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UNIMODALITY AND THE DIP STATISTIC

1. Unimodality

Definition. A probability density f defined on the real line R is called
unimodal if the following hold:
(i) f is nondecreasing on the half-line (−∞, b) for some real b;
(ii) f is nonincreasing on the half-line (a, +∞) for some real a;
(iii) For the largest possible b in (i), which exists, and the smallest
possible a in (ii), which also exists, we have a ≤ b.

Here a largest possible b exists since if f is nondecreasing on (−∞, bk)
for all k and bk ↑ b then f is also nondecreasing on (−∞, b). Also
b < +∞ since f is a probability density. Likewise a smallest possible
a exists and is finite.

In the definition of unimodal density, if a = b it is called the mode of
f . It is possible that f is undefined or +∞ there, or that f(x) ↑ +∞
as x ↑ a and/or as x ↓ a.

If a < b then f is constant on the interval (a, b) and we can take it
to be constant on [a, b], which will be called the interval of modes of f .
Any x ∈ [a, b] will be called a mode of f . When a = b the interval of
modes reduces to the singleton {a}.
Examples. Each normal distribution N(µ, σ2) has a unimodal density
with a unique mode at µ. Each uniform U [a, b] distribution has a
unimodal density with an interval of modes equal to [a, b]. Consider
the gamma density γa(x) = xa−1e−x/Γ(a) for x > 0 and 0 for x ≤ 0,
where the shape parameter a > 0. (The scale parameter λ = 1 for
simplicity.) Differentiating the density for x > 0 with respect to x we
get [(a − 1)xa−2 − xa−1]e−x which is 0 if and only if x = a − 1, but
that is not possible for x > 0 if a ≤ 1. For a ≤ 1 the derivative is
negative, so the density is decreasing for all x > 0 and has a unique
mode at x = 0. We get the standard exponential distribution if a = 1.
For 0 < a < 1 the density has a sharp peak with limx ↓ 0 γa(x) = +∞.
For 1 < a < ∞ there is a unique mode at x = a.

Definition. A probability distribution P on R will be called unimodal
if for some λ with 0 ≤ λ ≤ 1, P = λδx + (1 − λ)Q where δx is a point
mass at x, Q has a density f which is unimodal, and x is in the interval
of modes of f .
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If we observe real X1, . . . , Xn i.i.d. from an unknown P , there is a
test, called the dip test, for whether P is unimodal. We will get to that
in Section 4.

2. Convex and concave functions; minorants and

majorants

Recall that a real-valued function G on an interval J , which may be
a half-line or the whole line, is called convex on J if G((1− t)x + ty) ≤
(1− t)G(x)+ tG(y) for any x, y ∈ J and 0 ≤ t ≤ 1. G is called concave
if and only if −G is convex.

For a given G defined on an interval J containing points u < x, the
chord of the graph of G between u and x is defined as the line segment
of all points

((1 − t)u + tx, (1 − t)G(u) + tG(x)) = (1 − t)(u,G(u)) + t(x,G(x))

for 0 ≤ t ≤ 1. Thus for G to be convex on an interval containing u
and x implies that the chord is above, or coincides with, the graph of
G on [u, x]. Likewise, for a concave G, the chord is below, or coincides
with, the graph. A linear function G(x) ≡ a + bx for constants a and
b is both convex and concave.

Let G be convex on an interval J containing a point x in its interior.
Then for h small enough so that x+h and x−h are in J , and 0 < s < h,
we have the relation

G(x + h) − G(x)

h
≥ G(x + s) − G(x)

s
≥ G(x) − G(x − h)

h

because the point (x + s,G(x + s)) is on or below the chord joining
(x,G(x)) to (x + h,G(x + h)), and the point (x,G(x)) is on or below
the chord joining (x− h,G(x− h)) to (x + s,G(x + s)). Thus as h ↓ 0,
(G(x+h)−G(x)/h decreases down to a finite limit, called G′(x+), the
right derivative of G at x. Similarly, the left derivative G′(x−) of G
at x also exists. By similar reasoning it follows that these one-sided
derivatives are nondecreasing: if G is convex on an interval containing
points u < v in its interior, we have

(1) G′(u+) ≤ G′(v−) ≤ G′(v+).

