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Exponential families

These will be families {Pθ}θ∈Θ of laws, including many of the best-
known special families such as the binomial and normal laws, and for
which there is a natural vector-valued sufficient statistic, whose dimen-
sion stays constant as the sample size n increases. In these notes “law”
always means a probability measure.

Definition. A family P = {Qψ : ψ ∈ Ψ} of laws on a measur-
able space (X,B), containing at least two different laws, is called an
exponential family if there exist a σ-finite measure µ on (X,B), a pos-
itive integer k, and real functions θj on Ψ and measurable h with
0 < h(x) < ∞ and Tj on X for j = 1, . . . , k, such that for all ψ ∈ Ψ, Qψ

is absolutely continuous with respect to µ, and for some C(θ(ψ)) > 0,
where θ(ψ) := (θ1(ψ), . . . , θk(ψ)), (dQψ/dµ)(x) = f(ψ, x) where

(1) f(ψ, x) := (dQψ/dµ)(x) = C(θ(ψ))h(x) exp

(

k
∑

j=1

θj(ψ)Tj(x)

)

.

In other words f(ψ, x) is the density of Qψ with respect to µ. The
usual examples are X = R

d, with µ = λd, so dµ(x) = dx1dx2 · · · dxd, or
X is a countable set with counting measure, with f a probability mass
function or frequency function.

Bickel and Doksum give a slightly different but equivalent definition
of exponential family, with C(θ) = e−B(θ), so that B(θ) is subtracted
from the sum that is exponentiated.

Letting T := T (x) := {Tj(x)}k
j=1 and θ := θ(ψ), f can be

written more briefly as f = C(θ)h(x)eθ·T where θ · T :=
∑k

j=1 θjTj.

If we replace µ by ν where dν(x) = h(x)dµ(x), the factor h(x) can be
omitted, and ν is still a σ-finite measure. Given the θj, Tj, h, and µ,
the number C(θ(ψ)) is determined by normalization, so it is, in fact, a
function of θ(ψ). Thus, given Tj, h, and µ, Qψ is determined by θ(ψ).

Example. The family of all normal laws N(µ, σ2) on R for −∞ < µ <
+∞ and 0 < σ < +∞ is an exponential family with k = 2, ψ = (µ, σ),
T1(x) = x, θ1(ψ) = µ/σ2, T2(x) = x2, θ2(ψ) = −1/(2σ2), and

C(θ(ψ)) = (σ
√

2π)−1 exp(−µ2/(2σ)2,

with h(x) ≡ 1.
1
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It follows from the factorization theorem for sufficient statistics (in
the “Sufficiency” handout) that for any exponential family, the vector-
valued statistic (T1(x), . . . , Tk(x)) is a sufficient statistic. The structure
of an exponential family is essentially preserved by taking n i.i.d. ob-
servations, since the following is clear:

Theorem 1. Let {Qψ, ψ ∈ Ψ} be any exponential family and let
X1, . . . , Xn be i.i.d. (Qψ). Then the distribution Qn

ψ of (X1, . . . , Xn)
is an exponential family for the σ-finite measure µn on Xn, replacing
Tj(x) by

∑n
i=1 Tj(Xi), h(x) by Πn

j=1h(Xj), and C(θ(ψ)) by C(θ(ψ))n.

Thus for (X1, . . . , Xn), the k-vector {∑n
i=1 Tj(Xi)}k

j=1 is a sufficient
statistic.

A family of P of probability distributions is called equivalent if for
any P and Q in P with likelihood ratio RQ/P , 0 < RQ/P < +∞ (with
probability 1 for P or Q). Since exponentials are strictly positive, any
exponential family is equivalent.

The Tj will be called affinely dependent if for some constants c0, c1,
. . . , ck, not all 0, c0 + c1T1 + · · · + ckTk = 0 almost everywhere for µ.
Then ci 6= 0 for some i ≥ 1, and we can solve for Ti as a linear combina-
tion of other Tj and a constant. Then we can eliminate the Ti term and
reduce k by 1, adding −cjθi(·)/ci to each θj(·) for j 6= i and multiply-
ing C(θ(ψ)) by exp(−c0θi(ψ)/ci). Iterating this, we can assume that
T1, . . . , Tk are affinely independent, i.e. they are not affinely dependent.
Likewise, we can define affine independence for the functions θj, where
now the linear relations among the θj(·) and a constant would hold
everywhere rather than almost everywhere (at this point we are not
assuming a prior given on the parameter space Ψ). We can eliminate
terms until θj(·) are also affinely independent. We will always still have
k ≥ 1 since P contains at least two laws.

