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Rejection methods, Markov chain Monte Carlo,

the Gibbs sampler, and ergodicity

In one dimension, to generate random variables X1, X2, ... with a
given distribution function F , one method is to define the function
F←(y) = inf{x : F (x) ≥ y} for 0 < y < 1 and generate U1, ..., Un i.i.d.
U [0, 1]. Then Xj = F←(Uj) will be i.i.d. (F ), as shown in the handout
on the Kolmogorov and Kolmogorov–Smirnov tests.

1. The rejection method

In case F← is hard to compute, or in dimension d > 1, we need
another approach. The rejection method is a well-known way of gen-
erating random variables with a density f where it may be difficult to
generate Xj with density f directly, but we know a density g such that
for some a < +∞, f(x) ≤ ag(x) for all x, and we can generate ran-
dom variables Y1, Y2, ... i.i.d. (g) relatively easily. The method is given
in some beginning probability textbooks. It actually extends without
difficulty to cases where we have a density f(x)/c0 and don’t know the
normalizing constant c0 (because it’s hard to compute), as is pointed
out e.g. in Devroye, 1986, Section II.3. We have the following, which
holds in any dimension d. First to define a notation,

∫

f(x)dx :=

∫ ∞

−∞

· · ·

∫ ∞

−∞

f(x1, . . . , xd)dx1 · · · dxd.

Theorem 1. Let g be a probability density and let f ≥ 0 be a function
such that for some a < ∞, f(x) ≤ ag(x) for all x. Let Y1, ..., Yn, ... be
i.i.d. (g) and let c0 =

∫

f(x)dx > 0 (the value of c0 need not be known).
Let U1, ..., Un, ... be i.i.d. U [0, 1] variables independent of the Yj. Given
Yj and Uj, accept Yj as the next Xi if Uj ≤ f(Yj)/(ag(Yj)), otherwise
reject Yj and go on to (Yj+1, Uj+1). Then X1, . . . , Xm, . . . will be i.i.d.
with density f/c0.

Proof. Clearly Xi are i.i.d. and c0 ≤ a. Let A := {y : g(y) = 0}. Then
P (Yj ∈ A) =

∫

A
g(y)dy = 0 for all j. So in the following we can assume

g(Yj) > 0 for all j, as this holds with probability 1.
Let J = J(ω) be the least j such that Yj is not rejected. Then for

any event (measurable set) B,

P (X1 ∈ B) = P (YJ ∈ B) = P (Yj ∈ B|Uj ≤ f(Yj)/(ag(Yj)))
1
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(for any j, since the pairs (Yj, Uj) are i.i.d.)

(1) =
P (Yj ∈ B, Uj ≤ f(Yj)/(ag(Yj)))

P (Uj ≤ f(Yj)/(ag(Yj)))
.

By independence of Yj and Uj, the joint density of Yj and Uj is

g(Yj)1[0,1](Uj),

so the numerator of (1) equals
∫

B

g(y) ·
f(y)

ag(y)
dy =

∫

B

f(y)dy/a

and the denominator

(2) P

(

Uj ≤
f(Yj)

ag(Yj)

)

=

∫

g(y) ·
f(y)

ag(y)
dy =

∫

f(y)dy/a =
c0

a
,

so P (X1 ∈ B) =
∫

B
f(y)dy/c0 as desired. ¤

If mn is the number of j = 1, ..., n such that Uj ≤ f(Yj)/(ag(Yj)),
then by (2), mn/n gives us an estimate of c0/a, so amn/n estimates c0.

Often, however, we may have an f where we not only don’t know
the normalizing constant c0 but may also not know any g we can use
as above. For example, f may be defined on a rather high-dimensional
space and/or we can evaluate it by some algorithm, but not by such
a nice formula as would make it possible to see good densities g such
that f ≤ ag for some a. Then there’s another method as follows.

2. The Metropolis–Hastings algorithm

2.1. The discrete case. The basic paper by W. K. Hastings (1970)
describes a method in some detail for discrete state spaces. In the
title of his paper one can see what are now buzz words, “Markov
chain[s]...Monte Carlo.”

Hastings (1970, p. 99) gives the following. Suppose given a countable
state space indexed by positive integers, say, on which we have some
πj ≥ 0 such that 0 < S :=

∑

j πj < ∞ but where it may be hard
to compute S, or at any rate we don’t need to assume S known to
generate random variables with distribution having approximately the
probability mass function πj/S. We can and do assume all πj > 0,
otherwise eliminate j with πj = 0 from the state space. Let qij ≥ 0
be a Markov transition matrix, i.e.

∑

j qij = 1 for each i, and let it
be chosen so that qii ≡ 0 and qij > 0 for all i 6= j. The statistician
can choose {qij}. It should be chosen so that for each i, one can easily
generate a random variable J such that Pr(J = j) = qij for all j 6= i.
We want to find a Markov transition matrix pij for which {πj}

∞
j=1, or
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equivalently {πj/S}
∞
j=1, is an invariant measure for pij, namely for each

j,

(3)
∑

i

πipij = πj.

