µ of any set is
given by a sum, µ(A) =

∑

x∈A µ({x}), where {x} is the set whose only
member is x. Lebesgue measure λ, on the other hand, is not given by
such sums, since λ({x}) = 0 for all x. On S, we have the counting
measure c where c(A) is the number of elements of A if A is finite and
c(A) = ∞ if A is infinite. Any probability measure P on the countable
set S has a density f with respect to counting measure, which in this
case is called a probability mass function, or by Bickel and Doksum a
frequency function. Thus P (A) =

∑

x∈A f(x) for any set A ⊂ S.

2.1. *The Radon–Nikodym theorem. This theorem, one of the
main facts in measure theory, is as follows:

Theorem 1 (Radon–Nikodym). Let (S,B) be a measurable space. Let
µ be a finite signed measure and ν a σ-finite measure on (S,B). Let µ
be absolutely continuous with respect to ν, meaning that for each A ∈ B
with ν(A) = 0, also µ(A) = 0. Then there exists an integrable function
dµ/dν := f for ν such that for each A ∈ B,

µ(A) =

∫

A

f dν :=

∫

f · 1Adν,

where 1A(x) = 1 for x ∈ A and 0 otherwise. Here f is unique up to
equality except on a set of ν-measure 0.

The theorem is given and proved in Dudley (2002, Theorem 5.5.4
and Corollary 5.6.2). The function dµ/dν is called the Radon–Nikodym
derivative of µ with respect to ν.

2.2. *Likelihood ratios. Given two probability measures P and Q
on the same (S,B), how can one define the likelihood ratio RQ/P of
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Q with respect to P? If both P and Q have densities, say f and
g respectively, with respect to some measure ν, then one can define
RQ/P (x) = (g/f)(x), or as +∞ if f(x) = 0 < g(x), or as 0 if g(x) =
f(x) = 0. In general, P or Q could have continuous or discrete parts.
In some applications, there are probabilities on R having point masses
at 0 but having densities for x > 0, and so, not belonging to any
“regular model” as defined by Bickel and Doksum on p. 9. But, any P
and Q are always absolutely continuous with respect to P +Q, so that
we have:

Definition. Let P and Q be any two probability measures on a measur-
able space (S,B). Let h := dP/d(P +Q). The likelihood ratio RQ/P (x)
of Q to P at x is defined as (1 − h(x))/h(x), or +∞ if h(x) = 0.

The likelihood ratio, like h, is defined up to equality (P +Q)-almost
everywhere. We have dQ/d(P + Q) = 1 − h.

2.3. *Conditional expectations and probabilities. Let (S,B, P )
be a probability space. Let X be a random variable (measurable real-
valued function) defined on S with finite expectation EX, so that
E|X| < +∞. Let A be a sub-σ-algebra of B. Then a conditional expec-
tation of X with respect to A, written E(X|A), is a real-valued function
Y on S, measurable with respect to A, such that

∫

A
Y dP =

∫

A
X dP

for all A ∈ A.
A conditional expectation always exists and is unique up to equality

almost surely for P . One can see this as follows. Let µ(B) :=
∫

B
X dP

for all B ∈ B. Then µ is a finite signed measure, absolutely continuous
with respect to P . Consider the restrictions µA and PA of µ and P
respectively to A, which are a finite signed measure and a probability
measure on A. By the Radon–Nikodym theorem, Y := dµA/dPA exists
and has the properties required of E(X|A). Let Z be another random
variable with these properties. Consider the sets {s ∈ S : Y (s) >
Z(s)} and {s ∈ S : Y (s) < Z(s)}. From the definitions, we see that
P = 0 for each of these sets, and so P (Y = Z) = 1.

For a set B ∈ B the conditional probability P (B|A) is defined as
E(1B|A).

For any measurable space (S,B) and measurable function T from S
into some other measurable space, for example R with Borel σ-algebra
F , the smallest σ-algebra with respect to which T is measurable is

(4) A := T−1(F) := {T−1(C) : C ∈ F}.
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3. Sufficiency more generally

Given observations X = (X1, ..., Xn), a statistic is a [measurable]
function X, say T (X). Sometimes the definition of statistic needs to
be extended to allow further randomization, such as resampling from a
given sample in the bootstrap method, but in this handout, it will be
simply such a function T (X).

Suppose we have a measurable space (S,B) and a collection P of
probability measures on (S,B), which may be a parametrized fam-
ily {Pθ, θ ∈ Θ}. Let X ∈ S be observed, where X is often a vec-
tor (X1, ..., Xn). A statistic T (X) is called sufficient for P “if the
conditional distribution of X given T (X) = t does not involve θ”
(Bickel and Doksum, p. 42, 3d paragraph). Another way to express
this is to say that for any measurable set B ∈ B there is a measur-
able function fB such that for all P ∈ P, the conditional probability
P (X ∈ B|T (X) = t) = fB(t), where conditional probability given T is
defined as conditional probability given the σ-algebra defined in (4).