Let Θ be the range of the function ψ 7→ θ(ψ) := (θ1(ψ), . . . , θk(ψ))
from Ψ into R

k:

(2) Θ :=
{

θ(ψ) = {θj(ψ)}k
j=1 : ψ ∈ Ψ

}

.

Then clearly θ1(·), . . . , θk(·) are affinely independent if and only if Θ is
not included in any (k − 1)-dimensional hyperplane in R

k. Likewise,
T1, . . . , Tk are affinely independent (as defined above) if and only if
for T := (T1, . . . , Tk) from X into R

k, the measure µ ◦ T−1 is not
concentrated in any (k − 1)-dimensional hyperplane in R

k.
A representation (1) of an exponential family will be called minimal

if T1, . . . , Tk are affinely independent, as are θ1(·), . . . , θk(·).
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A functionoid is an equivalence class of functions for the relation
of almost everywhere equality for a measure. For functions on a Eu-
clidean space R

n, or an open subset of it, with Lebesgue measure λn,
we will most often have statistics that are continuous functions of
x = (x1, ..., xn). In an equivalence class of functions for almost ev-
erywhere equality, there is at most one continuous function, and if we
have continuous statistics, we can talk about functions rather than
functionoids.

Any exponential family P as in (1) can be parameterized by the
subset Θ of R

k given in (2), so that we get

(3) (dPθ/dµ)(x) = C(θ)h(x) exp

(

k
∑

j=1

θjTj(x)

)

, θ ∈ Θ ⊂ R
k,

where now Qψ = Pθ(ψ) for all ψ ∈ Ψ.

Theorem 2. Every exponential family P := {Qψ : ψ ∈ Ψ} has a
minimal representation (1), and then k is uniquely determined.

Proof. We already saw that the Tj(·) can be taken to be affinely in-
dependent, as can the θj(·), so that the representation (1) is minimal.
Then in the representation (3), Θ, as mentioned, is not included in any
(k − 1)-dimensional hyperplane. The likelihood ratios are all of the
form

Rθ,φ := RPθ/Pφ
= C(θ)C(φ)−1 exp

{

k
∑

j=1

(θj − φj)Tj(x)

}

.

The logarithms of these likelihood ratios (log likelihood ratios) plus
constants span a real vector space VT of function(oid)s on X, included
in the vector space WT of function(oid)s spanned by 1, T1, . . . , Tk. Then
WT is (k + 1)-dimensional since T1, . . . , Tk are affinely independent
by minimality. Also, since θ1, . . . , θk are affinely independent on Θ,
VT = WT . Now V := VT is determined by the family P , not depending
on the choice of µ or T , so V and k are uniquely defined for the family
P . ¤

The number k is called here the order of the exponential family.
Bickel and Doksum call it the rank. From here on it will be assumed
that the representation of an exponential family is minimal unless it is
specifically said not to be. The parameterization in (3) is then one-to-
one:

Theorem 3. If an exponential family has a minimal representation
(3), then for any θ 6= φ in Θ, Pθ 6= Pφ.
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Proof. If Pθ = Pφ, then for θ·T :=
∑

j θjTj, we have almost everywhere

θ · T + log C(θ) = φ · T + log C(φ),

or (θ − φ) · T = c for some c not depending on x. But θ 6= φ means
that the Tj are affinely dependent, contradicting minimality. ¤

Any subset of an exponential family is also an exponential family
with the same Tj and ν, recalling that dν(x) := h(x)dµ(x). It can be
useful to take an exponential family as large as possible. Given ν and
Tj, j = 1, . . . , k the natural parameter space of the exponential family
is the set of all θ = (θ1, . . . , θk) ∈ R

k such that

(4) K(θ) :=

∫

exp

(

k
∑

j=1

θjTj(x)

)

dν(x) < ∞.

Clearly K(θ) > 0 for all θ. For any θ in the natural parameter space, we
can define C(θ) := 1/K(θ) and get a probability measure Pθ given by
(3). So we have a family of laws Pθ indexed by the natural parameter
space. The family doesn’t extend to values of θ outside the natural
parameter space since then normalization is not possible.