Hastings defines pij = qijαij for i 6= j where

(4) αij =
sij

1 + (πiqij)/(πjqji)

and sij are numbers such that sij ≡ sji > 0 and 0 < αij ≤ 1 for all
i 6= j. Such sij always exist, for example Hastings points out that one
could take simply sij ≡ 1, although he doesn’t recommend that choice
and the “Metropolis–Hastings” choice is different.

Once pij are defined for i 6= j then we define pii := 1 −
∑

j 6=i pij,
so we get a Markov transition matrix. It can happen that for some i,
αij = 1 for all j, and then pii = 0. For example, if the state space is
finite and we let πi decrease down toward 0 while other πj remain the
same, eventually all αij will equal 1, if sij are chosen to maximize αij.

The following fact may be called “detailed balance” in the discrete
case.

Claim 1: With definitions as above, we have πipij = πjpji for all i and
j.

Proof. This is clear for i = j. For i 6= j, multiply αij from (4) by πiqij.
Multiply the numerator and denominator of the resulting expression
by πjqji. Doing the same with i and j interchanged gives the same
result. In more detail, we get

πipij = αijπiqij =
sijπiqij

1 +
πiqij

πjqji

=
sijπjqjiπiqij

πiqij + πjqji

where the last expression is symmetric under interchanging i and j
because sij ≡ sji. Thus, it equals the preceding expressions with i and
j interchanged, giving

πipij = πiqijαij = πjqjiαji = πjpji,

proving the claim. ¤

Now, (3) does hold because
∑

i πipij =
∑

i πjpji = πj

∑

i pji = πj.
Since all qij > 0 for i 6= j and we chose sij such that all αij > 0 for
i 6= j, we will have pij > 0 for all i 6= j.

One can generate X1, X2, ..., as follows: let X1 = Y1 be arbitrary
in the state space. Let U1, U2, ..., be i.i.d. U [0, 1]. Given Xn = i,
generate a Yn+1 such that Pr(Yn+1 = j) = qij (recall that qij are
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chosen so that this is easy). Suppose Yn+1 = j. If Un+1 ≤ αij then set
Xn+1 = Yn+1, otherwise reject Yn+1 and set Xn+1 = Xn. Then {Xn}n≥1

form a Markov chain with transition probabilities pij.
To choose αij specifically in (4), Hastings (1970) gave some options

for defining sij. One he gave with a superscript (M), referring to
Metropolis, is as follows: for i 6= j,

(5) sij = 1 + min

(

πiqij

πjqji

,
πjqji

πiqij

)

.

(For i = j, sii and αii need not be defined, as in defining pij, sij and αij

are only used for i 6= j.) This choice results in a relatively simple form
of the acceptance probability αij. From (5), (4) and some algebra, one
can see that αij = 1 if πiqij ≤ πjqji and otherwise αij = πjqji/(πiqij).
Here are details. We have for any i 6= j, πiqij ≤ πjqji if and only if

πiqij/(πjqji) ≤ 1 ≤ πjqji/(πiqij).

It follows that αij = 1 if πiqij ≤ πjqji. Otherwise it equals
(

1 +
πjqji

πiqij

)

/

(

1 +
πiqij

πjqji

)

=
πiqij + πjqji

πiqij

·
πjqji

πjqji + πiqij

=
πjqji

πiqij

as claimed. In other words we have

(6) αij = min

(

1,
πjqji

πiqij

)

.

If Xn = i, one makes the move from i to j if and only if it is proposed
according to qij and for a U [0, 1] variable Uk independent of those used
previously, Uk ≤ πjqji/(πiqij). (Thus when the right side is ≥ 1, the
move is accepted with probability 1.) For the choice (5) of sij one only
needs to know the πj and qij to find αij directly by (6). The Metropolis–
Hastings choice (5) makes sij and thus αij as large as possible subject to
the given requirements, because we need sij ≤ 1+πiqij/(πjqji) in order
that αij ≤ 1, and since sij ≡ sji we also need that sij ≤ 1+πjqji/(πiqij).
So this choice maximizes the probability that moves are accepted, under
the requirements.

2.2. The continuous case. Here the state space will be a non-discrete
subset U of R

d. Hastings considers the continuous case only briefly, in
terms of approximations from the discrete case. For the continuous
case, this exposition is based on other references, especially Tierney
(1998).