A family P of probability measures on a measurable space (S,B)
is said to be dominated by a σ-finite measure µ if every P ∈ P is
absolutely continuous with respect to µ. Then by the Radon–Nikodym
theorem (Theorem 1) there is a function fP ≥ 0 with

∫

fP dµ = 1 which
is the density of P with respect to µ, or the Radon–Nikodym derivative
dP/dµ. In regular models as defined by Bickel and Doksum, µ is either
Lebesgue (volume) measure λd on some d-dimensional Euclidean space
R

d, with fP the density in the usual sense, or µ is counting measure on
some countable set B such as the set N of nonnegative integers, where
µ(A) is the cardinality of A for A ⊂ B finite, or +∞ for A infinite, and
fP is the probability mass function or frequency function.

The following factorization theorem is Bickel and Doksum’s Theorem
1.5.1 in case µ is one of the usual choices as just mentioned and P is a
parametric family.

Theorem 2 (Factorization theorem). Let P be a family of probability
measures on a measurable space (S,B), dominated by a σ-finite measure
µ. Then a statistic T (X) is sufficient for P if and only if there exists
a measurable function h ≥ 0 on S such that for each P ∈ P there is
a measurable function gP such that fP (X) = gP (T (X))h(X). If P is
a parametric family {Pθ}θ∈Θthen there is a function G such that (2)
holds, i.e. f(X, θ) := (dPθ/dµ)(X) = G(T (X), θ)h(X).

Bickel and Doksum give a proof in case we have a parametric family
in the discrete case, i.e. X takes values in a countable set S. They
refer for more general cases to E. L. Lehmann’s classic book Testing
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Statistical Hypotheses. I also gave a proof in my OpenCourseWare
notes for 18.466 (2003) but, in this course this semester, we are not
concerned with the proof.

A main use of the theorem is that it may be difficult to verify the
definition of sufficiency, but relatively easy to find a factorization. So,
to show a statistic is sufficient, one just needs to find a factorization
(2).

Here is another example, similar to Bickel and Doksum’s Example
1.5.3. Consider the family of distributions Pθ = U [0, θ] where 0 <
θ < ∞. Given observed X1, ..., Xn, putting them in order we get the
order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n). The likelihood function
f(X, θ) = θ−n

∏n
j=1 1{0≤Xj≤θ} can be written, assuming that all Xj ≥ 0,

as θ−n1{X(n)≤θ}, showing that X(n) is a sufficient statistic for the family.

For any real-valued observations X = (X1, ..., Xn), we can form
the vector of order statistics S(X) = (X(1), . . . , X(n)). (Here “S”
connotes “sorted:” the R command “sort” gives sort(X1, ..., Xn) =
(X(1), ..., X(n)).) For any family {P n : P ∈ Q} of distributions on R

n

for any family Q of probability distributions on R, so that the coordi-
nates are i.i.d. P for some P ∈ Q, S(X) is a sufficient statistic. We
can see this easily if the distributions P ∈ Q all have densities fP with
respect to some σ-finite measure µ, because the likelihood function

n
∏

j=1

fP (Xj) ≡
n

∏

j=1

fP (X(j)).

Here is the fact in general. One might say it is a nonparametric fact.

Theorem 3. Let Q be the set of all probability measures on [the Borel
sets of ] R. On R

n let P := {P n : P ∈ Q}. Then S(X) is a sufficient
statistic for P .

Proof. Let Sn be the set of all n! permutations of {1, ..., n}. Given
X = (X1, ..., Xn) ∈ R

n and π ∈ Sn let X(π) := (X(π(1)), ..., X(π(n))).
First suppose the Xj are all distinct. Then given S(X), X has n!
values with probability 1/n! each. Thus for any [measurable (Borel)]
set B ⊂ R

n and P ∈ Q,

P n(X ∈ B|S(X)) =
1

n!

∑

π∈Sn

1B(X(π))

which does not depend on P , as desired.
If Xj are not all distinct, but some values occur with multiplicity

> 1, then X(π) all occur with multiplicities, but the above displayed
equation remains true. ¤
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4. Minimal sufficiency

If T = T (X) is a sufficient statistic for a family P of probability
distributions, it is called minimal sufficient if for any other sufficient
statistic U = U(X), T is a function of U . Bickel and Doksum have a
treatment of minimal sufficiency starting with the last paragraph of p.
46 and continuing through the first part of p. 48.

Example. Let P be a family of symmetric laws on R, such as the set
of all normal laws N(0, σ2), σ > 0. Considering n = 1 for simplicity,
the identity function x is (always) a sufficient statistic, but it is not
minimal sufficient in this case, where |x| is also sufficient, and x is not
a function of |x|.
Example. Let’s show that for the family of uniform U [0, θ] distribu-
tions for θ > 0, the statistic X(n), seen to be sufficient above, is actually
minimal sufficient (Problem 11, p. 86 of Bickel and Doksum). Let T (X)
be another sufficient statistic. By the factorization theorem, we have
for all θ > 0

f(X, θ) = θ−n1X(n)≤θ = G(T (X), θ)h(X)

for some functions G and h. Considering large values of θ, we see that
h(X) > 0 for any Xj, j = 1, ..., n, all > 0 (just take θ > X(n)). Thus
f(X, θ) > 0 if and only if G(T (X), θ) > 0. Then

X(n) = inf{θ : f(X, θ) > 0} = inf{θ : G(T (X), θ) > 0},
where the infima can be restricted to rational values of θ > 0 to assure
measurability. The last expression is a function of T (X), so X(n) is
indeed minimal sufficient.