Theorem 4. For any given σ-finite ν and measurable functions Tj on
(X,B), the natural parameter space is a convex set in R

k.

Proof. First, for any real y (which can be positive or negative), θ 7→ eyθ

is a convex function of θ ∈ R (its second derivative is positive, so its
first derivative is increasing, which implies convexity). It follows that
for any real y1, . . . , yk, the function

θ = (θ1, . . . , θk) 7→ exp(y1θ1 + · · · + ykθk)

is convex on R
k. The inequalities defining convexity are preserved when

integrated with respect to a nonnegative measure, so K(θ) is a convex
function, whose values may be infinite for some θ (just those θ outside
the natural parameter space). The set where a convex function < +∞
is clearly a convex set. ¤

The usual theorem on interchanging integrals for integrable func-
tions, or nonnegative measurable functions, of two or more variables,
is usually called the Fubini theorem. I call it the Tonelli–Fubini theo-
rem because Fubini first stated it, but Tonelli first proved it correctly.

Proposition 5. For any exponential family, the natural parameter
space is the same for any number n of i.i.d. observations.
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Proof. If Kn(θ) is the integral K(θ) for n observations, then from the
definitions and the Tonelli–Fubini theorem, Kn(θ) = K1(θ)

n for all n,
so Kn(θ) is finite if and only if K1(θ) is. ¤

Theorem 6. For an exponential family as in (3) let U be the interior
of the natural parameter space. Then for ξ = (ξ1, . . . , ξk) in U and
η = (η1, . . . , ηk) ∈ R

k, let W := {ζ = ξ + iη : ξ ∈ U, η ∈ R
k} so that

ζj = ξj + iηj for j = 1, . . . , k. Then the function K(z) in (4) is, on
W , an analytic (holomorphic) function of z, representable by a power
series in the k coordinates zj − ζj in the neighborhood of any point ζ
in W . In particular K has, on W , continuous partial derivatives of all
orders with respect to z, which can be obtained by differentiating under
the integral sign. In other words, for any p = (p1, . . . , pk), where the
p(i) := pi are nonnegative integers and [p] := p1 + · · · pk, the partial

derivative DpK := ∂[p]K(z)/∂z
p(1)
1 · · · ∂z

p(k)
k exists and is continuous,

and equals ∫ T (x)p exp(
∑k

j=1 zjTj(x))dν(x), where tp := t
p(1)
1 · · · tp(k)

k .

For any ξ ∈ U, EξT
p = DpK(ξ)/K(ξ).

Proof. Let ζ = ξ + iη ∈ W , so ξ ∈ U and η ∈ R
k. Take ε > 0 small

enough so that if |uj − ξj| ≤ ε for all j = 1, . . . , k then u ∈ U , so
u + iv ∈ W for any v ∈ R

k. Then for any T = T (x) ∈ R
k,

|e(u+iv)·T | = eu·T = e(u−ξ)·T eξ·T .

Thus, replacing dν(x) by eξ·T (x)dν(x), we can assume that ξ = 0. Then
|uj| ≤ ε for j = 1, . . . , k.

We have eu·T = Πk
j=1 exp(ujTj),

exp(u1T1) =
∞

∑

r=0

(u1T1)
r/r!, |(u1T1)

r| = |u1|r|T1|r,

and
∞

∑

r=0

|u1T1|r/r! = exp(|u1T1|) ≤ exp(−εT1) + exp(εT1),

and likewise for any j = 2, . . . , k in place of j = 1. By choice of ε,

∫ · · · ∫ Πk
j=1 exp(±εTj)dν(x1) · · · dν(xk) < ∞

for any choices of ±, where Tj := Tj(xj) for each j, so the sum over all
2k possible choices of ± of the integrals is finite. Thus by dominated
convergence, the series

eu·T = Πk
j=1

∞
∑

rj=0

(ujTj)
rj/rj!
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converges absolutely if |uj| ≤ ε for all j, and can be interchanged with
∫ ∫

· · ·
∫

·dν(x1) · · · dν(xk).

The integral yields a power series in u1, . . . , uk. In the above, uj can
be replaced by uj + ivj if |uj + ivj| ≤ ε for each j. So we get a power
series converging to K(z) for z = u + iv. Since such a series exists in
some neighborhood of each point in W , K(·) is holomorphic on W as
stated.