Suppose given P (x) with P (x) ≥ 0 for all x ∈ R
d and 0 < c0 =

∫

Rd P (x)dx < ∞ where again we don’t know c0. Let U = {x :
P (x) > 0}. Let Q(x; y) ≥ 0 be a transition density, i.e. for each x,
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∫

Rd Q(x; y)dy = 1, with for each x ∈ U , Q(x; y) > 0 for all y ∈ U .
Although sets U such as half-spaces can be of interest, for simplicity
the rest of this exposition will assume that U is all of R

d.
We want to be able to sample easily from Q(x; ·). For example,

Q(x; ·) may be the multivariate normal N(x, σ2I) for some σ > 0, which
may be adjusted as one goes along (see suggestions in the Wikipedia
article). We want to find a function α(x, y) ≥ 0, the analogue of αij in
the discrete case (4), such that

(7) P (x)Q(x; y)α(x, y) ≡ P (y)Q(y; x)α(y, x).

Let

(8) α(x, y) :=
s(x, y)

1 + (P (x)Q(x; y))/(P (y)Q(y; x))

where s(x, y) ≡ s(y, x) > 0 is chosen so that 0 < α(x, y) ≤ 1. Then (7)
will hold by the same proof as for Claim 1.

For each x ∈ R
d, define a measure with respect to y which has a

continuous part and a point mass at x, namely

(9) P (x; dy) := Q(x; y)α(x, y)dy + δx(y)

∫

(1 − α(x, u))Q(x; u)du.

Then what is called “detailed balance,” in our notation

(10) P (x)dxP (x; dy) = P (y)dy P (y; dx)

as measures on R
d×R

d = R
2d, holds because each side has a continuous

part with density given by either side of (7) with respect to dx dy on
R

2d, and another part concentrated in the “diagonal” d-dimensional
hyperplane x = y, or {(x, x) : x ∈ R

d}, having density there P (x)
∫

(1−
α(x, u))Q(x; u)du with respect to dx, or equivalently replacing x by y.

To show the continuous analogue of (3), namely that P (x)dx is in-
variant under the transition probability P (x; dy), with f = 1B the
indicator function of an event B, by (10),

∫ ∫

y∈B

P (x; dy)P (x)dx =

∫

y∈B

∫

P (y; dx)P (y)dy =

∫

B

P (y)dy

as desired.
For a Markov chain with values in R

d and transition probability
P (x; dy), take any X1 and, given Xn, choose Yn+1 at random from
Q(Xn; ·), recalling that we’ve chosen Q to make this easy, and set
Xn+1 = Yn+1 if an independent U [0, 1] variable Un+1 ≤ α(Xn, Yn+1),
otherwise Xn+1 = Xn, and so on.
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To make the specific Metropolis–Hastings choice of s(x, y) and thus
α(x, y) in the continuous case, there is a natural analogue of (5),

(11) s(x, y) = 1 + min

(

P (x)Q(x; y)

P (y)Q(y; x)
,
P (y)Q(y; x)

P (x)Q(x; y)

)

.

This implies

(12) α(x, y) = min

(

1,
P (y)Q(y; x)

P (x)Q(x; y)

)

,

just analogous to (6) in the discrete case.

3. Ergodicity of some Markov chains

3.1. The discrete case. Let V be a countable state space, represented
by positive integers. The case V = {1, 2, ...,M} with M < ∞ is
included, where we’ll assume M ≥ 3, but we’ll be mainly interested
in the case that V is infinite and consists of all the positive integers.
Sums

∑

j :=
∑

j∈V will then naturally mean
∑M

j=1 in the finite case

and
∑∞

j=1 in the infinite case.

Any array P = {Pij}i,j∈V of numbers Pij ≥ 0 will be called a Markov
transition matrix if for each i ∈ V ,

∑∞
j=1 Pij = 1. For two such

matrices P and Q, the product is defined, as for finite matrices, by
PQ ≡ P · Q where (PQ)ik =

∑

j PijQjk for all i, k ∈ V . Then it’s
easily checked that PQ is itself a Markov transition matrix and that
this multiplication is associative. Let P 1 := P and recursively for
n ≥ 1 define P n+1 := P n · P , which equals P · P n by associativity
applied as many times as needed. Let P n

ij := (P n)ij for any n = 1, 2, ...
and i, j ∈ V . (Powers (Pij)

n of individual entries are not usually of
interest.)

A Markov transition matrix P is called irreducible iff for any i and
j in V there is some n = 1, 2, ... such that P n

ij > 0. This clearly holds
if Pij > 0 for all i 6= j, with n = 2.

A finite signed measure µ on V is given by a sequence {µj}j∈V such
that

∑

j |µj| < ∞. Then µ is called invariant for a Markov transition

matrix P if for each j ∈ V ,
∑

i∈V µiPij = µj. If µj ≥ 0 for all j ∈ V
then µ is called a measure, and a probability measure if also

∑

j µj = 1.
The following will be rather easy to prove:

Theorem 2. If an irreducible Markov transition matrix P has an in-
variant probability measure µ then µ is unique.