Likewise, a concave function on an interval J will have one-sided deriva-
tives on the interior of J which will be nonincreasing. Existence of the
one-sided derivatives implies that a convex or concave function G is
continuous on the interior of J .
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For example, let G(0) = G(1) = 1 and let G(x) = 0 for 0 < x < 1.
Then G is easily seen to be convex on the closed interval J = [0, 1]. It
is continuous on the interior (0, 1) but not at the endpoints.

2.1. Greatest convex minorants and least concave majorants.

Let F be a collection of convex functions on the interval J . Let

FF(x) = FF ,J(x) = sup
f∈F

f(x)

for all x ∈ J . Also, f ≤ g on J will mean that f(x) ≤ g(x) for all x in
J .

Theorem 1. (a) For any non-empty set F of convex functions on J ,
if FF has finite values, it is also convex on J .
(b) If for some real-valued function g on J , f ≤ g on J for all f in F ,
then also FF ≤ g on J .
(c) Let g be a real-valued function of J such that there exists at least
one convex function f ≤ g on J . Let F(g) be the set of all convex
f ≤ g on J . Then FF(g) is a convex function with FF(g) ≤ g on J .

Proof. Let x < y in J and 0 < λ < 1. Then for any f ∈ F ,

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ≤ λFF(x) + (1 − λ)FF(y).

Taking the supremum over f ∈ F on the left we get

FF(λx + (1 − λ)y) ≤ λFF(x) + (1 − λ)FF(y),

so indeed FF is convex on J , proving part (a). Part (b) is immediate.
Part (c) then follows from parts (a) and (b). Q.E.D.

The function FF(g) from part (c) of Theorem 1 is called the greatest
convex minorant of g on J , abbreviated GCM(g) := GCM(g, J). Like-
wise, for a function g such that there exists at least one concave h ≥ g
on J , g has a least concave majorant LCM(g) := LCM(g, J) ≥ g on J .

The infimum of any non-empty collection of concave functions, if
finite-valued, is concave. But the minimum of two convex functions is
not convex in general, nor is the maximum of two concave functions
concave (consider linear functions with different slopes).

3. Unimodality, convexity and concavity

The distribution function G of a unimodal distribution will itself be
called unimodal. If Q has a unimodal density f , then the distribution
function FQ(x) = Q((−∞, x]) is convex on (−∞, y] and concave on
[y, +∞) for any y in the interval of modes of f . If P is unimodal with
P = λδx + (1 − λ)Q for λ > 0, then y must be chosen equal to x.
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Conversely, if G is a probability distribution function and for some
m, G is convex on (−∞,m] and concave on [m, +∞), we’ll see that G
is unimodal. For any u < m, G, being convex in a neighborhood of
u, has left and right derivatives G′(u−) and G′(u+) as shown around
(1). Let g(u) := G′(u+). This will equal G′(u−) except at most for
some sequence of values of u, not affecting integrals, and g will be a
nondecreasing function on (−∞,m) by (1), with G(u) =

∫ u

−∞
g(v)dv for

u < m. Consistently with convexity on (−∞,m], G may have a jump
at m, say of height λ, with λ = 0 if G is continuous. Symmetrically,
g will be nonincreasing for u > m and we will then have G(u) =

1 −
∫ +∞

u
g(v)dv. If λ = 1 then g ≡ 0. Otherwise if λ < 1 we see

that the probability P with distribution function G is unimodal with
P = λδm + (1 − λ)f where (1 − λ)f = g. Because g is nondecreasing
on (−∞,m) and nonincreasing on (m, +∞), m is a mode of f and P
is indeed unimodal.

4. The dip functional, statistic, and test

The dip functional is defined by D(F ) = infG supx |(F − G)(x)|,
where the infimum is over all unimodal distribution functions G. Given
an empirical distribution function Fn based on observations X =
(X1, . . . , Xn), the dip test for unimodality is based on the dip statistic
D which is defined as dip(X) = D(Fn). The hypothesis will be rejected
for large enough values of dip(X).

It will be shown in Proposition 3 that the largest possible value of
D(Fn) is 1/4. It occurs for any F2 with X1 6= X2. To see this, let G
be unimodal. It must be continuous at Xj for at least one j, say at
X(1), where F2 has a jump of height 1/2 from 0 up to 1/2. To approach
F2 as closely as possible at this point and just left of it we must set
G(X(1)) = 1/4. We can actually let G(X(2)−) = 1/2 and G(X(2)) = 1
so that G matches up exactly with F2 there, but still, we will have
supx |(F2 − G)(x)| = 1/4.

