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A few remarks about optimization

Optimization means maximizing or minimizing a given function over a given domain.
In statistics, one main use is in maximum likelihood estimation. There is also the related
notion of M-estimation, which is as follows. Let M(x, θ) be a function of a variable x and
a parameter θ. Let X1, ..., Xn be observations. Then an M-estimate of θ given the sample
is a value that minimizes

∑n

j=1
M(Xj , θ). For example if f(x, θ) is a probability density

function or mass function of x given θ, and M(x, θ) = − log f(x, θ), then an M-estimate
is a maximum likelihood estimate. If M(x, θ) = |x − θ| − |x|, then in dimension d = 1, an
M-estimate is a sample median of (X1, ..., Xn), which is unique if n is odd but not usually
if n is even. In dimension d ≥ 2, the M -estimate is called the “spatial median” and is
unique unless the sample is concentrated in a line and there has a non-unique median.

Let’s begin with a seemingly different problem: solving an equation F (x) = u for x
given u, numerically, where F can be computed and has a derivative F ′ that can also be
computed. First suppose that F is a probability distribution function with F ′(x) = f(x) >
0 at all x where 0 < F (x) < 1 on the real line and 0 < u < 1. Suppose we don’t have
an explicit form of the inverse function F−1, which we might want use, for example, in
generating X1, X2, ... i.i.d. (F ) via Xj = F−1(Uj) for Uj i.i.d. U [0, 1]. We also may want a
way to compute quantiles of F , even if the inversion method is not the most efficient way
to generate Xj i.i.d. (F ).

The very well known Newton–Raphson method proceeds as follows. Start with some
x0. Given xn, find F (xn). If this is not equal to u to the desired accuracy, then find xn+1

as follows. Use the first-order Taylor approximation as x → xn,

F (x) = F (xn) + F ′(xn)(x − xn) + o(|x − xn|).

Neglecting the remainder term and setting F (x) = u gives

x = xn+1 := xn + (u − F (xn))/F ′(xn).

If x∞ is the solution with F (x∞) = u and if we are at an xn in a neighborhood of x∞

where the first-order Taylor approximation works well enough and F has a bounded second
derivative, then xm converge very fast to x∞, with |xm+1 − x∞| = O(|xm − x∞|2). If,
however, we started too far away from x∞, then the method may overshoot, and xn+1 may
actually be farther away from x∞ than xn is. So the method needs to be supplemented
by another one. One can first find a0 and b0 such that F (a0) < u < F (b0). Let x0 be
one of a0 or b0. Generate a candidate x1 by Newton–Raphson and if it’s in the interval
[a0, b0], accept it. Otherwise reject it and set x1 = (a0 + b0)/2 (bisect). If F (x1) < u let
a1 = x1 and b1 = b0, or if F (x1) > u let a1 = a0 and b1 = x1. If F (x1) = u to the desired
accuracy, we’re done. Iterate this process. At each step, we either get a Newton–Raphson
improvement in the error (of the order of squaring it) or “at worst” we cut the error in
half. This is a satisfactory rate of convergence.

Now, suppose we have an actual optimization problem. Let’s say for example we want
to find a maximum of a function f on some interval [a, b]. The usual method is to look for
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a point ξ with a < ξ < b where the derivative f ′(ξ) = 0, and check the values of f at all
such ξ and at the endpoints a, b to see which is largest. Suppose we can compute f ′ and
f ′′ but it’s hard to solve f ′(x) = 0 explicitly. First let f be unimodal on [a, b]. Then f is
nondecreasing, so f ′ ≥ 0, on [a, ξ] and nonincreasing, so f ′ ≤ 0, on [ξ, b]. To have a relative
maximum of f at a ξ for which f ′(ξ) = 0, it’s necessary that f ′′(ξ) ≤ 0 and sufficient that
f ′′(ξ) < 0. So suppose that f ′′(x) < 0 for c < x < d such that a ≤ c < d ≤ b where
f ′(c) > 0 and f ′(d) < 0. To solve for ξ by the Newton–Raphson method, restricting to
the interval [c, d], f ′ plays the role of F (decreasing, rather than increasing) and f ′′, of F ′.
Then the method works well. But if a < x < c or d < x < b, then f ′′(x) may be positive
and the method starting at such an x may fail, so we may again need to do bisection.

There may in general be multiple critical points where f ′(x) = 0. In particular, a
density f may have multiple modes, or a likelihood function may have multiple relative
maxima or at least extrema. So, even in one dimension, we can’t restrict ourselves to
Newton–Raphson and bisection methods. Some method is needed for escaping the neigh-
borhood of a local maximum to search for other maxima, and in general no better way is
known than to make random, Metropolis–Hastings type moves, as in simulated annealing,
on which there is a handout.

In more than one dimension, a Newton–Raphson type method exists, where we’re
seeking “critical points” where the gradient of f is 0, and the analogue of the second
derivative is the Hessian matrix of second partial derivatives. In general the method
doesn’t work as well as in one dimension, so instead, there is a so-called “gradient descent”
method, if the problem is a minimization rather than maximization, moving in a direction
where one decreases the function as fast as possible. Again there may be multiple critical
points and one needs to supplement the derivative-based methods with random search.

A critical point can be unique without giving a maximum or minimum, as with f(x) =
x3 in one dimension. A possibly more surprising example is, in two dimensions, the function
f(x, y) = x2(1 + y)3 + y2, a polynomial of degree 5. It has a unique critical point at (0, 0)
which is a strict relative minimum, but it is not an absolute minimum since f(1, y) → −∞
as y → −∞. So, in statistics, one should beware of definitions in terms of critical points,
although I don’t know of such an example relating to statistics. (The example was found in
the paper by Durfee et al., which by the way resulted from an REU [Research Experience
for Undergraduates] project.)
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