Proof. Suppose µ 6= ν are two invariant probability measure measures
for P . Then both are also invariant for any power P n of P , and so is the
nonzero finite signed measure µ−ν. Let ρj := max(0, µj −νj) ≥ 0, > 0
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if and only if j is in a non-empty set J , and τi := −min(0, µi−νi) ≥ 0,
> 0 if and only if i is in a non-empty set I, disjoint from J . Then ρ and
τ are non-zero finite measures with µ − ν = ρ − τ (called the Jordan
decomposition of µ − ν). Let T :=

∑

j ρj =
∑

i τi. Then 0 < T ≤ 1.

For each j let ρ′
j :=

∑

i ρiPij ≥ 0 and τ ′
j :=

∑

i τiPij ≥ 0. Then
∑

j ρ′
j = T =

∑

j τ ′
j and µ − ν = ρ − τ = ρ′ − τ ′. If there is any i with

ρ′
i > 0 and τ ′

i > 0 then |ρ′
i − τ ′

i | < ρ′
i + τ ′

i , whereas |ρi − τi| ≡ ρi + τi,
so

∑

i |ρ
′
i − τ ′

i | <
∑

i |ρi − τi| = 2T , a contradiction. Thus ρ = ρ′ and
τ = τ ′, i.e. ρ and τ are invariant for P and thus for P n for any n. But
for any i ∈ I and j ∈ J there is an n with P n

ij > 0, so ρj > 0, another
contradiction, and µ is unique. ¤

Corollary 1. For a discrete state space indexed by positive integers j
and numbers πj > 0 such that S =

∑

j πj < ∞, and any Markov tran-

sition matrix P = {pij}i,j≥1 satisfying Hastings’ conditions for {πj},
the unique stationary probability measure for P is πj/S.

Proof. πj/S is an invariant probability for P by equation (3), which
follows from Claim 1 and the paragraph after its proof, and P is irre-
ducible because pij > 0 for all i 6= j. ¤

A state i ∈ V will be called periodic of period k for a Markov tran-
sition matrix P and integer k ≥ 2 iff P n

ii > 0 for some n ≥ 1 and all
such n are divisible by k. P is called aperiodic iff it has no periodic
states of any period ≥ 2. Clearly P is aperiodic if Pij > 0 for all i
and j, or if M ≥ 3 as we assume and Pij > 0 for all i 6= j. Thus the
Markov transition matrices {pij} satisfying Hastings’ conditions will be
aperiodic. For them, we can see directly that N = 2 in the following.

Lemma 1. Let P be an aperiodic Markov transition matrix and i ∈ V
any state. Let A := {n ≥ 1 : P n

ii > 0}. Then for some N , A contains
all n ≥ N .

Proof. By associativity, for any m ∈ A and n ∈ A we have m +
n ∈ A, i.e. A is an additive semigroup of positive integers. By the
aperiodicity, the greatest common divisor of all n ∈ V is 1, so by the
Euclidean algorithm, known since antiquity, there exist some r < ∞,
some m1, ...,mr in A, and some integers ki ∈ Z (some of which may
be negative, and some must be positive) such that

∑r

i=1 kimi = 1. Let
K :=

∑r

i=1 |ki|mi ∈ A and also K2 ∈ A. Let s = K2 + tK + j for any
integers t ≥ 0 and j = 0, 1, ..., K − 1. Then

s =
r

∑

i=1

(jki + (K + t)|ki|)mi ∈ A
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since K + t ≥ K > j so for each i, (K + t)|ki|+ jki > 0 and the lemma
holds with N = K2. ¤

Next is a further theorem, whose proof is not so elementary. It is
given in Kallenberg (1997), Theorem 7.18. It holds for the pij satisfying
Hastings’ conditions, applied to the invariant probability measure with
probability at j equal to πj/S.

Theorem 3. Let P be an irreducible, aperiodic Markov transition ma-
trix with an invariant probability measure π. Then for any i ∈ V ,
∑

j∈V |P n
ij − πj| → 0 as n → ∞. Further, for any probability measure

µ on V ,
∑

j |
∑

i µiP
n
ij − πj| → 0 as n → ∞.

3.2. Ergodicity in the continuous case. Now let U be a continuous
state space, specifically the Euclidean space R

d (or a non-discrete sub-
set of it). Let δx(A) = 1A(x) = 1 for x ∈ A and 0 otherwise. A Markov
transition kernel will be a function x 7→ Mx from U into probability
measures on the Borel sets of (events included in) U , where Mx is of
the form

Mx(dy) = M(x; y)dy +

(

1 −

∫

M(x; u)du

)

δx(dy),

M(x; y) ≥ 0 for all x and y in U , M(x) :=
∫

M(x; u)du ≤ 1 for all x,
and M(·, ·) is a jointly Borel measurable function of its two arguments
(this hypothesis is made just so that all integrals to be written are
defined). Let M{x} := 1−M(x). Thus Mx is a continuous measure with
a density, except for a point mass of size M{x} at x. The probability of
a Borel set A is given by

(13) Mx(A) =

∫

A

M(x; y)dy + M{x}δx(A).

