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Survival analysis and the Kaplan–Meier estimator

1. Definitions

Ordinarily, an unknown distribution function F is estimated by an
empirical distribution function Fn based on observations X1, . . . , Xn

i.i.d. (F ). The survival function S(t) ≡ 1 − F (t) is a nonincreasing
function, approaching 0 as t → +∞. It would then be estimated by
Sn = 1 − Fn.

In survival analysis, we assume that F (0) = 0, so that S(0) = 1 and
Xj > 0 for all j. Here Xj is the time until an “endpoint” occurs for the
jth individual. Some much-studied endpoints are deaths of humans
or other organisms, or failures of manufactured devices. Or, one can
consider the time (starting at time 0) to complete some given task.

In survival analysis, not all Xj may be observed. It’s assumed that
there are i.i.d. pairs (Xj, Yj) of positive random variables where also
each Xj is independent of Yj and Yj have another distribution G. (Ven-
ables and Ripley, p. 354, mention possibly less stringent assumptions
with regard to the joint distributions of (Xj, Yj).) If Yj < Xj, that fact
is observed but we have no information beyond that about the value of
Xj. The Yj are called “censoring times.” They may be, for example,
the times individuals are “lost to follow-up” such as by stopping their
participation in a study, or stop working on a task without completing
it. Or, because a study ended at a fixed time, or because each sub-
ject (patient) is only followed up for a fixed amount of time (such as
5 years) after treatment, endpoints after that time are not included in
the analysis. Let Vj := min(Xj, Yj) and Ij = 1{Vj=Xj}. Thus Ij = 0
if the jth individual is censored (Yj < Xj) and 1 if an endpoint is ob-
served for the individual (Xj ≤ Yj). What are observed are (Vj, Ij) for
j = 1, ..., n. Individual j will be said to be “uncensored” at time t if
t < Yj and to have “survived” beyond time t if t < Xj. Both hold if
Vj > t.

There are two commonly used models for a sequence of times t1 <
t2 < · · · with t1 > 0 at which observations occur. In what I’ll call Model
I, tj are non-random times, usually equally spaced, with tj − tj−1 = ∆
for j ≥ 1, where t0 := 0, so that tj = j∆ for j = 0 up to some finite
integer. For example, ∆ = 1 year for life insurance actuarial tables,
∆ = 1 month for some medical studies where patients in a study are
seen once a month, ∆ = 1 day for some mortality studies of insects,
and ∆ may be a short time for some studies of bacteria.

1



2

In Model II, the ti for i ≥ 1 are the random times when endpoints
are observed to occur, namely, some Vj = Xj = ti, so that Ij = 1. The
ti are arranged in increasing order (more than one endpoint may be
observed at a given ti). Here again t0 = 0 by definition.

To define some notation, the cardinality (number of elements) of a
finite set S will be denoted by |S|. In either model, let Mi := {j :
Vj > ti−1} and mi := |Mi|, i.e. the number of individuals who survived,
uncensored, beyond time ti−1. By the assumptions, m1 = n. Let
Si = {j ∈ Mi : Vj ≤ ti} and si = |Si|. Then mi+1 = mi − si. Let
Di := {j ∈ Si : Ij = 1}, di = |Di|, Ci := {j ∈ Si : Vj < ti, Ij = 0},
ci = |Ci|, and C ′

i := {j ∈ Si : Vj = ti, Ij = 0}, c′i = |C ′
i|. For j ∈ C ′

i

we know that Xj > ti.
For i ≥ 1 we have si ≡ ci + c′i + di. Let ni := mi − ci. Thus: ni

is the number of individuals who have survived beyond ti−1 and have
not been censored before time ti. Then ni is called the number of
individuals at risk at time ti.

In either model, mi is already known from observations up to and
at time ti−1. In Model I, the observer learns at time ti just the values
(ci, c

′
i, di).

In Model II, each (Vj, Ij) is observed at time Vj. For ti−1 < Vj < ti,
we have Ij = 0 and j ∈ Ci, and for j ∈ Di, Vj = Xj = ti, both by
definition of Model II. (The observed values of Vj = Yj for j ∈ Ci are
not useful in estimating S(t).)

Now, in either model, we want to estimate the conditional probability

pi := P (X1 > ti|X1 > ti−1) = S(ti)/S(ti−1).

