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METHODS OF ESTIMATION

Suppose we have an unknown parameter θ and have observed some data X1, ..., Xn

assumed to be i.i.d. with a distribution depending on θ, and suppose we want to estimate
some function g(θ). If the distribution is entirely determined by θ it will be written Pθ.
Let T = T (X1, · · · , Xn) be a statistic that may be used to estimate g(θ). There are
several criteria or methods for choosing estimators.

1. Mean-squared error

Let Eθ be expectation when θ is the true value of the parameter. The mean-squared
error (MSE) of T as an estimator of g(θ), at θ, is defined as Eθ((T (X) − g(θ))2). One
would like to make MSE’s as small as possible, but in general, there is no way to choose
T (X) to minimize Eθ((T (X)−g(θ))2) for all θ. To see that, let c be any value such that
g(θ0) = c for some θ0. Then the trivial estimator T ≡ c minimizes the MSE for θ = θ0,
while for other values of θ, the estimator can have large MSE.

Define the bias b(θ) := bT (θ) of T as an estimator of g(θ) to be bT (θ) := EθT − g(θ).
For a given value of θ, a statistic T has a variance defined by Varθ(T ) = Eθ((T −EθT )2).
We then have for any statistic T such that Eθ(T

2) < +∞ for all θ, and function g(θ),
that the MSE equals the variance plus the bias squared:

(1) Eθ((T − g(θ))2) = Varθ(T ) + bT (θ)2,

because in Eθ([(T (X)−EθT )+(EθT−g(θ))]2) we have Eθ((T (X)−EθT )(EθT−g(θ)) = 0,
as for fixed θ, the latter factor is a constant.

Equation (1) is sometimes called the “bias-variance tradeoff”. In minimizing the MSE
one would like both the variance and the bias to be small. In an older tradition, one
first looked for estimators for which the bias is 0, then tried to minimize their variance.
That does not always work well, however, as we’ll see.

1.1. Unbiased estimation. An estimator T of g(θ) is said to be unbiased if for all θ,
EθT = g(θ). In other words, the bias bT (θ) = 0 for all θ. The sample mean X is an
unbiased estimator of the true mean µ for any distribution having a finite mean. For
the variance we have, recalling the sample variance defined as, for n ≥ 2,

s2

X =
1

n − 1

n
∑

j=1

(Xj − X)2.

Proposition 1. For any n ≥ 2 and any X1, ..., Xn i.i.d. with E(X2

1
) < +∞ and so

having a finite variance σ2, E(s2

X) = σ2, so s2

X is an unbiased estimator of σ2.

Proof. Let µ = EX1 and let Yj := Xj − µ for j = 1, ..., n. Then Yj are i.i.d. with the
same variance σ2. We have Y = X −µ and Yj −Y = Xj −X for each j. Thus s2

Y = s2

X ,
so we can assume that µ = 0. We then have

n
∑

j=1

(Xj − X)2 =
n

∑

j=1

X2

j − 2
n

∑

j=1

XjX + nX
2

.
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Since
∑n

j=1
Xj = nX and E(X

2

) = σ2/n, the expectation of the displayed sum is

nσ2 − n(σ2/n) = (n − 1)σ2, and the statement follows. ¤

2. Maximum likelihood estimation

Let f(x, θ) be a family of probability densities or mass functions indexed by a param-
eter θ. Given a vector of observations X = (X1, · · · , Xn) assumed to be i.i.d. f(x, θ),
we can form the likelihood function

(2) f(X, θ) :=
n

∏

j=1

f(Xj, θ).

A maximum likelihood estimator of θ, depending on X, is a value of θ that maximizes
f(X, θ), called the maximum likelihood estimator (MLE) if it is unique, and then a
function T (X) of X.

Proposition 2. For the family of normal distributions N(µ, σ2), −∞ < µ < +∞ and

0 < σ < +∞, the MLE of µ is X, and the MLE of σ2 is 1

n

∑n
j=1

(Xj − X)2.

This is Example B in Rice, p. 269. MLEs of parameters of other families such as
binomial, Poisson, and geometric, are also easy to find and will be found in PS4.