The Metropolis–Hastings definition (9) of P (x; dy) does give a Markov
transition kernel Px(dy) with P (x; y) = Q(x; y)α(x, y), where in (9),
∫

Q(x; u)du = 1, so the coefficient of δx(y) there is indeed equal to
1−P(x) = P{x} as desired. In this case we will have typically P{x} > 0 so
that a non-zero point mass is present. Whereas, in the Gibbs sampling
case to be treated in Section 4, we will have

∫

Q(x; u)du = 1 and the
kernel has a density, Qx(dy) = Q(x; y)dy.

The analogue of the product of two Markov transition matrices is
the following product operation: let Px, x ∈ U , and Qy, y ∈ U , be two
Markov transition kernels. Let

(P · Q)x(dz) :=

∫

Qy(dz)Px(dy),
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in other words, for any Borel set B ⊂ R
d and x ∈ R

d, define

(P · Q)x(B) :=

∫

Qy(B)Px(dy)

= P{x}Qx(B) +

∫

Qy(B)P (x; y)dy

= P{x}Q{x}δx(B) + P{x}

∫

B

Q(x; z)dz

+

∫

B

P (x; y)Q{y}dy +

∫ ∫

B

P (x; y)Q(y; z)dydz,

using that
∫

δy(B) · · · dy =
∫

B
· · · dy. Letting R := P · Q, we get that

Rx is indeed a Markov transition kernel, with R{x} = P{x}Q{x} and

R(x; z) := P{x}Q(x; z) + P (x; z)Q{z} +

∫

P (x; y)Q(y; z)dy.

Thus, starting at x and using first P , then Q for transitions, one either
stays at x with probability P{x}Q{x}, or one moves to a point z 6= x
with a sub-probability density R(x; z), which can be done in just one of
three mutually exclusive ways (except for probability 0 events): either
one first stays at x with probability P{x}, then transitions to z with
sub-probability density Q(x; z); or, one goes directly to z with sub-
probability density P (x; z) and stays there with probability Q{z}; or
one goes first to a point y different from x or z with subprobability
density P (x; y), then from y to z with subprobability density Q(y; z),
and we integrate

∫

P (x; y)Q(y; z)dy to get the total contribution to
R(x; z) from going via such y.

If Q = P then we get the kernel P 2 := P · P and so by recursion
any power of P . A probability measure µ given by a density π(x) ≥ 0
on R

d will be called invariant for the Markov transition kernel P if for
any Borel set B,

∫

B
π(x)dx =

∫

π(x)Px(B)dx.

A Markov transition kernel Mx defined for x ∈ U ⊂ R
d will be called

U -transitive if U is a Borel subset of R
d with volume

∫

U
dx > 0 and

for each x ∈ U , M(x; y) > 0 for all y ∈ U and M(x; y) = 0 for all
y /∈ U . The kernels defined by the Metropolis–Hastings method (in
the continuous case) are U -transitive, but those in the Gibbs sampler
(Section 4) in general may not be. We have the following:

Theorem 4. Let Px be a Markov transition kernel such that for some
Borel set U ⊂ R

d Px is U-transitive. Suppose P has an invariant
probability measure µ on U having a density. Then µ is unique.
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The proof is very similar to that of Theorem 2. It follows from the
facts and proof in Hernández-Lerma and Lasserre (2003), Lemma 2.2.3
pp. 26-27 and Proposition 4.2.2 p. 48.

Now, we’d like a continuous analogue of Theorem 3. Let φ be a σ-
finite measure, which in our case will just be d-dimensional Lebesgue
measure (volume) λd on R

d or a subset U of it with φ(U) > 0, so we
can write

dφ(x) = φ(dx) = dλd(x) = dx = dx1dx2 · · · dxd.

A Markov transition kernel P on U , where Px(U) = 1 for all x ∈ U ,
is called φ-irreducible if for each x ∈ U and each A ⊂ U with volume
φ(A) > 0 we have for some n P n

x (A) > 0. For a U -transitive kernel we
can take n = 1 and get Px(A) ≥

∫

A
P (x; y)dy > 0 since P (x; y) > 0 for

all y ∈ U , where “≥” becomes equality if x /∈ A and usually > if x ∈ A.
Thus all Markov transition kernels defined by the Metropolis–Hastings
method for the continuous state space U are φ-irreducible for φ = λd

restricted to U .
A Markov transition kernel P is called periodic if for some k ≥ 2 there

exist disjoint sets A1, ..., Ak such that for j = 1, ..., k− 1, Px(Aj+1) = 1
for all x ∈ Aj, and Px(A1) = 1 for all x ∈ Ak. Otherwise P is called
aperiodic. If Px is U -transitive and k ≥ 2, each set Aj would need to
have positive volume, in order for Px(Aj) to equal 1 for some x /∈ Aj,
but then since Px(Aj) > 0 for all x and all j, we’d get Px(Aj) < 1 for
all x, a contradiction, so k = 1 and P is aperiodic.