To show that derivatives can be taken under the integral sign, first
let k = 1 and p = 1. If 0 < t < c and y > 0 then for λ := t/c
and x := cy, by convexity eλx ≤ λex + (1 − λ)e0 ≤ λex + 1, so
(ety − 1)/t ≤ ecy/c. Likewise, for 0 < |t| < c and all y, |(ety − 1)/t| ≤
(ecy + e−cy)/c. For u in U , and c small enough, u ± c ∈ U , so the
functions {(e(t+u)T (x) − euT (x))/t : 0 < |t| < c} are dominated by an
integrable function. So

d

dθ

∫

eθT (x)dν(x)|θ=u =

∫

T (x)euT (x)dν(x).

Also, |y| ≤ (ecy + e−cy)/c.
For p > 1, c−p(ecy + e−cy)p ≤ (2/c)p(epcy + e−pcy). For fixed

p, u ± pc ∈ U for c small enough, so we can again apply dominated
convergence to get

(dp/dθp)

∫

eθT (x)dν(x)|θ=u =

∫

T (x)peuT (x)dν(x).

Now for k > 1, and any p ∈ N
k, the 2k (or fewer) points

(u1 ± cp1, . . . , uk ± cpk) are all in U if c is small enough. Dominated
convergence applies once more, so the derivatives can be interchanged
with integrals as stated.

The final statement follows easily since C(θ) ≡ 1/K(θ), finishing
the proof. ¤

Suppose given an exponential family as in (3) and let j(θ) :=
log K(θ) = − log C(θ), so that dPθ/dν = exp(−j(θ) + θ · T ) where
θ · T :=

∑

j θjTj(x). Since the vector T := {Tj}k
j=1 gives a suf-

ficient statistic for the family, the means and variances of its compo-
nents are of interest. They have nice expressions in terms of deriva-
tives of the function j. The gradient of j is the vector-valued function
▽j := (∂j/∂θ1, . . . , ∂j/∂θk).
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Corollary 7. Suppose given an exponential family of order k in mini-
mal form (3). Then the natural parameter space Θ has non-empty in-
terior U ⊂ R

k. For any θ ∈ U , EθT = ▽j(θ) and for any r, s = 1, ..., k,

(5) Covθ(Tr, Ts) = Eθ(TrTs) − EθTrEθTs = ∂2j(θ)/∂θr∂θs.

On U , j is a strictly convex function.

Proof. Any convex set in R
k either has non-empty interior or is included

in some lower-dimensional affine subspace (Dudley [2002, 6.2.6]). The
latter would imply that θ1, ..., θk are affinely dependent, contradicting
the minimal form. So Θ has a non-empty interior U as stated.

Theorem 6 gives Eθ(TrTs) = (∂2K/∂θr∂θs)/K(θ) and

EθTr = (∂K/∂θr)/K(θ) = ∂j(θ)/∂θr.

This implies that EθT = ▽j(θ). Taking ∂/∂θs of both sides of the latter
equation in the last display gives (5).

Any covariance matrix is symmetric and nonnegative definite. To
show Covθ(Tr, Ts) is positive definite, suppose not. Then for some
a1, ..., ak not all 0,

0 =
k

∑

r,s=1

Covθ(Tr, Ts)aras = Varθ

(

k
∑

r=1

arTr

)

.

Then
∑k

r=1 arTr equals a constant almost surely, contradicting affine
independence of T1, ..., Tk (minimal form). So the Hessian matrix of
second partial derivatives of j is positive definite. Now consider j
along a line segment included in U , (1 − λ)s + λt = s + λ(t − s)
for s 6= t in U and 0 ≤ λ ≤ 1. From the chain rule we get that
∂2j(s+λ(t−s))/∂λ2 > 0 for 0 < λ < 1. It’s easily seen that a function
of a real variable on an open interval with a strictly positive second
derivative is strictly convex. This implies (since j is smooth on U by
Theorem 6) that j is strictly convex on U , proving the Corollary. ¤

Next is a description of posterior distributions for exponential fam-
ilies. It follows from a fact about sufficiency of sufficient statistics for
posterior distributions, given in “Sufficiency.”

