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Testing multiple hypotheses

The classical method of adjusting for testing multiple hypotheses
is the so-called Bonferroni correction, given in beginning statistics
courses. Recall that it works as follows. Suppose we are testing m
hypotheses H0j, j = 1, ...,m. The overall null hypothesis H0 is that all
m hypotheses H0j are true. Suppose we want to test H0 at level α > 0.
For each j, we have a test of H0j which gives a p-value qj. The overall
test procedure will be, to reject H0 at level α if and only if we reject
H0j for at least one value of j at level α/m, in other words if qj ≤ α/m.
Let Aj be the event that we reject H0j under this procedure and A the
event that we reject H0 at level α. Then A =

⋃m

j=1 Aj. Under H0, all

H0j are true, so for each j, P (Aj) ≤ α/m and so

P (A) = P

(

m
⋃

j=1

Aj

)

≤
m

∑

j=1

P (Aj) ≤ m
( α

m

)

= α

by Boole’s inequality (Bonferroni actually gave further inequalities, of
which the next one after Boole’s is a lower bound for the probability of
a union). So, the probability of rejecting H0 when it is true is at most
α, as desired. If H0 is rejected, then each H0j with qj ≤ α/m would
be rejected. No assumption on the joint distribution of the random
variables 1Aj

such as independence is needed for the method, the Aj

can be arbitrarily dependent.
In the later 20th century, there were applications, notably in ge-

nomics, with large numbers, e.g. thousands, of tests. Given two tissue
samples, e.g. from different species, or different organs, one might have
measured the expression levels of m different genes, and hypothesis
H0j might be that the expression levels are the same in the two tissue
types for the jth gene measured. In such situations, the Bonferroni
correction could be inappropriate for at least two reasons. One is that
for tests with discrete test statistics, such as a Kolmogorov–Smirnov
two-sample test, there will be for given sample sizes a smallest possible
p-value, and if this is larger than α/m, rejection is not possible. An-
other reason is that the hypothesis H0 that all H0j are true is no longer
interesting as one believes that only some of them are true.

Benjamini and Hochberg (1995) gave a procedure that can deal with
such situations. Suppose one has a test procedure, giving a criterion for
when H0j will be rejected for each j. Let R be the (random) number
of H0j that will be rejected. Let V be the number of j such that H0j
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is true but rejected and Q = (V/R)1R>0. Then EQ is called the false
discovery rate (FDR). One would like this not to be too large. Suppose
we would like it to be ≤ q for some q with 0 < q < 1. A typical value
of q used, aside from q = 0.05, might be q = 0.1. Beside keeping the
FDR fairly small, one also wants to reject H0j in those cases where it
is not true, e.g. discover interesting genes for differences between tissue
samples.

The Benjamini–Hochberg (1995) (BH) procedure is as follows. Do
the m tests, giving p-values qj, j = 1, ...,m. Take the order statistics
of the qj, giving q(1) ≤ q(2) ≤ · · · ≤ q(m). Let R be the largest i such
that q(i) ≤ iq/m, or R = 0 if there is no such i. Then reject H0j if and
only if qj ≤ Rq/m. So, R will be the number of hypotheses rejected.

It is true under some hypotheses (but not so generally as for the
Bonferroni procedure) that for the BH procedure, the false discovery
rate is indeed ≤ q. To prove this, Benjamini and Hochberg (1995)
assumed that the p-values for the true null hypotheses are mutually
independent, and also independent of the set of p-values of the un-
true hypotheses (which may depend on one another). Benjamini and
Hochberg also assumed implicitly in their proofs, although not explic-
itly in statements, that the test statistics had continuous distributions
and so, that the p-values of the true null hypotheses are i.i.d. U [0, 1].
Their theorem (extended to possibly discrete test statistics) is given as
Corollary 1 below.

The p-values are viewed as test statistics, so that hypotheses are
rejected for small values of these, by the BH rule.

The assumption of continuous test statistics is not convenient, as
we already saw from examples such as the Kolmogorov–Smirnov (or
Mann–Whitney–Wilcoxon) statistics for comparing two samples. Ben-
jamini and Yekutieli (2001) gave an improvement where the indepen-
dence hypothesis was weakened and the test statistics need not be
continuous, so the p-values of the true null hypotheses need not be
U [0, 1]. Since their result subsumes the main theorem of Benjamini
and Hochberg, an exposition of the proof in the 2001 paper will be
given here.