To get highly non-unimodal sets of observations, we can take any
number of points tightly clustered around 0, and another roughly equal
number of points tightly clustered around 1, and few other observa-
tions, all in [0, 1]. Then to get a unimodal distribution function G as
close to Fn as possible, since Fn(0−) = 0 and Fn(x) rises to near 1/2
at some small x > 0, we’ll need to take G(y) about 1/4 for some y with
0 < y < x and so y also near 0, and/or G(v) about 3/4 for some v close
to 1, so the dip will be close to the maximum of 1/4.

The computed p-values and quantiles available for the dip test are
based on Monte Carlo simulations with X1, . . . , Xn i.i.d. U [0, 1]. This
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distribution was chosen because, although it’s unimodal, the interval of
modes is the entire interval on which the density is not zero. Commonly
encountered unimodal distributions such as the normal and gamma
examples mentioned above are “more unimodal” than U [0, 1] in that
they have unique modes. Hartigan and Hartigan (1985) conjecture that
U [0, 1] is the “asymptotically least favorable” unimodal distribution
for the dip test, in other words asymptotically (for large n) the most
difficult to distinguish from non-unimodal distributions.

5. GCM and LCM of probability distribution functions

On any interval J , if F is a probability distribution function, then
since 0 ≤ F ≤ 1, the constant 0 is a convex function ≤ F , and so
GCM(F ) ≥ 0. On the other hand by definition of GCM, we have
GCM(F ) ≤ F ≤ 1. Similarly for the LCM, so the GCM and LCM of
a distribution function will each take values between 0 and 1.

A distance between bounded functions on J is defined by ρJ(f, g) =
supx∈J |(f − g)(x)|. Suppose we’re given a function F on J and want
to approximate it as well as possible with respect to ρJ by a convex
function G. If ρJ(F,G) ≤ h for some constant h > 0, then for one
thing, G ≤ F + h on J . This implies that G ≤ GCM(F + h), or
since G − h is convex and G − h ≤ F that G − h ≤ GCM(F ) and
so G ≤ GCM(F ) + h. On the other hand we want that G ≥ F − h
everywhere on J . The chances for this are maximized if we take G =
GCM(F + h) = GCM(F ) + h, which will be ≥ F − h if and only if if
F −GCM(F ) ≤ 2h. Thus the closest approximation to F with respect
to ρJ by a convex G will be found by letting

h = sup
x∈J

(F − GCM(F, J))(x)/2,

which is finite (in fact between 0 and 1/2), and setting G = GCM(F )+
h.

Symmetrically, to get the closest approximation to a given F on J
by a concave function G with respect to ρJ , set

h = sup
x∈J

(LCM(F, J) − F )(x)/2

and G = LCM(F ) − h.
If J is a half-line [x, +∞), and G is the GCM of a probability

distribution function F on J , then G(t) ≤ 1 for all t > x. This
implies that G′(t+) ≤ 0, because if G′(t+) > 0 for some t, then
G′(u+) ≥ G′(u−) ≥ G′(t+) by (1) for all u > t, so G(u) → +∞
as u → +∞, which is impossible. So the GCM of F on J would be
the constant G(u) ≡ G(x) for u ≥ x, which is not interesting. Thus
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the largest intervals on which it’s reasonable to take the GCM of a
distribution function F are half-lines (−∞, x) or (−∞, x].

Similarly, for a probability distribution function F , it’s reasonable
to consider its least concave minorant LCM(F ) on a half-line [m, +∞)
or a subinterval of such an interval. We saw in Section 3 that the
distribution function G of a unimodal distribution is convex on some
half-line (−∞, y] and concave on the half-line [y, +∞).

Recall that a distribution function F is right-continuous. It has
limits from the left defined as F (x−) = limy ↑x F (y).