Theorem 8. Suppose given an exponential family with likelihood func-
tion f(θ, x) = C(θ)h(x)eθ·T (x) as in (3), in minimal form, of order k,
for θ ∈ Θ where Θ is the natural parameter space. Let π be any prior
on Θ. Then for any x with h(x) > 0,

(a) πx has a density with respect to π given by

(6)
dπx

dπ
(θ) =

C(θ) exp(θ · T (x))
∫

C(φ) exp(φ · T (x))dπ(φ)
.
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(b) If π has a density Π with respect to Lebesgue measure λk on Θ,
then we also have

(7)
dπx

dλk
(θ) =

Π(θ)C(θ) exp(θ · T (x))
∫

Π(φ)C(φ) exp(φ · T (x))dλk(φ)
.

(c) If we have n i.i.d. observations X1, ..., Xn and x = (X1, ..., Xn),
the above equations hold with C(ψ) replaced by C(ψ)n for ψ = θ
or φ, and T (x) by

∑n
j=1 T (Xj) ∈ R

k.

The existence of a k-dimensional sufficient statistic T = (T1, . . . , Tk)
for an exponential family extends to any sample size n for n i.i.d. obser-
vations, as noted previously, replacing each Ti by

∑n
j=1 Ti(Xj). When

R. A. Fisher first defined exponential families, one of the main prop-
erties he pointed out was the possibility of data reduction in this way.
Moreover, he stated that if the data can be reduced, in other words if
for i.i.d. X1, . . . , Xn there is a sufficient statistic of dimension k < n
(even for one value of n) then the family of laws must be exponential.
This is true under some regularity conditions, one of which is that the
family be equivalent. For example, the family of uniform distributions
on intervals [0, θ], 0 < θ < ∞, has a 1-dimensional sufficient statis-
tic, the largest order statistic X(n), but is evidently not equivalent and
(so) not exponential. Other regularity conditions of continuity and dif-
ferentiability will be assumed. If there were no such conditions, the
“dimension” of a sufficient statistic would not be meaningful. For ex-
ample, if X and Y are any two uncountable Borel sets in complete
separable metric spaces, such as X = R

k and Y = R
m, then there

is always a 1-1, Borel measurable function from X onto Y with mea-
surable inverse (Dudley [2002, Section 13.1]). Any Borel measurable
function is continuous when restricted to sets having nearly full mea-
sure (Lusin’s theorem, Dudley [2002, Theorem 7.5.2]). Also, for any m
there is a continuous function from R

m into R, 1-1 almost everywhere
for Lebesgue measure (Denny, 1964).

The following example may illustrate the point. Let x and y be
two numbers in [0, 1], each represented by its decimal expansion, x =
∑

n≥1 xn/10n where each xn is 0, 1, . . . , or 9, and likewise for y. By
alternating digits define a real number z with digits z2n−1 = xn and
z2n = yn for n = 1, 2, . . .. This gives a correspondence between or-
dered pairs (x, y) of real numbers and individual real numbers z. Al-
though it is not quite well-defined, because of ambiguities such as
0.099999999 . . . = 0.100000 . . . , 1-1 or continuous, the correspondence
illustrates a reduction of dimension (from 2 to 1) which is not a real re-
duction in the sense of statistical interest. The example also shows why
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some regularity conditions such as differentiability may be expected in
proofs about data reduction implying that a family is exponential.

Let P be an equivalent family of probability measures. Let Q be a
fixed law in the family. If T is a sufficient statistic for {P n : P ∈ P},
the family of laws of n i.i.d. observations X1, . . . , Xn with laws in P ,
then by the factorization theorem, for each P in P there is a function
ρP with

(8) Πn
j=1RP/Q(xj) = ρP (T (x1, . . . , xn))

for almost all x1, . . . , xn. T will be called strongly sufficient (with
respect to given choices of Q and of RP/Q for all x and all P ∈ P) if
(8) holds for all (and not only almost all) x.

Let φP (x) := log RP/Q(x) for any P in P . We will be considering
families for which the likelihood ratios RP/Q are continuous non-zero
functions of x, so that φP is continuous, and where every neighborhood
of each point in the sample space has positive measure for each law in
P , so that φP is determined everywhere by continuity and not only
almost everywhere. So, strong sufficiency is a reasonable assumption.