In preparation for the next theorem, the total variation distance will
be defined. If µ and ν are two probability measures, then we have the
Jordan decomposition µ− ν = (µ− ν)+ − (µ− ν)− where (µ− ν)+ and
(µ−ν)− are nonnegative finite measures, such that there exists a set A
with (µ−ν)+(A) = 0 and (µ−ν)−(Rd \A) = 0, and the total variation
distance ‖µ−ν‖TV between µ and ν is defined as 2(µ−ν)+(Rd). If µ and
ν each have densities f and g respectively, then ‖µ−ν‖TV =

∫

|f−g|dφ.
In the following theorem, however, P n

x doesn’t quite have a density in
general because it has a point mass at x, with a coefficient P n

{x} which
becomes small geometrically as n becomes large.

Theorem 5. If the Markov transition kernel Px, x ∈ U on U is λd-
irreducible and aperiodic, it has a unique invariant probability µ on U ,
and for µ-almost all x, ‖P n

x − µ‖TV → 0 as n → ∞.

This follows from Theorem 4 above and Theorem 1 of Tierney (1994,
p. 1712). Tierney says it results from facts proved in Nummelin (1984)
and had been stated previously by Athreya, Doss and Sethuraman
(1992).
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Next is a “pathwise ergodic theorem.”

Theorem 6. Let Px, x ∈ U , be a Markov transition kernel having a
unique invariant probability µ, meaning that

µ(A) =

∫

Px(A)dµ(x)

for each Borel set (event) A ⊂ U and no other probability measure ν
in place of µ has this property. Let (x1, x2, ...) be a Markov chain with
transition probabilities Px, in other words, choose any x1 in U , or let x1

have any given probability distribution in U , and for each n = 1, 2, ...,,
given xn, let xn+1 have distribution Pxn

. Let f be an integrable function
for µ, i.e.

∫

f(x)dµ(x) is defined and finite. Then for almost all choices
of x1 with respect to µ, and then x2, x3, ... with their given distributions,

(14) lim
n→∞

1

n

n
∑

j=1

f(xj) =

∫

f(x)dµ(x).

This theorem is essentially Corollary 2.5.2, p. 38, of Hernández-
Lerma and Lasserre (2003). Tierney (1994, Theorem 3) also mentions
this fact and gives as a reference Theorem 3.6 of Chapter 4 of Revuz
(1975).

For Px of the Metropolis–Hastings form, there are no possible bad
choices of x1. In fact, for any m and choices of x1, ..., xm, (14) will still
hold with probability 1 for choices of xm+1, xm+2, ..., with their given
distributions.

Tierney (1994, Corollary 2, p. 1713) points out that Theorem 5 ap-
plies to Markov chains generated by the Metropolis–Hastings method.
In other words, starting at any x = x0, the probability distribution
of the point xn reached after n steps with the Metropolis–Hastings al-
gorithm converges in total variation to µ, so that for n large, we can
generate xn with distribution approximately µ. If we want a sequence
of random variables with distribution approximately µ (although not
independent), we can take xm, xm+1, ... for some large enough m, and
not use xj for j < m which form the so-called “burn-in” stage (as
mentioned e.g. in the Wikipedia article).

4. The Gibbs sampler

For x = (x1, ..., xd) ∈ R
d and j = 1, ..., d let x(j) := {xi}1≤i≤d, i6=j

= (x1, ..., xj−1, xj+1, ..., xd) ∈ R
d−1. In Gibbs sampling, we assume

there is a probability density f on R
d such that for each j = 1, ..., d, we

know the conditional density f(xj|x(j)) and are able to generate samples
with this density. In fact f(xj|x(j)) = f(x1, ..., xd)/f(j)(x(j)) where f(j)
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is the marginal density of x(j), namely f(j)(x(j)) =
∫

f(x)dxj, but we
may know the density f only to within a multiplicative constant, which
divides out in forming the conditional densities.

One version of the Gibbs sampling procedure is as follows. Suppose
we know a set U ⊂ R

d of positive volume such that f(x) > 0 if and
only if x ∈ U . Choose an x(0) ∈ U such that the set (typically an

interval) of x1 such that (x1, x
(0)
(1)) ∈ U has length (Lebesgue measure)

> 0, as will always be true if U is open. Generate a new value x
(1)
1 from

the conditional distribution of x1 given x
(0)
(1). Then successively generate

x
(1)
j for j = 2, ..., d from the conditional distribution of xj given x(j) = y

where yi = x
(1)
i for i < j and yi = x

(0)
i for i > j. After finishing the

step with j = d, return to j = 1 and repeat the process to generate
x(2) from x(1), and so on.