Remarkably, there is no assumption on the marginal distributions of
the p-values of the false null hypotheses such as, for continuous test
statistics, being stochastically smaller than U [0, 1].

Here, the two theorems of Benjamini and Yekutieli (2001) will be
stated and proved. The first one implies that of Benjamini and Hochberg.
The second one has no dependence hypotheses and a different conclu-
sion.
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First we need some terminology. For two points x, y of R
m, x ≤ y

will mean xj ≤ yj for all j = 1, ...,m. Benjamini and Yekutieli call a
set D ⊂ R

m an increasing set if whenever x ∈ D and x ≤ y then also
y ∈ D. (Equivalently, {−x : x ∈ D} is what has been called a lower
layer in the probability literature, so an increasing set might be called
an “upper layer.”)

Definition. For a Borel probability measure P on R
m and a subset

I0 ⊂ {1, 2, ...,m}, P will be called positively regression dependent with
respect to I0, or PRDS(I0), if for each increasing set D and each i ∈ I0,
conditional probabilities can be chosen such that P (x ∈ D|xi = u) is a
nondecreasing function of u.

Here is the main theorem of Benjamini and Yekutieli (2001), namely
their Theorem 1.2:

Theorem 1. Suppose m null hypotheses are being tested, with corre-
sponding p-values p1, ..., pm, suppose m0 of them are true, let I0 be the
set of j such that the jth null hypothesis is true, and suppose the joint
distribution of (p1, ..., pm) is PRDS(I0). Then if the BH procedure is
used for some 0 < q < 1, we have E(Q) ≤ m0q/m ≤ q.

Example. This artificial example shows an extreme dependence allowed
by PRDS. Suppose m null hypotheses are all true and are equivalent.
All are tested with the same test having a continuous test statistic, so
that the p-values p1 = · · · = pm, each with a U [0, 1] marginal distri-
bution. The joint distribution of {pj}m

j=1 satisfies the PRDS condition
with I0 = {1, 2, ...,m}. Thus for given q with 0 < q < 1 by Theorem 1,
E(Q) ≤ q. In fact one sees directly that E(Q) = q. In this case if one
true null hypothesis is rejected, all m will be. Storey (2002) proposed
considering the “positive false discovery rate” pFDR = E(V/R|R > 0)
as contrasted with the FDR = EQ. In this example E(Q) = q < 1
which equals the pFDR, showing a wide difference between the two. If
on the other hand P (R > 0) is close to 1, as is often true in applica-
tions where a number of null hypotheses are false, then there is little
difference between pFDR and FDR.

Suppose B is the gain from discovering a false null hypothesis and
C the cost of rejecting a true one. Let G := (R − V )B − V C be the
net gain. One would like to maximize EG. For the BH procedure with
a given q where 0 < q < 1, so that E(Q) ≤ q, we would have in the
Example EG = −qmC which is as bad as possible.
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Suppose on the other hand that all null hypotheses are true but now
their p-values are jointly independent. In the BH procedure we have
the bound, by Stirling’s formula, if 0 < q ≤ 0.1,

EV = ER ≤
m

∑

k=1

(

m

k

)(

kq

m

)k

≤
m

∑

k=1

k
(kq)k

k!

≤
m

∑

k=1

k(eq)k/
√

2π <
eq√
2π

· 1

(1 − eq)2
< 2.05q,

so EG > −2.05qC, a lower bound not depending on m.
It seems then that to apply the PRDS hypothesis, one should not

only check it but guard against excessive correlation of the p-values of
the true null hypotheses.

Before the proof of either theorem, here is the other theorem of
Benjamini and Yekutieli (2001), their Theorem 1.3. In their paper, the
assumption of continuity, i.e. U [0, 1] distribution, of the p-values of the
true null hypotheses is not stated in the theorem, but it is used in the
proof.

Theorem 2. For any joint distribution of p-values (p1, ..., pm) for m
tests such that the marginal distributions of pi for the true null hy-
potheses are continuous and so U [0, 1], applying the BH procedure for
0 < q < 1, we have

E(Q) ≤ q

m
∑

j=1

1

j
.

Thus, to get E(Q) ≤ q, one could apply the procedure with q re-
placed by q/

∑n

j=1 1/j.

Proof of Theorem 1. Let

(1) qj := jq/m, j = 1, ...,m.

