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Truncation, the Lynden-Bell estimator, and galaxy data

1. Definitions

Suppose there are i.i.d. pairs (Xk, Yk) of variables for k = 1, ..., N
where N is unknown to the observer. Within each pair, Xk and Yk are
independent positive real variables with distributions F and G respec-
tively.

In the “truncation” or “left truncation” model, the specific restric-
tion is that the pair of values (Xk, Yk) is observed if and only if Yk ≤ Xk.
Moreover, the index k is not observed. One wants to estimate F .

Suppose then that we observe (xj, yj), j = 1, ..., n, so that we observe
a value of n and know about N at first that N ≥ n. Recall the survival
function corresponding to F , S(x) ≡ 1 − F (x),

2. The Lynden-Bell estimator

Let ξi for i = 1, ...,m be the distinct values of xj. What is called the
Lynden-Bell estimator of S(x) is

(1) Ŝn(x) =
∏

ξi≤x

(
1 −

ri

nCn(ξi)

)

where ri is the number of j ≤ n such that xj = ξi and

Cn(s) =
1

n

n∑

j=1

1{yj<s≤xj}.

These formulas are as given by Woodroofe (1985, (8)) and Chen et al.
(1995, (1)), originating with Lynden-Bell (1971).

3. Absolute and apparent magnitudes for astronomical

objects

Magnitudes were first assigned in ancient times to stars, with the
brightest being assigned first magnitude, a next-brightest category sec-
ond magnitude, and so on to the faintest stars visible to the naked eye
under good conditions, 6th magnitude. In a modern urban area, only
stars up to magnitude 3 or 4 can be seen by unaided eye due to ambient
artificial light and air pollution.

With modern units, a difference of 1.0 in magnitude corresponds to
a factor of 100.4 .

= 2.512 in brightness. The “apparent magnitude” is
the magnitude as measured from Earth or the vicinity (e.g. from the
Hubble Space Telescope). The brightest star, Sirius, has an apparent
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magnitude −1.47. The absolute magnitude M is the apparent magni-
tude an object would have if seen at a distance of 10 parsecs, about
32.6 light years. Let m be the apparent magnitude of an object such
as a galaxy. Then we have

(2) M = m − 5(log10 DL − 1)

where DL is the “luminosity distance” to the object, measured in par-
secs.

For not too distant objects, DL agrees with usual notions of distance.
For the most distant known objects, some quasars, general relativistic
effects complicate the evaluation of DL. The Hubble relation is defined
in terms of “proper distance” Dp and is given by

(3) v = H0Dp

where H0, the Hubble constant, is about 73 (km/sec)/(Mpc) by a cur-
rent estimate, and where Mpc abbreviates megaparsec (106 parsecs).
The velocity v of recession away from us is calculated from the redshift
z by

(4) v = cz/(1 + z)

where c is the velocity of light, 299,795 km/sec. Combining (3) and (4)
gives

(5) Dp =
v

H0

= d(z) :=
cz

H0(1 + z)

in megaparsecs, or 106 times that in parsecs. Approximating DL by
Dp for galaxies in the sample we’ll consider, we then get from (2)

M = m − 5 (−1 + 6 + log10 (d(z)))

= m − 25 − 5 (log10 (d(z))) .(6)

Let

L(z) := log10(d(z)).

Suppose given some observations (zi,mi) of redshift and apparent mag-
nitude for the ith galaxy in a sample, i = 1, ..., n, where there is some
largest (faintest) value mc of apparent magnitude included in the sam-
ple. Let Mi be the absolute magnitude of the ith galaxy. Then from
(2) we have Mi + 25 + 5L(zi) ≤ mc. Let Xi := C · 10−.4Mi , which is a
measure of intrinsic brightness of the ith galaxy, where C is a constant
depending on units in which brightness is measured. From (6) and
mi ≤ mc we have

(7) Xi ≥ Yi := C · 10−.4mc+10+2L(zi) = Cc102L(zi)
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where Cc = C ·10−.4mc+10 is a constant depending on mc. Let di := d(zi)
be the estimated distance to the ith galaxy. Then Yi = Ccd

2
i , so (7) is

equivalent to Xi/d
2
i ≥ Cc. The apparent brightness of an object with a

given intrinsic brightness decreases with the square of the distance. The
magnitude is a constant times the logarithm of the brightness, which
involves a somewhat arbitrary choice of units, but the definitions taken
together do fit with decrease of apparent brightness as inverse squared
distance.