5.1. The GCM of an empirical distribution function on a left

half-line. Let’s evaluate the GCM G of the empirical distribution
function Fn on a half-line (−∞, X(k)) for any k with 1 ≤ k ≤ n. we
clearly have G ≡ 0 on (−∞, X(1)). For 1 ≤ r < k, if G has been found
on (−∞, X(r)), for X(r) = X(k), we are done. If X(r) < X(k), consider
the line segments joining (X(r), Fn(X(r)−)) to (X(j)−, Fn(X(j)−)) with
X(r) < X(j) ≤ X(k). We must have G(X(i)−) ≤ Fn(X(i)−) for each
i such that X(r) ≤ X(i) ≤ X(k). Therefore, the graph of G must be
below or equal to the value on the line segment for each of these line
segments. Since all the segments have left endpoint X(r), the most
restrictive condition between X(r) and the next larger order statistic
(which may be X(r+1), or may not in case of ties) comes from the line
segment with smallest slope. If this slope occurs for more than one
value of j, let j′ be the largest value of j giving this smallest slope with
X(j′) ≤ X(k). The graph of G on [X(r), X(j′)) must be the correspond-
ing line segment. If X(j′) < X(k), iterate with the new r = j′. We
find that G = GCM(Fn, (−∞, X(k)) is piecewise linear with changes of
slope only at some points X(j) where the slope increases.

The evaluation of the LCM of Fn on [X(k), +∞) is symmetric, but
with somewhat simpler expressions since Fn is right-continuous and we
only need to consider values Fn(X(j)) and not left limits.

To find the GCM and LCM of Fn on appropriate half-lines there is
an algorithm, which can be computed (P. M. Hartigan, 1985; Maechler,
2004, 2009, 2010) but seems hard to describe in closed form.

6. Lower and upper bounds for the dip statistic

For any X1, . . . , Xn with order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n)

the spacings sj are defined as X(j) −X(j−1) for j = 2, . . . , n. First, let’s
consider lower bounds, depending on n. We have the following:

Proposition 1. For any n ≥ 2 and x = (X1, . . . , Xn) such that not
all Xj are equal, the dip statistic dip(x) ≥ 1/(2n). This value occurs
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when the spacings sj are nonincreasing in j for j = 2, . . . , k for some k
and then nondecreasing in j for j = k, . . . , n. It is possible that sj = 0
for some j0 ≤ j ≤ j1 where either j0 > 2 or j1 < n.

Remarks. It seems natural that if the spacings decrease, so that points
get closer and closer together, then increase, so that points get farther
and farther apart, the sample is behaving in a very unimodal way.

Recall that for 0 < y < 1, F←(y) := inf{x : F (x) ≥ y}. The
minimum value 1/(2n) of dip(Fn) occurs with substantial probability
for small n and Xj i.i.d. U [0, 1]. As seen in the (non-adjusted) dip test
quantile table, it happens with probability larger than 0.5 for n = 4,
larger than 0.1 for n = 5 and 6, and larger than 0.01 for n = 7 and 8. In
other words, in the N = 106 + 1 replications done by Maechler (2004),
where the observations were N independent dip statistics, each based
on n i.i.d. U [0, 1] observations for the given values of n, letting FN,n be
the empirical distribution function of the N dip statistics for a given n,
it was found that F←

N,4(0.5) = 1/8, F←
N,5(0.1) = 1/10, F←

N,6(0.1) = 1/12,
F←

N,7(0.01) = 1/14, F←
N,8(0.01) = 1/16. Hartigan and Hartigan (1985),

in their Table 1, found the same for their N = 104 − 1 replications.
(From the full qDiptab table, in the diptest library, one might say a
little more.) When a quantile equal to 1/(2n) appears in the q column
of the dip test quantile table, then the p-value is not the usual 1 − q
but rather 1.

For n = 3 the condition on spacings mentioned in the proposition
will always hold vacuously, so the dip statistic will always equal 1/6,
except in the extreme case when all the Xi are equal, when the dip is
0. For Xi i.i.d. U [0, 1], the dip will equal 1/6 with probability 1. So
the dip test can only work for n ≥ 4, which is why quantiles are only
given for such n.

Proof. Since not all Xj are equal and any unimodal distribution func-
tion G has at most one discontinuity, there must be at least one order
statistic X(j) at which G is continuous. We have for the empirical dis-
tribution function Fn based on X1, . . . , Xn that Fn(X(j)) ≥ j/n and for
the left limit there, Fn(X(j)−) ≤ (j−1)/n. (In case there is just one Xi

equal to X(j), both these inequalities become equalities.) So Fn has a
jump of height at least 1/n at X(j). (If the Xi are all different, all these
jumps are of height exactly 1/n.) To approach Fn as closely as possible
at X(j) and just below it, G(X(j)) must equal (Fn(X(j))+Fn(X(j)−))/2
and supx |(Fn − G)(x)| ≥ 1/(2n) from values at and just below X(j).