3. Method of moments estimation

If a family of distributions has just a one-dimensional parameter θ, and EθX is a
function g(θ), then the method of moments estimate of θ is to choose it, if possible,
such that X = g(θ). Applying this to a binomial (n, p) distribution, one can consider
Sn =

∑n
j=1

Xj where Xj are i.i.d. Bernoulli(p), i.e. X1 = 1 with probability p and 0

otherwise. Then Sn is a binomial (n, p) variable.
If θ is a 2-dimensional parameter, as for normal, gamma, and beta distributions,

and the mean is a function µ(θ), while the variance is a function σ2(θ), the method of
moments estimate of θ is a value, if it exists and is unique, such that µ(θ) = X and
σ2(θ) = 1

n

∑n
j=1

(Xj − X)2. The latter would be the variance of a discrete distribution,

which is the sum of point masses 1/n at each Xj, called the empirical distribution Pn.
That seems to be the motivation for choosing the factor 1/n in method of moments
estimation.

4. Estimation of the normal variance

Given X1, ..., Xn i.i.d., assumed to be N(µ, σ2) for some unknown µ and σ, X as an
estimator of µ is the MLE, is unbiased, and is the method of moments estimator. For σ2,
consider estimators cn

∑n
j=1

(Xj −X)2. Then cn = 1/(n−1) gives an unbiased estimator

of σ2, not only for normals but for any distribution having finite variance. The MLE is
given by cn = 1/n by Proposition 2 and so is the method of moments estimate.

Proposition 3. To minimize Eθ((T (X) − σ2)2) for n ≥ 2, for estimators of the form

T (X) = cn

∑n
j=1

(Xj − X)2, for any θ = (µ, σ), the best value of cn is cn = 1/(n + 1).
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Proof. If Z is a N(0, 1) variable, to find E(Z4), one can use integration by parts. Let
φ(z) be the standard normal density, φ(z) = (2π)−1/2 exp(−z2/2). Then

E(Z4) =

∫

∞

−∞

z4φ(z)dz = −

∫

∞

−∞

z3dφ(z) = 0 + 3

∫

∞

−∞

z2φ(z)dz = 3.

It follows that Var(Z2) = Var(χ2(1)) = 3 − 1 = 2, and so Var(χ2(d)) = 2d for any
positive integer d.

If X1, . . . , Xn are i.i.d. N(µ, σ2) for some unknown µ and σ2,
∑n

j=1
(Xj − X)2/σ2 has

a χ2 distribution with n − 1 degrees of freedom, which has mean n − 1 and variance
2(n − 1). So the MSE of our estimator is

σ4E
(

cnχ
2(n − 1)2

− 1
)2

= σ4
[

c2

n

(

(n − 1)2 + 2n − 2
)

− 2cn(n − 1) + 1
]

= σ4
[

(n2
− 1)c2

n − (2n − 2)cn + 1
]

.

The quantity in square brackets goes to +∞ as cn → ±∞, so it is minimized when its
derivative is 0, 2cn(n2 − 1)− (2n− 2) = 0. Factoring out 2n− 2 > 0 gives cn = 1/(n+1)
as claimed. ¤

So by four different criteria, the selected values of cn are 1/(n−1), 1/n, and 1/(n+1)
(only two of the criteria agree).

5. Inadmissibility and the variance

An estimator T (X) is called inadmissible as an estimator of g(θ), for mean-squared
error, if there is another estimator U(X) such that:
(i) Eθ[(U(X) − g(θ))2] ≤ Eθ[(T (X) − g(θ))2] for all θ, and
(ii) Eθ[(U(X) − g(θ))2] < Eθ[(T (X) − g(θ))2] for some θ.

If there is no such U then T is called admissible.
Surprisingly, the usual sample variance s2

X turned out to be inadmissible as an esti-
mator of the true variance σ2 under very general conditions, as Yatracos (2005) showed.
Again consider estimators

cn

n
∑

j=1

(Xj − X)2

of σ2, where we know that cn = 1/(n−1) gives an unbiased estimator of σ2 whenever it is
finite, whereas cn = 1/n gives the maximum likelihood estimator for normal distributions
and the statistic used in method-of-moments estimation. Yatracos proved the following
fact: let X1, ..., Xn be i.i.d. with any distribution such that E(X4

1
) < ∞, Xj are not

constant, and in a family such that for any c with 0 < c < ∞, the distribution of
cX1 is also in the family. Then the classical sample variance s2

X with cn = 1/(n − 1)
is inadmissible as an estimator of the true variance. An estimator with smaller mean-
squared error is obtained by taking

cn =
n + 2

n(n + 1)
.
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Of course, the resulting estimator has a non-zero bias, but the bias becomes very small
as n becomes large and the reduction in variance is enough to make the total MSE
smaller.
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