1. Let X have a binomial (n, p) distribution. For $\psi=p$, let the parameter space be $\Psi=(0,1), 0<p<1$. Recall that as mentioned in a lecture Feb. 22(?), or note, that we get an exponential family with $\theta_{1}(p)=\log (p /(1-p))$ and $T_{1}(X)=X$. Recall, or note, also, that the MLE of p is X / n.
(a) Find p as a function of $\theta=\theta_{1}(p)$.
(b) Find the MLE of θ, when it exists, by exponential family methods, and show that this agrees with the usual MLE of p.
(c) Find the probability, as a function of p, that the MLE of θ exists in the natural parameter space of the family.
2. Background: an item in a cargo shipment may or may not contain a radioactive element. If it does, assume that the number X of emitted radioactive particles detected by a detector in a given time at a given distance from the detector has a Poisson distribution with some parameter $\lambda>0$. If $X=0$, it may be either that the item does not contain the radioactive element, or that it does, but that the $\operatorname{Poisson}(\lambda)$ variable X happens to equal 0 , as it will with probability $e^{-\lambda}$.

The problem: find an unbiased estimate of $e^{-\lambda}$ given one observation Y of a variable Poisson with parameter λ, conditional on $Y>0$. Is it unique? What properties does it have? Hint: Write an equation for a function $a(Y)$, expressible as a sequence of numbers, to be an unbiased estimator of $e^{-\lambda}$. When two power series converge to the same function, what can one say about their coefficients?
3. In the same situation, for a given Y, show that a unique maximum likelihood estimate of $e^{-\lambda}$ exists, but you need not find it in closed form. Say what you can about whether this estimate is reasonable. Hints: The case $Y=1$ is special, so treat that case and $Y \geq 2$ separately. By definition of MLE for functions of a parameter, if $\hat{\lambda}$ is the MLE of λ, then $\exp (-\hat{\lambda})$ is the MLE of $e^{-\lambda}$, where in this case the function $\lambda \mapsto e^{\lambda}$ is one-to-one, so this is just a reparameterization of the family. What are expected monotonicity relations between Y, an estimate of λ, and an estimate of $e^{-\lambda}$, which may have been violated in problem 1. Do they hold for the MLE solution?
4. Let X_{1}, \ldots, X_{n} be i.i.d. $N\left(0, \sigma^{2}\right)$ where σ^{2} is unknown, $0<\sigma<+\infty$.
(a) Find a sufficient statistic for σ^{2}.
(b) What is an MLE for σ^{2} ?
(c) What is an unbiased estimate?
(d) Do the results of (b) and (c) agree?
(e) The usual method of moments estimation doesn't apply to estimating σ^{2} in this case, why?
(f) To minimize mean-square error in estimating σ^{2} when μ is unknown, one uses $V(X)=$ $(1 /(n+1)) \sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}$. Compare its mean-square error to those of the estimates found in (a) or (b).
(g) For μ unknown, minimizing mean-square error required a different factor than for other purposes (unbiasedness, MLE). For $\mu=0$ known, is another factor preferable to the one(s) found in (b) and (c)?
5. Consider the family of mixtures of two normal distributions, having densities of the form

$$
f(x, \theta)=\frac{\lambda}{\sqrt{2 \pi} \sigma_{1}} \exp \left(-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)+\frac{1-\lambda}{\sqrt{2 \pi} \sigma_{2}} \exp \left(-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right)
$$

where $\theta=\left(\lambda, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)$ is a 5 -dimensional parameter with μ_{1} and μ_{2} any real numbers, $0<\sigma_{j}<\infty$ for $j=1,2$, and $0<\lambda \leq 1 / 2$. Suppose given n observations X_{1}, \ldots, X_{n}, not all equal, assumed to be i.i.d. from such a distribution. If a value θ^{\prime} of a parameter is such that as θ approaches θ^{\prime} (possibly under some restrictions), the likelihood approaches $+\infty$, then we may consider θ^{\prime} as a maximum likelihood estimate (MLE) of θ, or the MLE if it's unique.
(a) For the given family of normal mixture densities, do there exist such θ^{\prime} ? Are they unique? Hint: the exponential of a nonpositive number is at most 1 , so the likelihood can only approach $+\infty$ if at least one of the σ_{j} approaches 0 . But if say σ_{1} approaches 0 , then $\exp \left(-\left(X_{j}-\mu_{1}\right)^{2} /\left(2 \sigma_{1}^{2}\right)\right)$ will approach 0 very fast if μ_{1} is fixed and unequal to X_{j}. In the likelihood function the X_{j} are fixed and the parameters are free to vary, so for what value(s) of μ_{1} would we get large likelihood as $\sigma_{1} \downarrow 0$?
(b) Is maximum likelihood a good method of estimating the parameters in this case?

