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THE SHAPIRO–WILK TEST FOR NORMALITY

Given a sample X1, . . . , Xn of n real-valued observations, the Shapiro–Wilk test (Sha-
piro and Wilk, 1965) is a test of the composite hypothesis that the data are i.i.d. (inde-
pendent and identically distributed) and normal, i.e. N(µ, σ2) for some unknown real µ
and some σ > 0.

This test of a parametric hypothesis relates to nonparametrics in that a lot of statisti-
cal methods (such as t-tests and analysis of variance) assume that variables are normally
distributed. If they are not, then some nonparametric methods may be needed.

The 2-parameter normality hypothesis cannot simply be reduced to a simple hypoth-
esis. Of course, the variables Xi − µ are i.i.d. N(0, σ2) and (Xi − µ)/σ are i.i.d. N(0, 1),
but these variables are not observed because µ and σ are unknown. If we replace µ by
its usual estimate X = (X1 + · · · + Xn)/n and consider Xi − X, then these variables
have the same distribution, which is normal with mean 0, but they are dependent (their
sum is 0). If we replace σ by the usual estimate

sX =

(

1

n − 1

n
∑

j=1

(Xj − X)2

)1/2

,

then
√

n(X − µ)/sX has a tn−1 distribution (but involves µ), and (Xi − X)/sX don’t
have even that nice a distribution and are still more dependent.

1. Classical diagnostics for non-normality: skewness and kurtosis

Long before the Shapiro–Wilk test (or any other such general test) for normality was
invented, statisticians used the following diagnostics. For a random variable X with
E(|X|3) < ∞, mean EX = µ, and standard deviation σ > 0, the skewness of X or its
distribution is defined as γ1(X) = E((X − µ)3/σ3). Since any normal distribution is
symmetric around its mean µ, its skewness is 0. For example, if Z has standard normal
distribution N(0, 1) then EZ3 = 0. The skewness is unchanged if we add any constant
to X or multiply it by any positive constant. The skewness can have any real value.

An integration by parts shows that E(Z4) = 3. For any random variable X with
E(X4) < ∞, mean EX = µ, and standard deviation σ > 0, the kurtosis is defined by

γ2(X) =
E((X − µ)4)

σ4
− 3.

It’s also sometimes called “excess kurtosis” or just “excess.” The kurtosis is unchanged if
we add a constant to X or multiply it by any non-zero constant. Any normal distribution
or random variable has 0 kurtosis.

The kurtosis is clearly larger than −3. (In fact, it’s always at least −2; to see this we
can assume µ = 0, and then E(X4) ≥ σ4 because Var(X2) ≥ 0. Letting X = ±1 with
probability 1/2 each we see that γ2(X) = −2, the smallest possible value.)

Forms of skewness and kurtosis for finite samples (X1, . . . , Xn) are defined by replacing
µ by X, σ by the sample standard deviation sX , X by Xj, and E by 1

n

∑n
j=1. The sample
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skewness and kurtosis are defined for any finite sample with sX > 0. If one of them is
notably different from 0, and n is fairly large, it appears that the observations may not
be normally distributed.

2. The Shapiro–Wilk test: Basics of Use in R

In practice, the test is simple to apply on a computer using R. Namely, let X =
(X1, . . . , Xn) be the data vector, represented in R if entered individually as c(X1, . . . , Xn).
Type

shapiro.test(X)
and you will see as output a test statistic called W (for Wilk) and a p-value. If the
p-value is less than, say, the conventional level 0.05, then one rejects the normality
hypothesis, otherwise one doesn’t reject it. To apply the test it isn’t necessary at first
to understand W , but in this course we’re going to try. It always satisfies 0 < W ≤ 1.
For values of W close enough to 1 (depending on n) the normality hypothesis will not
be rejected. For smaller W it will be rejected.

For n = 2, normality can never be rejected, so the test is useful only for n ≥ 3. The
R implementation allows n up to 5,000.