A function f on a region in R
k is called C1 if it has continuous first

partial derivatives with respect to each of the k variables. It will be
called BC1 if these derivatives are also bounded. A real-valued function
f on an interval U ⊂ R will be called piecewise BC1 if f is continuous
on U and there is a finite set F ⊂ U such that f is BC1 on U \ F , i.e.
f is BC1 on each of finitely many open intervals whose endpoints are
in F or are endpoints of U . Now a fact can be stated:

Theorem 9. Let P be a family of laws defined on a connected open
set U in R

r and having densities fP , P ∈ P, with respect to Lebesgue
measure λ on U , with fP (x) > 0 for all x ∈ U and P in P (so P
is equivalent). Suppose that all the functions fP are continuous on
U and that for some positive integers k < n, there is a statistic T ,
continuous from Un into R

k, strongly sufficient for {P n : P ∈ P},
where RP/Q := fP /fQ. Then

(a) If k = 1, P is an exponential family of order 1.
(b) If all the densities fP are BC1, or if r = 1 and they are piece-

wise BC1, then P is exponential of order at most k.

The proof is too long to be given here. It appears in the 18.466 OCW
notes, Theorem 2.5.11.

Example. This will show why the connectedness of U is, or the conti-
nuity hypotheses are, needed in Theorem 9. Let U := (0, 1) ∪ (2, 3)
(which is not connected). Let the dominating measure ν be the sum of



10

Lebesgue measures on the two intervals. For 0 < λ < 1, 0 < θ < ∞ let

φθ,λ(x) := λθeθx/(eθ − 1), 0 < x < 1;
:= (1 − λ)θeθ(x−2)/(eθ − 1), 2 < x < 3.

It is straightforward to check that this is a probability density for each
θ and λ. Let x1, x2 be i.i.d. with this density. Then the likelihood
function is

u(θ, λ, x1, x2)θ
2 exp(θ(x1 + x2))/(e

θ − 1)2

where u(θ, λ, x1, x2) := λ2 for 0 < x1 + x2 < 2, 2λ(1 − λ)e−2θ for
2 < x1 +x2 < 4, and (1−λ)2e−4θ for 4 < x1 +x2 < 6. It follows by the
factorization theorem, not only because of the factor exp (θ(x1 + x2))
but because the ranges for different formulas for u(·, ·, x1, x2) also are
functions of x1 + x2, that x1 + x2 is a k = 1-dimensional sufficient
statistic for the family with n = 2. Let γ(θ, λ) := log[θ/(eθ − 1)].
Then one can check that

log φθ,λ(x) = γ(θ, λ) + log λ + θx + [log((1 − λ)/λ) − 2θ]12<x<3.

Since the functions x and 12<x<3 are affinely independent, as are the
functions θ and log((1 − λ)/λ), we see that the family is exponential
of order 2, not 1. Thus the conclusion of Theorem 9(a) does not hold
in this case. The connectedness of the interval U is used in the proof
more than once, by way of the intermediate value theorem.

Of course, connectedness is only meaningful in connection with con-
tinuity of some functions. We could take U := (0, 2) to be connected
in the example while φθ,λ and T are discontinuous by replacing (2, 3)
by [1, 2) and letting x1(x) = x for 0 < x < 1 and x1(x) = x + 1 for
1 ≤ x < 2, while taking x2 as an i.i.d. copy of x1.

Or, replacing the union of two intervals by a union of as many inter-
vals as we like, we can get the exponential family to be of arbitrarily
high order for n = 2. Similarly, by spreading the intervals farther
apart, for example taking (0, 1) ∪ (n, n + 1) ∪ (n2 + n, n2 + n + 1), . . . ,
we can get a 1-dimensional sufficient statistic for any number n of i.i.d.
observations, again if U is not connected or the densities and T are not
continuous.

Note: for r > 1, the dimension of the full data vector (X1, . . . , Xn) is
nr, but that the assumption in Theorem 9 is k < n (and not k < nr).
Suppose we consider a family of distributions R

r having densities with
respect to some measure (not Lebesgue measure) which are functions
of the first coordinate x1. Then x1 is a sufficient statistic. For n
i.i.d. variables there is an n-dimensional sufficient statistic and n < nr,
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but the family need not be exponential. So the assumption k < n in
Theorem 9 is sharp.

Notes. Two classic books on exponential families are Barndorff-Nielsen
(1978) and Brown (1986). There are more recent books, which I have
not seen, on particular aspects, such as Exponential Families of Sto-
chastic Processes (Uwe Küchler et al., 1997) and Exponential Family
Nonlinear Models (Bo-Cheng Wei, 1998).
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