Now suppose the spacings sj are nonincreasing for 2 ≤ j ≤ k and
nondecreasing for k ≤ j ≤ n. First suppose all the Xi are distinct, so
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that all spacings sj > 0 for j = 2, . . . , n, as will occur with probability
1 if Xi are i.i.d. with a continuous distribution such as U [0, 1]. In
this case Fn(x) = j/n for X(j) ≤ x < X(j+1) and j = 1, . . . , n − 1.
As always, Fn(x) = 0 for x < X(1) and Fn(x) = 1 for x ≥ X(n).
Set G(X(j)) = (j − 1

2
)/n for j = 1, . . . , n. Let G be linear on each

interval [X(j−1), X(j)] for j = 2, . . . , n, where it will have slope 1/(nsj).
For 2 ≤ j ≤ k these slopes will be nondecreasing in j (vacuously if
k = 2) since sj are nonincreasing. Thus G will be convex on [X(1), X(k)].
Extend the graph of G from [X(1), X(2)] to the left along the same line
until it crosses the x axis at a point (x0, 0). Let G(x) = 0 for x ≤ x0.
Then G will be convex on (−∞, X(k)].

For k ≤ j ≤ n the slopes will be nonincreasing since sj are nonde-
creasing. Thus G will be concave on [X(k), X(n)]. Likewise we can
extend it to be concave on [X(k), +∞). We will have supx |(Fn −
G)(x) = 1/(2n), on each interval [X(j−1), X(j)], on (−∞, X(1)), and
on (X(n), +∞), and so on the whole line, finishing the proof when all
sj > 0.

If some sj = 0 then by the assumptions, sj = 0 if and only if j0 ≤ j ≤
j1 for some j0, j1 with 2 ≤ j0 ≤ j1 ≤ n where either 2 < j0 or j1 < n
(or both) since by assumption sj > 0 for some j. Here j0 ≤ k ≤ j1.

Take the largest i ≤ k such that si > 0, if such an i exists. Then
i = j0−1 and sj > 0 for 2 ≤ j ≤ i. For j = 1, . . . , i−1, Fn(X(j)) = j/n
and Fn(X(j)−) = (j − 1)/n. Next,

X(j0−1) = X(j0) = · · · = X(j1) = X(k).

Let their common value be m. We will define G to be convex on
(∞,m] and concave on [m, +∞), with a jump at m. We will have
Fn(m) = j1/m and Fn(m−) = (j0 − 2)/n.

If j0 = 2, let G(x) = 0 for x < m. Then G will be convex on (−∞,m]
for any choice of G(m) ≥ 0, and G(x) = Fn(x) = 0 for x < m.

If j0 ≥ 3, then i exists and equals j0−1. As in the earlier part of the
proof, let G(X(j)) = (j − 1

2
)/n for 1 ≤ j ≤ i − 1. Now set G(m−) =

(i − 1
2
)/n. Let G be linear on the closed intervals [X(j−1), X(j)] for

j = 2, . . . , n− 1 (if any exist) and on the half-open interval [X(i−1),m)
Extend G to the left of X(1) as before. It will be convex on (−∞,m),
and on (−∞,m] if G(m), to be defined later, satisfies G(m) ≥ G(m−).
Also, supx<m |(Fn − G)(x)| = 1/(2n) as in the case where all sj > 0.

If j1 = n, set G(x) = 1 for x ≥ m = X(n). Then G is concave and
equal to Fn on [m, +∞).

If j1 < n, set G(X(j)) = (j − 1
2
)/n for j1 < j ≤ n and G(m) = (j1 −

1
2
)/n. Then G will be concave on [m,∞), with supx≥m |(Fn −G)(x)| =
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1/(2n), by symmetry to the case j0 ≥ 3 and similarly as in the case
that all sj > 0.