Observations on individual j are useful in the estimation if we know
that Xj > ti−1 and whether or not Xj > ti.

For the mi+1 values of j with Vj > ti and the c′i with j ∈ C ′
i we know

that Xj > ti > ti−1.
For j ∈ Di we know that ti−1 < Xj ≤ ti.
For j ∈ Ci, or for j with Vj = ti−1 and Ij = 0, we know that Xj > ti−1

but don’t know whether Xj > ti.
For all other values of j, either we know that Xj ≤ ti−1 or don’t

know whether this is true or not.
Thus we have mi+1 + c′i + di = ni useful values of j, and the fraction

of these that survived beyond time ti is (ni − di)/ni, if ni > 0, so that
gives the estimate

p̂i =
ni − di

ni

, ni > 0.
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Thus for r = 1, 2, . . . such that S(tr−1) > 0,

(1) S(tr) =
r∏

i=1

S(ti)

S(ti−1)
=

r∏

i=1

pi

is estimated by the Kaplan–Meier (KM) estimator, defined if nr > 0,

(2) Ŝ(tr) =
r∏

i=1

ni − di

ni

.

Also, Ŝ(t) is defined as Ŝ(tr) for tr ≤ t < tr+1.
Sometimes, it’s assumed that the Yj (and/or Xj) have a continuous

distribution, in which case each c′i would equal 0 with probability 1
in Model I. But it seems that j ∈ C ′

i in Model I occurs in real-life
situations. Suppose a research study is done with follow-up of human
subjects by monthly or yearly telephone calls. A subject in the study
who had not yet reached an endpoint might, just at the time of getting
a follow-up call, decide not to cooperate in answering questions and so
censor themselves out of further participation.

1.1. Examples. Wikipedia’s article “Kaplan–Meier estimator” shows
on one graph two Kaplan–Meier estimates of survival for “Gene A
signature” and “Gene B signature.” The graphs are shown only up to
less than three and a half years. The steps downward in either graph
indicate one or more deaths. The vertical bars through the graph where
there is no step downward indicate censoring times. In this study it
seems that about 10 of the individuals were lost to follow-up before
the study was over. Mortality appears to have been more severe in the
Gene B group than in the Gene A group. As numbers are not given,
p-values cannot be computed from the graphs.

The Garber et al. paper (the source of “lung”) in Fig. 4 on p. 13788
shows in one graphic three Kaplan–Meier estimators for Adeno groups
1, 2, and 3 as found by hierarchical clustering in the study, The follow-
up time was evidently 5 years (60 months) as is often true in medical
studies. So, all censoring times Yj = 60 months. There are no vertical
bars indicating earlier censoring. All 6 patients in Adeno Group 2
survived the full 5 years. None of the 9 patients in Group 3 survived
more than 14 months after their biopsy. For the 16 patients in Group
1, only about half survived for 3 years, but then they also survived
through 5 years. One can see that there was mortality soon after the
biopsy for a few patients in Groups 1 and 3.
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2. Life tables

. In this application of survival analysis, the sets of individuals ob-
served may be disjoint for different values of i. Let ti = i in years
(so this is a Model I situation). Suppose there are mi individuals in
a certain population who at some time (say, early January of some
year) have reached age i − 1 but have not yet reached age i, for each
i = 1, . . . , 99 say. The sets Si with mi members are disjoint, as people
in different sets have different ages. Suppose that one year later, di of
the mi are known to have died and for ci, it is not known whether they
survived (e.g., they may have emigrated from the area where study
data are being gathered). Let ni = mi − ci. Let Bi be the event that
an individual lives until the January after their (i − 1)st birthday and
S(i) = P (Bi). Here let’s assume that S(0) = 1, i.e. consider only the
population alive in some January, omitting infants who did not live
until the January after they were born. Then for the given population,
the conditional probability P (Bi+1|Bi), namely S(i)/S(i−1), can again
be estimated by (ni−di)/ni provided that ni > 0. Suppose that ni > 0
for all i = 1, . . . , r. Then the probability P (Br+1) for an infant alive
in January of age less than 1 to survive until January after their rth
birthday can be estimated by the Kaplan–Meier estimator (2), based
on data collected during only a little more than one year on the pop-
ulation of all ages up to r. (Whether being censored, i.e. being one of
the ci, is actually independent of survival, could be questioned.)