3. Order Statistics

The sample skewness and kurtosis are each one-dimensional quantities. Together
with X and s2

X they give a useful four-dimensional summary about the location, scale,
and shape of the data distribution, but they don’t completely characterize the data, as
different data sets can have the same values of the four quantities. Whereas, if we arrange
the data X1, . . . , Xn in order, to get the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n), we
haven’t lost any information. Let Z1, . . . , Zn be i.i.d. N(0, 1) and also take their order
statistics Z(1) ≤ Z(2) ≤ · · · ≤ Z(n). Let’s consider the expectations of Z(j), which of
course depend on n, mj := mn,j := EZ(j) for the given n. A next idea is to consider the
correlation of X(1), X(2) . . . , X(n) with (m1,m2 . . . ,mn) = (EZ(1), EZ(2), . . . , EZ(n)), in
other words, to ask whether the order statistics of Xj are well correlated with expected
standard normal order statistics. A correlation close to 1 would suggest a good fit to
normality, whereas a correlation much less than 1 would suggest non-normality. This
idea is on the right track in that if we add a constant to all the Xj we will add the same
constant to their order statistics and to X, leaving X(j)−X and sX unchanged. Likewise

if we multiply all Xj by a positive constant, the ratios (X(j) −X)/sX will be unchanged
and so will the correlation. (Both the ratios and the correlations are dimensionless.)
Thus if the Xj are indeed i.i.d. normal, the correlation will have the same distribution,
not depending on the location µ or scale σ of the Xj.

The Z(j) and their expectations mj have some symmetry properties. The random
variables −Z1, . . . ,−Zn are also i.i.d. N(0, 1), but the ordering of these variables is
reversed. Thus Z(1) has the same distribution as −Z(n), and more generally

(1) {−Z(n+1−k)}n
k=1 =d {Z(k)}n

k=1
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where “=d ” means that the two vector random variables are equal in distribution. It
follows in particular that

(2) mj = −mn+1−j, j = 1, . . . , n.

The squared correlation of X(j) with mj, which I’ll call W ′, gives a test statistic for
normality called the Shapiro–Francia statistic (Shapiro and Francia, 1972). But the
better known Shapiro–Wilk statistic uses not only the means but the covariances of the
normal order statistics Z(j). (In fact, Z(j) is rather strongly correlated with its neighbors
Z(j−1) and Z(j+1) because of the ordering Z(j−1) ≤ Z(j) ≤ Z(j+1).)

Let V be the n×n covariance matrix of the Z(j), Vij = E[(Z(i)−mi)(Z(j)−mj)]. This
is a positive definite symmetric matrix. For a given n let m be the n× 1 column vector
(m1, . . . ,mn)′, consider the vector m′V −1 whose length is C := (m′V −1V −1m)1/2, and
let a′ := (a1, ..., an) := m′V −1/C, which is a unit row vector. The Shapiro–Wilk statistic
is then defined by

(3) W =

(

n
∑

j=1

ajX(j)

)2

/

(

n
∑

j=1

(Xj − X)2

)

,

as in the paper of Shapiro and Wilk (1965).
They point out that the statistic is preserved by a change in location, adding a constant

b to all the Xj and thus to each X(j). Since b will also be added to X, this clearly won’t
change the denominator. For the numerator, it follows from (2) that

∑n
j=1 mj = 0.

From (1) it follows that the covariance matrix V is also preserved if we interchange j
with n + 1− j in the indices of both rows and columns, and so the same will be true for
V −1. From this and (2), we have

(4) aj = −an+1−j, j = 1, . . . , n,

from which it follows that
∑n

j=1 aj = 0, and that the numerator and so W are also
unchanged by adding b to all Xj. If all Xj and so all X(j) are multiplied by a constant
c > 0, then clearly the numerator and denominator of W are both multiplied by c2, so
W is again unchanged and is preserved by changes of scale.

If n = 2k + 1 is odd then (4) implies that the coefficient ak+1 of the sample median
X(k+1) in the numerator is 0. Whether n is even or odd, the numerator of W can be
written as

(5)





⌊n/2⌋
∑

j=1

−aj(X(n+1−j) − X(j))
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where ⌊x⌋ is the largest integer ≤ x. (The minus sign in front of aj makes no difference
because of the squaring, but is given because in fact aj for 2j ≤ n are negative.)

Here are some remarks on the weighting of different order statistics in the numerator
of W . Suppose we were sampling from a heavy-tailed distribution such as a Cauchy
distribution with density f(x) = 1/(π(x − m)2 + 1) for all real x, where m is a location
parameter around which f is symmetric and so which is the median of the distribution.
Such a distribution tends to produce outliers, namely, observations that are much larger
than or much less than the other observations. Thus in estimating m, we would want
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to downweight the extreme order statistics X(1) and X(n) which may be outliers. In

particular, the sample mean X has the same distribution as an individual observation
X1 and so is a very ineffective estimator of m. The sample median, namely X(k+1) for
n = 2k+1 odd, or (X(k) +X(k+1))/2 for n = 2k even, is a much more effective estimator,
although it ignores all the order statistics except the one or two in the middle.

