1. Bickel and Doksum, p. 73, no. 6. In more detail: suppose that the parameter $\lambda>0$ of a Poisson distribution has a $\Gamma(a, \zeta)$ prior distribution, where $a>0$ and $\zeta>0$, so the prior density is

$$
\pi(\lambda)=f_{a, \zeta}(\lambda)=\zeta^{a} \lambda^{a-1} e^{-\zeta \lambda} / \Gamma(a)
$$

Suppose we observe X, a nonnegative integer having a $\operatorname{Poisson}(\lambda)$ distribution. Find the posterior distribution $\pi(\lambda \mid X)$ as in equation (1.2.8) of Bickel and Doksum, where the parameter $\theta=\lambda$ is continuous although X of course is discrete. Show that the posterior distribution is again a $\Gamma\left(a^{\prime}, \zeta^{\prime}\right)$ distribution and evaluate $a^{\prime}, \zeta^{\prime}$ in terms of a, ζ, and X. Hint: as in all such problems, bear in mind that there is only one way to normalize a probability density.
2. Bickel and Doksum p. 78 Problem 8. Warning: the hint is not exactly correct. What is $E\left(\left[\left(X_{i}-\mu\right) / \sigma\right]^{4}\right)$, via integration by parts, and so what is $E\left(\left(X_{i}-\mu\right)^{4}\right)$, actually?
3. Bickel and Doksum p. 78 Problem 9.
4. A statistic X is measured in a medical test. Suppose that for a certain disease, D, there are two possibilities. If the person being tested does not have D, the distribution of X is $N(4,1)$. If the person does have D, X has distribution $N(7,1)$.
(a) Suppose the test will be done for people in a "risk group" in which the prior probability of having D is 0.06 . For any X, find the posterior probability given X that the patient has D.
(b) Suppose it costs $\$ 50$ each time X is measured for one patient. The physician has two available actions. One is to give a "negative" test result, deciding that the patient does not have D and doing no further tests or treatment for D . The other action is to give a "positive" result and then give a further test, based on a different statistic, costing $\$ 1000$, which will yield a correct result in essentially all cases. For some c, the test will be judged positive if $X \geq c$ and negative otherwise. If a patient has D but the test is judged negative, assume a loss of $\$ 1,000,000$ (because the disease, left untreated, might become very serious). How should c be chosen to minimize the expected loss?
(c) In a general population where the prior probability of having D is 10^{-5}, is it costeffective to do any such test procedure (for any c)? Hint: would it be, even if an initial $\$ 50$ test always gave the correct result?