The probability distribution of x(1) given x(0) = x is then a Markov
transition kernel Px, moreover one with a density, since in Gibbs sam-
pling moves are always accepted, so there is 0 probability of remaining
at the same point. Moreover, the conditional distributions each have
densities by the assumptions. We have the following:

Theorem 7. The probability distribution on R
d with density f is in-

variant under the kernel Px, x ∈ U , defined by Gibbs sampling.

Proof. Suppose x(0) has density f . Then x
(0)
(1) has the marginal density

given by f , and x
(1)
1 has the correct conditional distribution given x

(0)
(1),

so (x
(1)
1 , x

(0)
(1)) has density f . Likewise for each j = 2, ..., d, inductively,

y := (x
(1)
1 , ..., x

(1)
j−1, x

(0)
j+1, x

(0)
d )

has the marginal density given by f , and x
(1)
j the f conditional density

given y, so ({x
(1)
i }i≤j, {x

(0)
(i) }i>j) will have density f . For j = d this

gives the conclusion. ¤

We’d like the Gibbs Markov chain to be φ-irreducible where φ is
d-dimensional Lebesgue measure λd (volume) on U ⊂ R

d. This is
not true for arbitrary sets U with positive volume. For example, let
U = ([0, 1] × [0, 1]) ∪ ([1, 2] × [1, 2]) ⊂ R

2 where × is the Cartesian
product, A × B := {(x, y) : x ∈ A, y ∈ B}. [According to context,
(x, y) can mean an ordered pair as in this last definition, or (a, b) can
mean the open interval {x : a < x < b}.] Then whichever of the two
squares the Gibbs Markov chain starts in, it will remain in it for all n
with probability 1. One assumption mentioned somewhere is that U
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should be open and connected. Actually connectedness is not necessary,
e.g. if U = ((0, 1) × (0, 1)) ∪ ((0, 1) × (2, 3)) then U is not connected
but one can access either square from the other when choosing y for
any x ∈ (0, 1).

Theorem 4 says that if a Markov transition kernel is U -transitive
for some U , it has a unique invariant probability measure. For the
Metropolis–Hastings procedure, since Q(x; y) was relatively arbitrary,
it was easy to make it > 0 everywhere on U , but that isn’t the case
with Gibbs sampling, where we may need more iterations to reach all
parts of U .

We get using Theorem 7:

Theorem 8. If the Markov transition kernel Px, x ∈ U , given by the
Gibbs sampler is λd-irreducible, then the distribution with density f is
the unique invariant probability measure for Px.

It follows by Theorem 6 that the pathwise ergodic theorem holds
for Markov chains generated by the Gibbs sampler under the given
condition. Also, we’d like the distribution of x(n) given by the Gibbs
sampler to approach that given by f in total variation. For this we
need that the Px of the Gibbs sampler is aperiodic. Supposing that U
is open, then for any x ∈ U , there is some r > 0 small enough such that
all y with |y−x| < r are also in U , and the one-step density P (x; y) > 0
for all such y. For the definition of periodic in the continuous case as
given in subsection 3.2 if the Gibbs chain were periodic and x ∈ A1,
then almost all y 6= x with |x−y| < r/2 would have to be in A2, where
“almost all” means except for a set with 0 volume. Moreover, for each
such y there must be a δy > 0 with δy < r/2 such that almost all z with
|z − y| < δy must be in A3 if k ≥ 3 or in A1 if k = 2, either of which
would be a contradiction since also z ∈ A2 but A1∩A2 = ∅ and if A3 is
defined, A2 ∩A3 = ∅. So the Gibbs Px is aperiodic and by Theorem 5,
the distribution of x(n) for Gibbs sampling converges in total variation
to the distribution with density f .

Suppose for example that d = 2, so we’re given conditional densities
f(y|x) and f(x|y). Then we have f(x, y) ≡ f(y|x)g(x) where g is the
marginal density of x, and f(x, y) ≡ f(x|y)h(y) where h is the marginal
density of y. It seems to follow that f(y|x)/f(x|y) ≡ h(y)/g(x), but
the conclusion doesn’t make sense for x and y such that f(x|y) = 0,
which can happen even though h(y) > 0 and g(x) > 0. Supposing U is
a rectangle (a, b)×(u, v) in R

2 with a < b and u < v, then if f(y|x) and
f(x|y) are given explicitly, we should be able to factor f(y|x)/f(x|y)
in the form h(y)/g(x) and thus determine the marginal densities, up
to a multiplicative constant in each.
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In dimension d = 2 for non-rectangular U , or for d ≥ 3, however,
there seems not to be such a direct approach to finding the form of the
joint marginal densities of d − 1 variables.