For normal variables the situation is quite different. The numerator of W , omitting the
squaring, was chosen by taking an efficient unbiased estimator of σ as a linear function
of order statistics. For n = 7, for example, Shapiro and Wilk (1965, Table 5) give the
coefficients a7 = −a1

.
= 0.6233, a6 = −a2

.
= 0.3031, a5 = −a3

.
= 0.1401, and a4 = 0.

Thus the weight is highest for the most extreme order statistics and decreases as one
goes inward toward the median. Such a pattern holds generally. It clearly also holds for
mj in place of aj.

4. Consistency

A test of a given hypothesis, in this case normality, is said to be consistent against a
given alternative P , namely that the Xj are i.i.d. but with some non-normal distribution
P , if for any α > 0, if we reject normality at level α, then the probability that we reject
it approaches 1 as n → ∞. A test is called simply consistent if it is consistent against
all alternatives, in other words in this case, for any non-normal P and fixed α > 0,
normality will be rejected with probability converging to 1 as n becomes large.

Consistency of the Shapiro–Wilk test against all non-normal alternatives was conjec-
tured in the 1970’s. Sarkadi (1975) gave a proof for the Shapiro–Francia test. The proof
is actually written for alternatives having a finite second moment. Sarkadi wrote “the
author will prove in a subsequent paper” [presumably Sarkadi (1981)] “that this restric-
tion is not essential.” The consistency is more difficult for the Shapiro–Wilk test because
the covariance matrices V of the normal order statistics and the inverses V −1 are not
explicitly known. Leslie, Stephens, and Fotopoulos (1986) give a proof of consistency,
while giving credit to Theorem 1 of Sarkadi (1981).

5. Values and Null Distribution of W

It was mentioned before that always 0 < W ≤ 1. In fact, for a given n, the possible
values of W are bounded below by a strictly positive number na2

1/(n − 1) according to
Shapiro and Wilk (1965, Lemma 3). If the null hypothesis of normality holds, Shapiro
and Wilk gave an exact distribution of W only for n = 3. In that case a2

1 = 1/2 so
the lower bound of possible values is W ≥ 3/4. Shapiro and Wilk (1965, Corollary 4)
give the distribution as a truncated Beta(1/2, 1/2) distribution, namely, having density
(3/π)(1 − w)−1/2w−1/2 for 3/4 ≤ w < 1 and 0 elsewhere.

For n ≤ 20, values of V −1mi were available from Sarhan and Greenberg (1956, Table II,
for r1 = r2 = 0 [complete samples], second line for each n [coefficients for estimating σ]),
given to 8 decimal places. These could then easily be normalized to get the coefficients
ai, as given to 4 places in Shapiro and Wilk (1965, Table 5). For 20 < n ≤ 50, values
of ai are also given, but these were approximate. Then Shapiro and Wilk (1965, Table
6) gave percentage points for selected levels α = 0.01, 0.02, 0.05, 0.1, 0.5, and 1−α for
those α, based on approximations and Monte Carlo simulations.
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Instead of distributing copies of such tables, I suggest that we just use the R software to
find p-values (for problem sets; for exams, questions will be asked only about theoretical
properties, or with more specific information provided if needed).

Leslie, Stephens, and Fotopoulos (1986) found the limiting distribution of W as n →
∞ when the null hypothesis of normality holds. Namely, they show that the distribution
of n(W −EW ) converges to that of −ζ = −∑∞

k=3(Z
2
k −1)/k where Zk are i.i.d. N(0, 1)

random variables. More specifically, they define a sequence of constants which they call
an in equation (3) of their paper, but which are not the same as the coefficients an used
in forming W , defined just before (3), so I’ll call An what they call an. Leslie et al. state
that they themselves, and Verrill and Johnson, in earlier unpublished technical reports,
had shown for the Shapiro–Francia statistic W ′ that

(6) ζn := 2n(1 −
√

W ′) − An

converges in distribution to ζ. Leslie et al. (1986) show in their Lemma (p. 1499) part
(iv) that for some constants Cj > 0, j = 1, 2,

(7) C1 log log n < An < C2 log log n,

and in part (ii) that An − nE(1 − W ) → 0 as n → ∞. But the paper only shows
convergence at a painfully slow rate. For example, inequality (1) of the paper gives
a (log n)−1/2 rate, and the Lemma, part (iii), a (log n)−1 rate. For such reasons, the
limit distribution seems not to be of much practical use, and for n > 50, Monte Carlo
simulation seems still to be needed. For the maximum n = 5,000 that R allows, the
simulation would have needed rather heavy computation. For that n, (log n)−1/2 .