Suppose that m0 of the null hypotheses are true and without loss of
generality, that they are the jth for j = 1, ...,m0. Thus m1 := m−m0

is the number of false null hypotheses. Let Av,s be the event that the
BH procedure rejects exactly v true and s false null hypotheses. Then
the false discovery rate is

(2) FDR := E(Q) =

m1
∑

s=0

m0
∑

v=1

v

v + s
Pr(Av,s).

The proof uses the following, in which pi is the p-value of the ith test:



5

Lemma 1. For any v = 1, ...,m0 and s = 0, ...,m1, we have

(3) Pr(Av,s) =
1

v

m0
∑

i=1

Pr ({pi ≤ qv+s} ∩ Av,s) .

Proof of lemma. For a given v = 0, 1, ...,m0 and s = 0, 1, ...,m1 let
V ⊂ {1, ...,m0} be a set with cardinality |V | = v. Let AV

v,s be the
subset of Av,s on which the v true null hypotheses rejected are exactly
those in V . Then for i = 1, ...,m0, Pr({pi ≤ qv+s} ∩ AV

v,s = Pr(AV
v,s) if

i ∈ V and is 0 otherwise. It follows that for each v and s
m0
∑

i=1

Pr({pi ≤ qv+s} ∩ Av,s) =

m0
∑

i=1

∑

|V |=v

Pr({pi ≤ qv+s} ∩ AV
v,s)

=
∑

|V |=v

m0
∑

i=1

Pr({pi ≤ qv+s} ∩ AV
v,s)

=
∑

|V |=v

m0
∑

i=1

1i∈V Pr(AV
v,s)

=
∑

|V |=v

vPr(AV
v,s) = vPr(Av,s),

(4)

which proves the Lemma. ¤

Now returning to the proof of Theorem 1, from the lemma just proved
and (2), we get

E(Q) =

m1
∑

s=0

m0
∑

v=1

v

v + s

{

m0
∑

i=1

1

v
Pr({pi ≤ qv+s} ∩ Av,s)

}

=

m0
∑

i=1

{

m1
∑

s=0

m0
∑

v=1

1

v + s
Pr({pi ≤ qv+s} ∩ Av,s)

}

.

(5)

For each m-tuple p = {pi}m
i=1 (of possible p-values) and each i =

1, ...,m0 let p(i) := {pj}j 6=i. Let P (i) be the set of all possible (m − 1)-
tuples {πj}j 6=i of possible p-values for j 6= i. Let ran(pi) be the range
(set of possible values) of pi, which is [0, 1] for a continuous test statistic
or some subset, typically a finite subset, for a discrete test statistic. For
each possible pi and each π(i) := {πj}j 6=i ∈ P (i) let (pi, π

(i)) := {rj}m
j=1

where ri = pi and rj = πj for j 6= i. For each possible v ≥ 1 and s, let
Bv,s be the projection of {pi ≤ qv+s} ∩ Av,s into P (i), in other words,
the set of all π(i) ∈ P (i) such that for some possible value of pi ≤ qv+s

we have (pi, π
(i)) ∈ Av+s. This set is empty if no possible value of pi is
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≤ qv+s. If there is a possible value p′i of pi such that p′i ≤ qv+s, then
Bv,s is the set of all π(i) := {πj}j 6=i ∈ P (i) such that:
(i) pj ≤ qv+s for exactly v − 1 values of j 6= i with 1 ≤ j ≤ m0 (true
null hypotheses);
(ii) pj ≤ qv+s for exactly s values of j with m0 < j ≤ m (false null
hypotheses); and

(iii) For each k > v + s and the order statistics π
(i)
(j) for j = 1, ...,m− 1

of the coordinates of π(i), π
(i)
(k−1) > qk.

Here (iii) holds because, for pi ≤ qv+s and p ∈ Av+s, exactly v + s
null hypotheses, including the ith, are rejected.

Let P (0) be the set of all possible m-tuples of p-values {πj}m
j=1, which

is the unit m-cube [0, 1]m if the test statistics are continuous and inde-
pendent, but otherwise may be a proper subset. For i, v = 1, ...,m0 and

s = 0, 1, ...,m1 define C
(i)
v,s as the Cartesian product ran(pi) × Bv,s or

in other words as
{

{πj}m
j=1 ∈ P (0) : {πj}j 6=i ∈ Bv,s

}

. [This is selected

from possible interpretations of Benjamini and Yekutieli’s definition(s)
as working in what follows.] Then we have for each v ≥ 1 and s

(6) {pi ≤ qv+s} ∩ Av,s = {pi ≤ qv+s} ∩ C(i)
v,s.

