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Cases where estimation behaves strangely or badly

In optimization, we’re trying to maximize or minimize some function. For example, we
may be looking for the maximum likelihood estimate (MLE) of one or more parameters.
But is this always a good thing to do?

1. Infinity of the likelihood

Suppose for some likelihood function f(θ,X), where X = (X1, ..., Xn) is a vector of
observations, the supremum of f is +∞ at or approaching some value(s) of the parameter
θ. Can one still define an MLE?

1.1. Unique point where the likelihood goes to +∞; example. Suppose the
supremum of the likelihood is +∞ and there a parameter point θ0 such that for every
δ > 0, there is an M < +∞ such that for every θ such that f(θ,X) > M we have
|θ − θ0| < δ. Thus, the likelihood becomes arbitrarily large only in the neighborhood of
θ0 or as θ → θ0. In such a case, we can define θ0 as an MLE of θ in a generalized sense.

Such cases do arise for reasonable likelihoods. For any probability density function f
on the real line, we can form a so-called location-scale family, where for every real m and
every σ > 0, (1/σ)f((x−m)/σ) is also a probability density. We can extend the family
to the boundary case σ = 0 by defining the distribution then to be the point mass δm

at m even though this, of course, does not have a density.
Let f(x) = C/(1+x2)2 where C is the normalizing constant making f a density. (This

is a t density with 3 degrees of freedom; the outer exponent is (ν + 1)/2 where ν is the
degrees of freedom; C can be expressed in terms of gamma functions and is given in
many statistics textbooks.) Suppose for the location-scale family based on this density
we have n observations X1, ..., Xn giving a likelihood function

f((m,σ), X) =
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σ
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Now, suppose Xj are actually sampled from a discrete distribution with Xj = 0 for k
values of j ≤ n. (This could happen as t distributions are sometimes used in defining
nonparametric estimators.) Then when m = 0, the likelihood function is asymptotic as
σ ↓ 0 to

(1) Cnσ3n−4k
∏

Xj 6=0

1

X4
j

which will go to +∞ if and only if k > 3n/4. Then, m = σ = 0 will be the unique
parameter pair for which the likelihood becomes arbitrarily large in its neighborhood,
as there can be only one m such that 3/4 or more of the Xj equal m. Specific discrete
distributions that can easily give such data would be the geometric distribution with
p > 3/4 or a Poisson distribution with e−λ > 3/4.
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1.2. Nonparametric location and scale estimators. Given observations X1, ..., Xn

real-valued, the usual nonparametric estimator of location is the sample median m(X)
and a usual nonparametric estimator of scale is the MAD (median absolute deviation),
namely the sample median of |Xj −m(X)| (sometimes multiplied by a constant to make
it match the standard deviation in the normal case). If more than half of the Xj are
equal to some m0 then m0 will be the sample median and the MAD will be 0.

The following is based on Dudley, Sidenko and Wang (2009, Theorem 12). Som parts
were known earlier and mentioned in references given by Dudley et al. If we take the t
density with ν > 1 degrees of freedom (where ν need not be an integer) and its location-
scale family, then for arbitrary X = (X1, ..., Xn), the maximum likelihood estimates
of m and σ exist and are unique, where that of σ is in the extended sense if its MLE
is 0. For ν = 1 we get the Cauchy distribution, for which the MLEs are not unique,
specifically in case n is even, half the Xj have one value and the other half have another.
If a fraction ν/(ν + 1) or more of the Xj have the same value m0, then m0 is the MLE
of m and that of σ is 0. For an arbitrary probability distribution Q on the real line, tν
location and scale functionals mν(Q) and σν(Q) exist. If X1, ..., Xn are i.i.d. (Q), then
the MLEs of m and σ will converge with probability 1 as n → ∞ to mν(Q) and σν(Q).
On the class of Q having no atom of size ν/(ν + 1) or larger, the functionals µν and
σν are highly smooth (analytic) with respect to suitable norms. If there are such large
atoms, however, the functionals are only continuous, not differentiable.

As ν decreases down toward 1, the cases where we estimate (m,σ) = (m0, 0) converge
toward those for using the median and MAD. More generally, like the median and MAD,
the t estimates of location and scale m and σ are not sensitive to outliers and can serve as
nonparametric estimators. As ν becomes large, the t distribution approaches normal and
the t estimators of location and scale approach the parametric estimators, the sample
mean and standard deviation.