= 0.343,
not very small.

The representations given by Leslie et al. are useful in comparing different test statis-
tics for normality. Namely, they show that under the normality hypothesis, the Shapiro–
Wilk and Shapiro–Francia statistics W and W ′ are asymptotically equivalent in the sense
(their equation (5)) that as n → ∞, n(

√
W −

√
W ′) → 0 in probability. In other words,

using the op notation (as in the “Convergence and boundedness in probability” hand-

out), we have
√

W −
√

W ′ = op(1/n). Since 0 < W ≤ 1 and 0 ≤ W ′ ≤ 1 we always have

0 <
√

W +
√

W ′ ≤ 2. Multiplying this sum by the difference gives W − W ′ = op(1/n)
also.

Rewriting (6) gives

(8)
√

W ′ = 1 − An

2n
− ζn

2n

where ζn converges to ζ in distribution. Squaring both sides of (8) gives

(9) W ′ = 1 − An

n
− ζn

n
+ op

(

1

n

)

because terms with n2 in the denominator and at most quantities of order (log log n)2 in
the numerator are op(1/n). Since W − W ′ is also op(1/n), (9) holds with the Shapiro–
Wilk statistic W in place of W ′. Moreover, since ζn + op(1) converges in distribution to
ζ also, we in a sense don’t need the op(1/n) term as long as we bear in mind that ζn

may be different by terms of order op(1) in representations of the different statistics.
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Further, Verrill and Johnson (1987) showed that three other test statistics for nor-
mality proposed by different authors, also of the form of squared correlations of some
coefficients bj with X(j), are all asymptotically equivalent in the same sense under the
normality assumption. The Shapiro–Wilk statistic is perhaps the hardest to compute
if one needs to (for example, if n > 5,000) although easily available in R for n ≤
5,000. The Shapiro–Francia and at least some of the others are easier, and so might be
preferred for n > 5,000. Apparently only the Shapiro–Wilk test is implemented in R. I
found that the Shapiro–Francia test has been implemented, not in MATLAB itself, but
by someone on an “Open Exchange” site that MATLAB maintains.

For finite n, the relative power of the tests against given alternatives depends on n
and the alternative. Filliben (1975) gave power comparisons against 52 alternatives
for n = 20 and 50. Just comparing the W (Shapiro–Wilk) and W ′ (Shapiro–Francia)
tests, Filliben found that the W test is more powerful than the W ′ against “symmetric
alternatives shorter-tailed than normal” such as the uniform, whereas W ′ has slightly
higher power against symmetric alternatives longer-tailed than normal such as the t2
distribution, but slightly lower power against skewed alternatives.

6. Summary of asymptotic properties of the Shapiro–Wilk and related

statistics

How does the Shapiro–Wilk statistic W = Wn based on an i.i.d. sample behave as
n → ∞, first, if the samples are from a normal distribution? We can read off properties
from (9), as follows:
(i) Wn converges to 1 in probability;

How fast?

(ii) 1 − Wn = Op(An/n) where An grow at the rate log log n by (7);

(iii) In more detail, we have (9) itself for W in place of W ′.

Now, what if the Xj are i.i.d. with a non-normal distribution? In that case, not even
(i) will hold, i.e. Wn will not converge to 1 in probability. If Xj have finite variance, then
Wn will converge in probability to some number ρ2 less than 1. If the distribution of Xj

is close to normal, ρ2 might be not far from 1, such as 0.985, but Wn will “get stuck”
around that value and not get closer to 1 when n gets large. So in a sense, consistency
is easier than showing that the different statistics have the same detailed asymptotic
behavior in the normal case.

NOTES ON THE LITERATURE

If one knows a basic paper on a subject, such as that of Shapiro and Wilk (1965) in this
case, one can look for more about it by doing a citation search, as with Web of Science.
I found that as of early September 2010 there had been over 3400 published papers
citing Shapiro and Wilk’s (Google Scholar said 3116, and 5270 through Sept. 10, 2012,
although it often gives more citations than Web of Science does). The great majority of
the citers are just applying the test and so seemed not so interesting theoretically. In
2010 I scanned 200 relatively recent citations (during 2009). The most interesting to me
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were a few papers on testing for multivariate normality, which we may or may not get
to later in the course.

About the paper by Romão et al. (2010), in a journal that MIT libraries don’t sub-
scribe to, online I was only able to access an abstract and first page, which say that 33
different tests of normality are compared but otherwise is not very specific.
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