We need that G(m) = (j1 − 1
2
)/n ≥ G(m−) − (j0 − 3

2
)/n, which is

true. In fact at m, G will have a jump of height (j1 − j0 + 1)/n ≥
1/n > 0. The G as defined will have the desired properties including
supx |(Fn − G)(x)| = 1/(2n), Q.E.D.

Recall that the empirical measure Pn based on given X1, . . . , Xn is
1
n

∑n

j=1 δXj
, so that Fn(x) = Pn(−∞, x]) for each x. An atom of Pn is an

x such that Pn({x}) > 0. Clearly, the atoms are the points X1, ..., Xn,
but there may be fewer than n distinct atoms in case of ties. Let m be
the number of atoms. Let the distinct atoms be y1, ..., ym. Then the
“sizes” Pn(yj) of the atoms have order statistics p(1) ≤ p(2) ≤ · · · ≤
p(m). If m = 1 (all the observations are equal), let p(m−1) = p(0) = 0.

The dip is always at least p(m−1)/2. If there are no ties, then m = n,
all p(j) = 1/n, and the following is a consequence of Proposition 1. If
there are ties, then the proof is similar.

Proposition 2. For any sample x = (X1, ..., Xn), we have dip(x) ≥
p(m − 1)/2.

Proof. If m = 1, the inequality holds trivially (actually the dip equals
0). So let m ≥ 2. We can assume that Pn(yj) = p(j) for j = 1, ...,m.
A unimodal distribution function G must be continuous at at least one
of ym−1 and ym. So, as in the proof of Proposition 1,

sup
x

|(Fn − G)(x)| ≥ min(p(m − 1), p(m))/2 = p(m − 1)/2,

Q.E.D.

For any probability distribution P on the real numbers with distribu-
tion function F , a median of P or F is an x such that F (x) ≥ 1/2 and
also P ([x, +∞)) ≥ 1/2 so that the left limit F (x−) := limu↑x F (u) ≤
1/2. If there is only one median it is called the median. If the median
by the definitions so far is not unique, then there is an interval [a, b]
of medians and the median in that case will be defined as (a + b)/2.
Thus if Fn is the empirical distribution function of a sample of size n,
if n = 2k +1 odd then the (sample) median is X(k+1), or if n = 2k even
then the (sample) median is [X(k) + X(k+1)]/2.

If the median of F is unique, it equals F←(1/2). If there is an interval
[a, b] of medians with a < b then F←(1/2) = a (the smallest median).
In the paper by Hartigan and Hartigan (1985), p. 78 (A) the following
is stated and the idea of a proof is stated. A fuller and somewhat
different proof will be given.
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Proposition 3. For any distribution function F , the dip functional
D(F ) ≤ 1/4. In particular for any finite sample (whose members may
be distinct or not), the dip statistic is at most 1/4.

Proof. Let m be the median of F . A δ > 0 will be chosen. Let
x1 := F←(1/4). Define x0 := x1 − 1/(4δ). Let x4 := F←(3/4) and
x5 := x4 + 1/(4δ). A distribution function G will be defined which will
have a jump at m. Elsewhere G will have a density g which will equal δ
on (x0,m) and on (m,x5) and be 0 elsewhere. Then by choice of x0, G
will increase from 0 at x0 up to 1/4 at x1− (at x1 also, unless possibly
if x1 = m which can happen). We will take δ > 0 small enough so that
δ(m− x1) < 1/4. It follows that |(F −G)(x)| ≤ 1/4 for −∞ < x < x1

and for x1 ≤ x < m. Symmetrically, taking δ also small enough so that
δ(x4 −m) < 1/4, we will have |(F −G)(x)| ≤ 1/4 for m ≤ x < x4 and
for x4 ≤ x < ∞.

From the definitions so far we will have G(m) > G(m−), which
implies that G must have a jump of height G(m) − G(m−) at m,
in other words the corresponding probability P has an atom of size
G(m) − G(m−) at m. We see that δ can be chosen small enough,
satisfying just the two conditions put on it, and then the resulting
distribution is unimodal and G is everywhere within 1/4 of F , Q.E.D.

Remark. The Hartigans seem to claim (p. 78, (A)) that we can take
G(m) = 3/4 and G(m−) = 1/4 (“symmetric about the median...
...with an atom of size 1/2 at the median”), but I disagree in case
F has an interval of medians [a, b] with a < b, e.g. for a sample of even
size, so the median of F is (a+ b)/2. Then F (a) = 1/2 but G(a) < 1/4
so |(F − G)(a)| > 1/4.