5. Posterior densities

The handouts bayestopix.pdf and morebayes.pdf from the Spring
2012 18.443 website www-math.mit.edu/∼rmd/443S12 give material
on Bayesian statistics. Posterior densities provide a large and impor-
tant class of densities whose normalizing constants may be difficult to
compute and yet for which it’s desirable to sample from the distribu-
tions with these densities.

Let’s recall some basics of Bayesian statistics and estimation. Sup-
pose given a family of probability distributions parametrized by a con-
tinuous finite-dimensional parameter θ, and given by a likelihood func-
tion f(θ, x) for one observation x, where f(θ, ·) is a probability mass
function in case x is discrete, or a density function if x is continuous.

There are cases where the parameters of distributions are discrete,
such as hypergeometric distributions, but often even for discrete dis-
tributions, the parameters are continuous, such as the probability p
for the binomial or geometric distribution or the parameter λ for the
Poisson distribution.

Let θ range over a space Θ of possible values. Let π(θ) be a proba-
bility density defined for θ ∈ Θ , called the prior density.

Given X1, . . . , Xn assumed to be i.i.d. f(θ, ·) for some unknown θ,
let X be the vector (X1, . . . , Xn), so that the likelihood function based
on X is f(θ,X) =

∏n

j=1 f(θ,Xj). Then the posterior density of θ is

(15) πX(θ) =
π(θ)fX(θ)

∫

π(φ)fX(φ)dφ
.

Integrating the numerator first with respect to each Xj and last with
respect to θ we have
∫

Θ

π(θ)

∫

f(θ, x1)dx1 · · ·

∫

f(θ, xn)dxndθ =

∫

Θ

π(θ) · 1 · 1 · · · 1 dθ = 1,

where the integrals dxj are replaced by sums over xj if the xj are
discrete. It follows, interchanging integrals (for nonnegative functions)
that with probability 1, the integral in the denominator of (15) is finite
and strictly positive, so the posterior density πX exists as a probability
density.

If the prior π happens to be in what’s called a “conjugate prior” fam-
ily for θ and the family f(θ, ·) of distributions, such as beta priors for
the binomial p or gamma priors for the Poisson λ, then the normalizing
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constants of posterior densities are easy to evaluate and the posterior
densities belong to the same conjugate prior family. Such cases are
emphasized in first courses in statistics. But in general, we may not
be so lucky as to have a conjugate prior and there is not such an easy
way to find the normalizing constants.

A class of problems in Bayesian statistics is to find Bayes estimators.
Let g(θ) be a real-valued function of the unknown θ. A Bayes estimator
of g(θ) is a statistic, namely a real-valued function T (X) of the vector
X of observations, which minimizes the mean-square error

∫

Θ

Eθ(T (X) − g(θ))2π(θ)dθ,

where Eθ denotes expectation when θ is the true value of the parameter,
so that X1, . . . , Xn are i.i.d. f(θ, ·). A theorem (proved in the 18.443
handout bayestopix.pdf) says that whenever a Bayes estimator exists, it
is unique and given by the integral of g(θ) with respect to the posterior
density,

(16) T (X) =

∫

g(θ)πX(θ)dθ.

Many books say that T (X) is the conditional expectation E(g(θ)|X)
of g(θ) given X, which is correct if the unconditional expectation
∫

g(θ)dπ(θ) is defined and finite, but it may not be and (16) can still
apply. For example, suppose we have a family N(µ, 1) of normal dis-
tributions with µ unknown and and are very uncertain about µ, so we
assume a Cauchy prior distribution for it allowing possibly large values.
The expectation of µ is undefined for a Cauchy distribution. We may
naturally want to estimate g(µ) = µ after observing X = (X1, ..., Xn).
Because of the normal form of the likelihood function, µ will have a
finite integral with respect to the posterior distribution πX for any X.

Now, suppose we are unable to evaluate the normalizing constant for
πX . Still, using MCMC (Markov chain Monte Carlo), i.e. the Metro-
polis–Hastings algorithm in the continuous case, as long as π(θ) and
f(θ,X) are reasonably easy to evaluate for each θ and our observed X,
we can generate θ1, . . . , θm whose distribution for m large is approx-
imately πX , even if θj are not even approximately i.i.d., but by the
pathwise ergodic theorem, Theorem 6, if g is integrable for πX , we can
approximately evaluate T (X) by the average 1

m

∑m

i=1 g(θi).

NOTES

The paper by Tierney (1994), although its title emphasizes posterior
distributions as in Section 5, gives in addition a general exposition of
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the application of Markov chain theory to Markov chain Monte Carlo.
The paper has been very influential, having been cited over 2700 times
according to Google Scholar (11/2012).

I have not seen the preprint by Athreya, Doss and Sethuraman
(1992), but very possibly from the coincidence of the three authors
and similarity of titles, the final form of the paper appeared in 1996 as
listed below.
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