For a large value of i such that ni is small, it could happen that

di = ni, so that Ŝ(t) = 0 for t ≥ i, even though possibly ni′ > 0 for
some i′ > i, so we know from the data that S(t) > 0 for all t < i′.
For example, it could happen that the (few) people in the set S107 of
people of age 107 at the beginning of the year all passed away, so that
d107 = n107, there could well have been people of age 108 or more (some
sets Si for i ≥ 108 were not empty). Among Medicare enrollees born in
the years 1872 through 1875, 100 reached age 109 or more (Bayo and
Faber, 1983).

3. Greenwood’s variance estimator

Greenwood in 1926 (as mentioned by Wikipedia) gave an estimator of

the variance of Ŝ(t). Here two formulas will be given, one for log(Ŝ(t))

and the other for Ŝ(t) itself. Under suitable hypotheses, to be seen in

the derivation, in Model I, for t > 0, log(Ŝ(t)) is approximately normal
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with distribution
(3)

log(Ŝ(t)) ∼ N(log(S(t)), σ̂2
l (t)), where σ̂2

l (t) =
∑

ti≤t

di

ni(ni − di)
.

Under the same or possibly stronger hypotheses, Ŝ(t) is approximately
normal with mean S(t) and variance

(4) σ̃2(t) = S(t)2σ̂2
l (t),

which then can be estimated by

(5) σ̂2(t) = Ŝ2σ̂2
l (t) = Ŝ(t)2

∑

ti≤t

di

ni(ni − di)
.

If Ŝ(t) = 0, formula (5) is not useful. A non-rigorous derivation of the
approximations and formulas will be given.

Once one has the approximation (3), one gets (4) by exponentiating
both sides and applying the delta-method, then (5) by plugging in the

estimator Ŝ(t) of S(t). From (5), one can get a confidence interval for

S(t) given Ŝ(t), symmetric around Ŝ(t), with endpoints

(6) Ŝ(t) ± zα/2σ̂(t)

where for α = 0.05 we have as usual z0.025
.
= 1.96.

Another way to proceed, giving the “logarithmic” confidence inter-
vals which R “survival” uses as the default, is to apply (3) directly, to
give a 1 − α confidence interval for log(S(t)) with endpoints

(7) log(Ŝ(t)) ± zα/2σ̂l.

Then one takes the exponentials of these endpoints to get endpoints
[al, bl] of a confidence interval for S(t),

(8) al = Ŝ(t) exp(−zα/2σ̂l), bl = Ŝ(t) exp(zα/2σ̂l).

Although the interval with endpoints (7) for log(S(t)) is symmetric,
the one (8) for S(t) will not be in general. The logarithmic confidence
interval may be preferred to the classical Greenwood one with endpoints
(6) as it avoids the further approximations involved in getting first (4),
then (5).

An analogous situation arises in finding confidence intervals for odds
ratios. It is treated in the 18.443 handout deltameth-oddsratios.pdf
from spring 2012 (although not in the abridged version on the 18.465
website). Namely, one shows that the log of an odds ratio is approx-
imately normal if all four entries nij in a contingency table are large
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enough, by the delta-method. The normal distribution has mean the
log of the true log odds ratio and variance the sum of 1/nij, which is
observed. Thus one gets a confidence interval for the log of the true
odds ratio. One takes the exponential of the endpoints to get a confi-
dence interval for the true odds ratio. Although odds ratios themselves
may be approximately normal under some conditions, that is not the
usual way to treat them even for large nij.

A short outline of a derivation of Greenwood’s formulas is given in
Cox and Oakes (1984, pp. 50–51). The idea of taking a logarithm of
the product to get a sum, finding variances of the summands, adding
them, and then exponentiating again, is indicated there, under an as-
sumption that one is an an asymptotic situation where all di are large.
Greenwood was considering life tables, a special case of Model I. Here
a somewhat different rationale will be given, but still only applying to
Model I.

It’s possible that a random variable X is approximately N(µ, σ2)
even if X has infinite variance, for example if the distribution of X is
“contaminated normal,” namely λN(µ, σ2)+(1−λ)Q where 0 < λ < 1,
λ is close to 1, and

∫ ∞

−∞
x2dQ(x) = +∞.

A derivation of the formulas is as follows. To see if it is approxi-
mately correct in a given case one would need to check that each of
the approximations used, including applications of the delta-method,
is reasonably valid.