Proposition 4. For n = 5 and any sample X1, ..., X5 of 5 distinct real
numbers, the dip dip(X) ≤ 1/5.

Proof. The distribution function G of a probability distribution P
will be defined to have a jump of height 1/5 at the sample median
X(3) with G(X(3)) = 3/5 and G(X(3)−) = 2/5. Choose δ > 0 small
enough such that δ(X(5) − X(1)) < 0.2. Set X(0) := X(1) − 1/(5δ) and
X(6) := X(5) + 1/(5δ). A density g will be defined with g(x) = δ for
X(0) < x < X(2) or X(4) < x < X(6), and g(x) = 0 for x < X(0) or
x > X(6). Also, g will have a constant value γ1 on (X(2), X(3)), which
must be

γ1 =
0.2 − δ(X(2) − X(1))

X(3) − X(2)
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in order that G(X(3)−) = 0.4, and a constant value γ2 on (X(3), X(4)),
which must be

γ2 =
0.2 − δ(X(5) − X(4))

X(4) − X(3)

in order that G(X(3)+) = 0.6 so that G is continuous from the right at
X(3). By choice of δ, we have δ(X(3) −X(1)) < 0.2 and δ(X(5) −X(3)) <
0.2, from which it follows that min(γ1, γ2) > δ. Thus g = 0.8f for
a unimodal probability density f , so P is unimodal. We have |(F5 −
G)(x)| ≤ 1/5 for all x similarly as in the previous proof. Q.E.D.

Remarks. For n = 6, we see that the dip statistic not only can be
larger than 1/n = 1/6, unlike for n = 4 or 5, but it can be larger than
1/5, specifically from the dip test quantile table (without adjustment)
it was larger than 0.202 in about 5000 of Maechler’s 106 + 1 Monte
Carlo simulations. This is an exception to the general pattern that
the quantiles for a given q decrease as n increases. The Hartigans
noticed this in the smaller simulations for their paper and repeated the
simulation for n = 5 to confirm the results. The situation for n = 5 is
explained by Proposition 4.

7. A further definition and theorems in the Hartigans’

paper

The paper by Hartigan and Hartigan (1985), beside defining the
dip statistic and test for the first time, proved several theorems about
it. Let W be the class of all unimodal probability distribution func-
tions, i.e. all distribution functions G such that for some m, G is con-
vex on (−∞,m] and concave on [m, +∞. Let ρ(H, J) := supx |(H −
J)(x)| for any two bounded real functions H and J on R. The dip
functional defined above for a distribution function F was D(F ) =
infG∈W ρ(F,G). The Hartigans defined an extended dip functional that
I will call DD(H) as follows. Let V be the class of functions f con-
stant on (−∞, 0], with a possibly different constant value on [1, +∞),
and such that for some m ∈ [0, 1], f is convex on [0,m] and concave
on [m, 1]. Note that f need not be convex on (−∞,m] nor concave
on [m, +∞). For a bounded function H from the real line into itself,
define a functional DD(H) = infg∈V supx |(H − g)(x)|. In this notation
the Hartigans’ theorems are as follows. Their Theorem 1 is:

Theorem 2. If F is a distribution function with F (0) = 0 and F (1) =
1, then DD(F ) = D(F ).
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Remark. Here F may be for example an empirical distribution function
Un for the U [0, 1] distribution, as used in setting the quantiles for the
dip test.

Proof. For a given G ∈ W, let it be convex on (−∞,m] and concave
on [m, +∞). Let

H(x) = G(0)1x<0 + G(x)10≤x≤1 + G(1)1x>1.

Then H has the constant value G(0) for x ≤ 0 and the constant value
G(1) for x ≥ 1. If m < 0, define mH = 0. If m > 1, define mH = 1. If
0 ≤ m ≤ 1 define mH = m. Then H is convex on [0,mH ], because G
is if mH > 0, or trivially if mH = 0. Likewise H is concave on [mH , 1],
so H ∈ V.

We have ρ(F,H) = sup0≤x≤1 |(F − H)(x)|, because for x < 0, (F −
H)(x) = (F −H)(0) and for x > 1, (F −H)(x) = (F −H)(1). We also
have

sup
0≤x≤1

|(F − H)(x)| = sup
0≤x≤1

|(F − G)(x)| ≤ ρ(F,G).