For k = 1, ...,m let

C
(i)
k :=

⋃

{

C(i)
v,s : 1 ≤ v ≤ m0, 0 ≤ s ≤ m1, v + s = k

}

.

Let p
(i)
(r), r = 1, ...,m − 1, be the order statistics of pj for j 6= i. Then

using (iii) and (6),
(7)

C
(i)
k = ran pi × {p(i) : p

(i)
(k−1) ≤ qk and for all K > k, p

(i)
(K−1) > qK}.

It follows that for each i, the sets C
(i)
k are disjoint, and so by (5) and

(6)

(8) E(Q) =

m0
∑

i=1

m
∑

k=1

1

k
Pr

(

{pi ≤ qk} ∩ C
(i)
k

)

.

So we have an expression for E(Q) in which v and s no longer appear.
Next some sets will be defined which will be shown to be increasing

sets (upper layers), so that the hypothesis can be applied to them. Let

D
(i)
k :=

⋃

{

C
(i)
j : j ≤ k

}

for k = 1, ...,m. Then

(9) D
(i)
k =

{

p : qK < p
(i)
(K−1) for K = k + 1, ...,m

}
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for k = 1, ...,m−1, and D
(i)
m is the whole set P (0) of possible m-tuples of

p-values. It follows from (9) that for each k and i, D
(i)
k is an increasing

set (upper layer).
The assumed PRDS property implies that for any such set D, con-

ditional probabilities can be chosen so that for each i ≤ m0 and
0 ≤ r ≤ r′ ≤ 1 we have

(10) Pr(D|pi = r) ≤ Pr(D|pi = r′).

As Benjamini and Yekutieli say, it’s easy to see that for any j ≤ l,
since qj ≤ ql, we have

(11) Pr(D|pi ≤ qj) ≤ Pr(D|pi ≤ ql)

for any increasing set D; Lehmann (1966) is cited also. So for k =
1, ...,m − 1,

(12)
Pr

(

{pi ≤ qk} ∩ D
(i)
k

)

Pr(pi ≤ qk)
≤

Pr
(

{pi ≤ qk+1} ∩ D
(i)
k

)

Pr(pi ≤ qk+1)

where either fraction is defined as 0 if its denominator is 0. By this

and the fact that D
(i)
j+1 = D

(i)
j ∪ C

(i)
j+1, a disjoint union by (7), we have

for all k ≤ m − 1

Pr({pi ≤ qk} ∩ D
(i)
k )

Pr(pi ≤ qk)
+

Pr({pi ≤ qk+1} ∩ C
(i)
k+1)

Pr(pi ≤ qk+1)

≤ Pr({pi ≤ qk+1} ∩ D
(i)
k )

Pr(pi ≤ qk+1)
+

Pr({pi ≤ qk+1} ∩ C
(i)
k+1)

Pr(pi ≤ qk+1)

=
Pr({pi ≤ qk+1} ∩ D

(i)
k+1)

Pr(pi ≤ qk+1)
.

(13)

Since C
(i)
1 = D

(i)
1 , using (13) iteratively gives

(14)
m

∑

k=1

Pr({pi ≤ qk} ∩ C
(i)
k )

Pr(pi ≤ qk)
≤ Pr({pi ≤ qm} ∩ D

(i)
m )

Pr(pi ≤ qm)
= 1,

where the last equality holds because D
(i)
m is the whole space P (0).

For any i = 1, ...,m0 and k,

(15) Pr(pi ≤ qk) ≤ qk = qk/m

because pi is the p-value of a true null hypothesis. We then have by
(8)
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E(Q) =

m0
∑

i=0

m
∑

k=1

1

k
Pr

(

{pi ≤ qk} ∩ C
(i)
k

)

≤
m0
∑

i=0

m
∑

k=1

q

m
·
Pr

(

{pi ≤ qk} ∩ C
(i)
k

)

Pr(pi ≤ qk)
,

(16)

and by (14),

(17)
q

m

m0
∑

i=0

m
∑

k=1

Pr
(

{pi ≤ qk} ∩ C
(i)
k

)