From (2) we have for tr ≤ t < tr+1 that

(9) log Ŝ(t) = log Ŝ(tr) =
r∑

i=1

log

(
ni − di

ni

)
.

Here ni − di has a binomial (ni, pi) distribution given ni where pi =
S(ti)/S(ti−1). This distribution has variance nipiqi where qi = 1 − pi.
The argument assumes that the binomial distribution is approximately
normal, which is valid if nipiqi is reasonably large, say, at least 5.
Plugging in estimates of the unknown probabilities, one would like
that di(ni − di)/ni ≥ 5. It’s necessary, but not sufficient, for this that
ni ≥ 20, as x(ni − x) is maximized for x = ni/2 where it equals n2

i /4.
In Model II, di ≡ 1, so di(ni − di)/ni < 1 and cannot be ≥ 5.
If the approximate normality of ni − di holds, then (ni − di)/ni is,

given ni, approximately N(pi, piqi/ni). In more detail, we have for
ni > 0

ni − di

ni

=
nipi + (niqi − di)

ni

= pi − ri
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where ri := (di/ni)− qi has E(ri|ni) = 0 and Var(ri|ni) = piqi/ni. We
also have

(10) Li := log

(
ni − di

ni

)
= log(pi − ri) = log pi + log

(
1 − ri

pi

)

where

(11) log

(
1 − ri

pi

)
= −ri

pi

+ O
(
(ri/pi)

2
)

= −ri

pi

+ Op(1/(nipi)).

This is writing out some details of the delta-method in this case, which
gives that

√
ni(Li − log pi) given ni has distribution N(0, qi/pi), ap-

proximately, with an error of order Op(1/
√

nipi). (Errors come not
only from Op(1/(nipi)) at the end of (11) but the fact that a binomial
random variable is only approximately normal.) This approximation
also is only useful for ni large enough. Plugging in the estimates of pi

and qi (another approximation) gives that Li is approximately

N

(
log pi,

piqi

ni

· n2
i

(ni − di)2

)
.
= N

(
log pi,

di

ni(ni − di)

)
.

Next we need to see why the variance of a sum is approximately
the sum of variances of the terms. Cox and Oakes (1984, p. 50) argue
that the terms are “asymptotically independent,” but they are not
exactly independent, as the value of ni+1 depends on ni and di as well
as other variables. What needs to be shown is that the covariances of
the terms are approximately negligible relative to the variances (which
are themselves small). The covariance of Li and Li+1 given ni+1 large
enough is approximately that of ri/pi and ri+1/pi+1 by (10) and (11).
Let Fi be the set of random variables (Vj, Ij) for Vj ≤ ti−1 and also
ni. Then ri/pi is a function of the random variables in Fi+1, and
ri+1/pi+1 has conditional expectation 0 given that ni+1 > 0, also given
Fi+1, so by a fact about conditional expectations, that of the product
(ri/pi) · (ri+1/pi+1) is also 0, as desired.

At this point, we have given a derivation of formula (3).
Using the delta-method again, now for the exponential function, one

gets that the approximation (4) holds. Then plugging in the estimate

Ŝ(t) in place of S(t) gives Greenwood’s (approximate) formula for the
variance (5). Also, as

∏r
i=1 pi = S(t) by (1), the argument, to the ex-

tent it is valid, shows that Ŝ(t) is approximately an unbiased estimator
of S(t) since the approximating normal distribution has mean S(t).

The approximate normality in (5) can only hold if Ŝ(t) is distant
from 0 and 1 by at least 2σ̂(t), say.
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Even if ni is large, there is a strictly positive, though possibly small,
probability that di = ni and then log((ni − di)/ni) would usually be
defined as −∞. So this random variable always has infinite variance.

Moreover, if for example dr = nr, then Ŝ(tr) = 0, but the conditions
mentioned for normal approximation of the binomial distribution are
definitely violated, and use of σ̂(tr) = 0 as a standard error would
lead to a confidence interval of [0, 0], in principle with arbitrarily high
confidence such as 0.999. But in fact we are not at all sure that S(t) =
0. This is more complex but essentially the same as using the plug-in
confidence interval for a binomial success probability p when we observe
no successes, which also is [0, 0] but is unjustified.