From estimating F , we may hope get a valid distribution for the
upper tail of the distribution of Xi, the intrinsic brightness of the
ith galaxy, or equivalently, of the distribution of absolute magnitudes
which are most negative (lower tail of the distribution of absolute mag-
nitudes). Estimation of the distributions for intrinsically faint objects is
more difficult, as they can only be seen relatively nearby. Fainter than
large galaxies are “dwarf” galaxies. Our own galaxy, the Milky Way, is
estimated to have about 200 billion stars. It has several satellite dwarf
galaxies, of which the largest, the Large Magellanic Cloud, contains
about 30 billion stars. It is easily visible in the sky from the Southern
Hemisphere. It is said to be intermediate in size between most dwarf
galaxies and most galaxies seen at large distances. Smaller and smaller
galaxies are being found. There are “hobbit galaxies” smaller than the
originally known dwarf galaxies. In 2004, “ultra-compact dwarfs” were
reported, which may contain “only” 100 million stars, beside having
remarkably small diameter. The distribution of brightness of galaxies
at the faint end seems very hard to estimate, and not feasible at all
from samples of mainly bright, quite distant galaxies such as those in
the direction of the Corona Borealis supercluster.

Should one also estimate G and possibly also N as the sources men-
tion? I think for our data set, of galaxies in the direction of Abell
2067, estimating G would not be estimating anything general. From
the Postman, Huchra, and Geller data selected from the the Corona
Borealis supercluster, with mc = 15.7, the distribution of z would be
unimodal with a mode a little more than .07. From the Small et al.
data, with mc = 19, there is an additional mode around z = .11, and
both modes are seen by limiting the direction to that of Abell 2067. In
fact I focused on that direction after noticing there was a rather newly
named cluster “A2067B,” so that the physical A2067 is at z around
0.07 and A12067B has z around 0.11. Naturally, there are both fore-
ground and background galaxies in the same direction. It seems to me
there is no good reason to expect modes near the same values of z in
other directions in the sky.
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Another difficulty in estimating a distribution for the distribution of
zi, or equivalently for the distribution G of Yi after the transformation
in (7), is as follows. In (7) we also see the Yi are proportional to d2

i .
Consider a relatively short range of values of d2

i , say a ≤ d2
i ≤ a + h,

where 0 < h << a, or equivalently

√
a ≤ di ≤

√
a + h

.
=

√
a +

h

2
√

a

by a short Taylor expansion. This gives a spherical shell of radius√
a and thickness h/(2

√
a), whose volume, if geometry is Euclidean,

is approximately 4πa · (h/(2
√

a)
.
= 2πh

√
a, which increases with a. If

galaxies are on average distributed equally in equal volumes of space,
then the density of di would be increasing as

√
a, which would be

unbounded and not normalizable. Actually space, although approxi-
mately Euclidean at small scales (except near quasars?) may not be
at very large distances. The large-scale geometry of the universe (cos-
mology) could affect the distribution of zi and di for galaxies.

The estimation of G might make more sense for the special class of
objects (quasars of a certain type) that Lynden-Bell studied.

Similarly, the total number N of all galaxies, even in the direction
of A2067, may be virtually unbounded, or at any rate, not reasonably
estimable from a given sample with bounded apparent magnitude.

In (7), the values of mc and so Cc depend on the study, for example
mc was 15.7 in Postman, Huchra and Geller, and is 19.0 in Small,
Sargent and Hamilton. Thus the definition of Yi depends on this mc.
In this kind of situation what would it mean to let (N and) n become
very large? In fact, a larger sample might well come along with a larger
mc, so that the definition of Yi would change.
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