Pr(pi ≤ qk)
≤ m0

m
q,

which proves Theorem 1. ¤

The main theorem of Benjamini and Hochberg (1995), extended to
cover possibly discrete test statistics, now follows:

Corollary 1. Suppose that for m tests, where the ith null hypothesis
is true if and only if i ≤ m0 ≤ m, the p-values pi for i = 1, ...,m0 are
jointly independent, and independent of the vector of p-values {pj}j>m0

for the false null hypotheses (which can be arbitrarily dependent on one
another). Then the FDR satisfies

FDR = E(Q) =

m0
∑

i=1

m
∑

k=1

1

k
Pr

({

pi ≤
k

m
q

}

∩ C
(i)
k

)

=

m0
∑

i=1

m
∑

k=1

1

k
Pr

(

pi ≤
k

m
q

)

· Pr
(

C
(i)
k

)

≤
m0
∑

i=1

q

m

m
∑

k=1

Pr
(

C
(i)
k

)

=
m0

m
q,

(18)

where the inequality in the last line becomes an equality if the test sta-
tistics are continuous for the true null hypotheses, and so U [0, 1].

Proof. We apply (8), then the assumed independence, and then (15),
which becomes an equation for continuous test statistics. Then, as

mentioned before (8), for each i, the sets C
(i)
k are disjoint for different k.

As stated around (9), their union D
(i)
m has probability 1. The Corollary

then follows.
For the inequality E(Q) ≤ m0q/m, one could simply note that the

assumed independence clearly implies the PRDS property for I0 =
{1, ...,m0}. ¤
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To apply Corollary 1 for equality when the true null hypotheses have
continuous test statistics, one would need in practice that all the null
hypotheses do.

Next, Theorem 2 will be proved.

Proof of Theorem 2. Keeping the notation of the proof of Theorem 1,
for i = 1, ...,m0 and j, k = 1, ...,m let

pijk := Pr

({

pi ∈
(

j − 1

m
q,

j

m
q

]}

∩ C
(i)
k

)

.

Then for each i ≤ m0 and j,

(19)
m

∑

k=1

pijk := Pr

(

{

pi ∈
(

j − 1

m
q,

j

m
q

]}

∩
(

m
⋃

k=1

C
(i)
k

))

=
q

m

because the C
(i)
k are disjoint for different k and their union is the whole

space P (0), while since pi is for a true null hypothesis with continuous
test statistic, it has a U [0, 1] distribution. From (8) we have

E(Q) =

m0
∑

i=1

m
∑

k=1

1

k

k
∑

j=1

pijk =

m0
∑

i=1

m
∑

j=1

m
∑

k=j

1

k
pijk

≤
m0
∑

i=1

m
∑

j=1

m
∑

k=j

1

j
pijk ≤

m0
∑

i=1

m
∑

j=1

1

j

m
∑

k=1

pijk = m0

m
∑

j=1

1

j

q

m
,

(20)

using (19) in the last step, which proves Theorem 2. ¤

Remark. Although Benjamini and Yekutieli (2001) in their Theorem
1.3 do not make the assumption of continuous test statistics for the
true null hypotheses, as was made in Theorem 2, equality (19) cannot
necessarily be replaced by ≤ in case of discrete test statistics, as (15)
has intervals {pi ≤ q}, and the corresponding inequality about intervals
{qj−1 < pj ≤ qj} is not necessarily true for discrete test statistics.

Remarks on citations. The Benjamini–Hochberg paper has been ex-
tremely influential: it has been cited over 9000 times by October 2010
and over 15,000 times by October 2012 according to Google Scholar.
A large number of the citations are applications in biology.

The Benjamini–Yekutieli (2001) paper is, according to Google Scho-
lar, Benjamini’s second-most-cited work, with “only” about 1200 cita-
tions through October 2010, 1950 through October 2012. According
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to the Web of Science as of about March 10, 2008, of some 2789 total
citations of Benjamini and Hochberg (1995) (BH) in their data base,
497 were in “genetics and heredity,” 414 in “statistics and probability,”
with other mentioned fields being subfields of biology.

Although I had difficulty finding any papers by biologists citing the
Benjamini–Hochberg or Benjamini–Yekutieli work which checked hy-
potheses sufficiently, it seems perhaps more fruitful to look at later
work such as Reiner, Yekutieli and Benjamini (2003) (the third-most-
cited work co-authored by Benjamini) where the hypotheses become
still more general and the procedure itself may need to be revised.
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