To estimate an unknown binomial success probability p given that
one has observed X successes in n independent trials, one can try to
respect the conditions on n and X for different approximations of bino-
mial probabilities. For example, one can use a normal approximation if
X(n−X)/n is large enough, say, at least 5. If n is large but X(n−X)/n
is not, one can use a Poisson approximation to either the distribution
of X if X is not large, or to that of n − X if it is not large. If n is not
large, say n ≤ 19, one can just give a table for 0 ≤ X ≤ n/2, using
symmetry, of adjusted “Clopper–Pearson” confidence intervals. Such
a procedure is given with details in the handout binomial.pdf on the
18.443 Spring 2012 website. The properties of the method are not yet
fully clear, and an extension of the method to survival analysis has not
yet been worked out,

4. Bias of the Kaplan–Meier estimator

. It had been claimed in older literature that the estimator is unbi-
ased, but that is not correct, although it is nearly unbiased under some
conditions.

Suppose that the survival and censoring distributions are both con-
centrated in a finite set t1 < t2 < ... < tk. If nj is the number of
individuals alive and being observed just before tj, and dj the number
of deaths observed at tj, then the conditional probability pj of dying at
tj given that one survived past tj−1 has an unbiased estimator dj/nj,
IF nj is not 0. By iterated conditional expectation, one gets a proof
that the KM estimator of the survival function is unbiased at each t,
which is actually conditional on the event At that there is at least one
individual alive and uncensored at all times less than t. On the comple-
mentary event Ac

t that there are no such individuals, it seems that there
is no way to give an unbiased estimator. The event Ac

t has probability
> 0, though possibly small, for t > t1 if F (t1) > 0 or G(t1) > 0.
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Ŝ(t) will have a constant value for all t ≥ T where T is the largest tj
in Model II, or the largest tj such that dj > 0 in Model I. This constant
value will be 0 if the largest Vj has Ij = 1 and will be larger than 0
otherwise.

Under conditions implying that Ac
t has small probability, such as

F (t) and G(t) well away from 1 and n large, it has been shown that
the bias of the KM estimator, although non-zero, is small: Zhou (1988),
see also Stute (1994).

5. The Kaplan–Meier estimator and confidence intervals

in R

The package “survival” in R can be loaded by
> library(survival)
Given survival data (Vj, Ij), j = 1, ..., n, create the two vectors v =
(V1, ..., Vn) and ind = (I1, ..., In). Then
> Surv(v,ind)
will give a vector of the numbers Vj, followed by a + sign if Ij = 0.
This means we know for such j about Xj only that Xj > Vj = Yj. If
there is no + sign it means we observe the actual Xj = Vj, so Ij = 1
(see the example in Venables and Ripley, p. 537, surv(time, cens)).
The Vj are not sorted and don’t need to be (in further programs, R
will sort them).

Sometimes one tries to give confidence bands [g, h] for an unknown
function, such that one has confidence 1 − α that the graph of the
function f on an interval [a, b] satisfies g(t) ≤ f(t) ≤ h(t) for all t ∈
[a, b]. The confidence intervals for the survival function S(t) are only
for one t at a time.

On the last page of this handout is a plot of a Kaplan–Meier (KM)
estimator (dashed line) with upper and lower confidence bounds (dot-
ted lines). The confidence intervals are logarithmic, as given by (8).

In the example n = 30. To compute the value of the KM estimator at
1.5 (which one sees in the plot is roughly 0.1) I first looked at fit$times
to see that V(28) < 1.5 < V(29). So the value is KM(1.5) = fit$surv[28] =
0.1101. The upper endpoint of the confidence interval is fit$upper[28]
= 0.3194 and the lower endpoint is fit$lower[28] = 0.037965.

By the way V(28) is a censoring time shown by a vertical mark through
the graph, horizontal at that point. At endpoint times the graph takes
steps downward. Only three censoring times are shown in the graph.

Similarly, for 2 I found that V(29) < 2 < V(30) and so KM(2) =
fit$surv[29] = 0.05506, with lower endpoint of the confidence interval
fit$lower[29] = 0.009589, which is small but not 0, and upper endpoint



10

fit$upper[29] = 0.31614, only slightly different from the previous upper
endpoint.

At V(30) = 2.26, the last surviving uncensored individual has an end-
point, the KM estimator becomes 0 and no further confidence bounds
are given.
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