1.3. Likelihood going to infinity, not only near one point. Suppose the likelihood
function comes from a mixture of two normal distributions, having a density

(2) f(x) = λσ−1φ((x − µ)/σ) + (1 − λ)τ−1φ((x − ν)/τ)

where φ is the standard normal density, µ and ν can be any real numbers, σ > 0,
τ > 0, and 0 < λ < 1. Suppose we observe X1, ..., Xn all distinct, and we’d like to find
maximum likelihood estimates of the five parameters. To avoid a symmetry giving equal
values of the likelihood let’s assume that λ < 1/2. Consider the likelihood function

f(θ,X) =
n∏

j=1

f(Xj)

where θ = (µ, σ, ν, τ, λ). Suppose we take µ equal to some Xj. Let ν and τ > 0 have
any fixed values. As σ ↓ 0, in the jth factor, we will have

φ((Xj − µ)/σ) = φ(0/σ) = φ(0) = 1/
√

2π

while the term (1 − λ)τ−1φ(Xj − ν)/τ) has a constant, positive value and the factor
σ−1 goes to +∞, so the whole jth factor goes to +∞. In the ith factor for i 6= j,
exp(−(Xi − µ)2/σ2) will go to 0 very fast as σ → 0 because Xi 6= Xj = µ, and divided
by σ it will still go to 0, so the ith factor will converge to the term with coefficient
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1 − λ which is strictly positive. Thus the product of all n factors will go to +∞. Since
this can occur for n values of µ and arbitrary values of λ ∈ (0, 1/2), τ > 0 and ν,
the “maximum likelihood estimate” is highly non-unique in this case, and maximum
likelihood estimation is not useful.

How, then, should parameters in the normal mixture model be estimated? One
might consider Bayesian methods. The Wikipedia article on the EM (Expectation-
maximization) algorithm gives an estimation procedure in which Bayesian expectation
steps alternate with maximum likelihood steps. The example treats a mixture of two
multivariate normal distributions.

In “Solari’s example” regarding regression with errors in both variables (on which
there is a handout), something similar occurs. There are two critical points of the
likelihood function, but they are both saddle points. For infinitely many values of some
of the parameters, when one scale parameter σ decreases to 0, the likelihood goes to
+∞, so again maximum likelihood estimation is not useful.

In that case, there are a lot of parameters. For n observations (Xi, Yi), i = 1, ..., n, in
the plane, the Xi are modeled as Xi = ai + ξi where ai are unknown true values and ξi

are i.i.d. N(0, σ2) errors, and Yi = bai +ηi where ηi are i.i.d. N(0, τ 2) and independent of
the ξj. The regression line is assumed to pass through (0, 0), so that the true intercept
is 0 and is not estimated. There are n+3 parameters b, σ, τ , a1, ..., an, of which b is the
main parameter of interest.

It may be that trying to estimate all the ai individually is a bad idea. It seems that
regression in such generality is not well-advised. If σ = 0 or σ/τ is very small, one has
basically observed design points Xi = ai and can do classical y-on-x regression. Similarly
if τ/σ is very small one can interchange the variables, i.e. do x-on-y regression. If both
Xi and Yi are observed with error, and are measured in the same units, one can minimize
the sum of squared distances from the points to the line (best fit by squared distance
[bfsd] regression, as I teach in 18.443).

2. Identifiability

A simple form of unidentifiability is as follows. Suppose we have a family of probability
distributions Pθ depending on a parameter θ. We can say that θ is unidentifiable if
Pθ = Pφ for some θ 6= φ. If we have even a large sample size n of many observations,
and find that the value θ fits the data well in whatever sense, then φ will fit it equally
well. For example, if we have in (2 some θ = (λ, µ, σ, ν, τ) with µ 6= ν or σ 6= τ or
λ 6= 1/2, then for φ = (1 − λ, ν, τ, µ, σ) 6= φ we get Pθ = Pφ.

Bickel and Doksum (2001, p. 6) define identifiability only in this sense, that Pθ 6= Pφ

for all θ 6= φ in the parameter space. But there are broader definitions, which may
depend on the sample size n. Suppose we say that a real parameter θ is identifiable for
a given n if, given X1, ..., Xn, we can give a two-sided 1 − α confidence interval for θ.
We would like if possible that the width of this confidence interval should shrink to 0 as
n → ∞ if the data are really i.i.d. for a distribution Pθ in the given parametric family.

2.1. Non-unique choices of θ. A parameter θ may be said to be unidentified or only
partially identified if one wishes say to minimize a certain function Q(θ, P ) with respect
to θ where P is the distribution of observations X, but the set Θ0 of minimizing θ in
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the parameter space Θ contains more than one point. For example, for distributions P
on the real line, let Q(θ, P ) =

∫ ∞

−∞
|x − θ| − |x|dP (x). This is minimized at θ if and

only if θ is a median of P , and for some P , whose distribution functions equal 1/2 on a
non-degenerate interval, the median is not unique.

Based on a vector X of observations, one wishes to define a subset Θ̂0 which is a

confidence set in the sense that for some β > 0, for each θ ∈ Θ0, θ ∈ Θ̂0 with probability
at least β. This is the situation studied in the paper by Romano and Shaikh (2008)
which has already been rather much cited.

Earlier in the course we saw how to get a nonparametric confidence interval, say a
95% interval, for “the” median using order statistics, namely [X(j), X(k)] for the smallest
k such that E(k, n, 1/2) ≤ 0.025 and the largest j such that B(j−1, n, 1/2). If there is a
non-degenerate interval Θ0 of medians, it will be included in [X(j), X(k)] with probability
at least 0.95. Romano and Shaikh are treating multidimensional parameter spaces and
say their methods are “computationally intensive yet feasible.”
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