It follows that DD(F ) ≤ D(F ).
We need to prove conversely that D(F ) ≤ DD(F ). Recall that by

Proposition 3, D(F ) ≤ 1/4 for any F . Thus in the infimum defining
DD(F ) we need only consider G ∈ V satisfying ρ(F,G) ≤ 1/4. In
particular we will then have c := G(0) and d := G(1) satisfying |c| ≤
1/4 and |1 − d| ≤ 1/4, so c ≤ 1/4 < 3/4 ≤ d.

Now for such a G ∈ V let it be convex on [0,m] and concave on
[m, 1]. Define

H(x) = c1G(x)<c + G(x)1c≤G(x)≤d + d1G(x)>d.

Then evidently c ≤ H(x) ≤ d for all x. We have the following lemma:

Lemma 1. For the function H just defined,
(a) H is nondecreasing;
(b) H ∈ V.

Proof. Let ξ := sup{x : G(x) ≤ c} and η := inf{x : G(x) ≥ d}. Then
because c < d, we have ξ ≤ 1 and η ≥ 0. The following will be proved.

Claim (i): H(x) = c for −∞ < x < ξ;

Claim (ii): H(x) = d for η < x < +∞;

Claim (iii): ξ ≤ η;

Claim (iv): For ξ < x < η we have c < H(x) = G(x) < d.
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To prove Claim (i), suppose it fails. Then there exist 0 < x < y ≤
ξ ≤ 1 with G(y) ≤ c, so y < 1, and H(x) > c. Then G(x) > c
because in this case H(x) = min(G(x), d). It follows that G can’t be
convex on [0, y], so m < y. If H(m) > c then as before G(m) > c,
and G is concave on [m, 1] but G(y) < min(G(m), G(1)) violates this,
a contradiction. So H(m) ≤ c and H(m) = c. Thus G(m) ≤ c and
because G is convex on [0,m] and G(0) = c, we have G(x) ≤ c and
H(x) = c for 0 ≤ x ≤ m. Since m < y < 1, G(1) = d, and G is concave
on [m, 1], we have

G(y) ≥ y − m

1 − m
c +

1 − y

1 − m
d > c,

contradicting G(y) ≤ c. Thus Claim (i) is proved by contradiction.
Claim (ii) is proved symmetrically.
Claim (iii) then is immediate. Claim (iv) follows from the other

claims and the definitions of ξ, η, and H. So all four claims hold.

Define mH = ξ if m ≤ ξ, mH = η if m > η, and mH = m if
ξ < m < η. To prove part (a) of the lemma, first suppose ξ = η. Then
for x < ξ < y we have by the Claims H(x) = c ≤ H(ξ) ≤ H(y) = d,
so H is nondecreasing. So let ξ < η. We have H(ξ−) = c ≤ H(ξ) ≤
H(ξ+) where the first inequality is clear and both inequalities hold with
equality unless m = ξ, in which case G is concave on [ξ, 1] and if it has
a jump at its left endpoint it must be a jump upward, so the second
inequality holds. Symmetrically, H(η−) ≤ H(η) ≤ H(η+) = d. For
ξ < x < η, where c < H(x) ≡ G(x) < d by Claim 4, suppose there is an
x at which H ′(x+) = G′(x+) < 0. If x < m, then by convexity of G on
[0,m] and so on (ξ,m), G′(x+) is nondecreasing there, so it is just as
negative on [ξ, x). In this case G is continuous at ξ, and so c = G(ξ) >
G(x) > c, a contradiction. There is a symmetrical contradiction if
x > m. If x = m, we must have G(m−) ≤ G(m) ≤ G(m+) because
if G, convex on [0,m], has a jump at m, it must be a jump upward,
and likewise for G concave on [m, 1]. So, H ′(x+) = G′(x+) ≥ 0 for all
x ∈ (ξ, η) where it is defined (everywhere except possibly at m), and
jumps if any are upward, so part (a) is proved.

To prove part (b), if mH = ξ, then since H is constant on (−∞,mH)
with value c by Claim 1, and also H(ξ) ≥ c, H is convex on (−∞,mH ]
and in particular on [0,mH ]. On (mH , 1] we have H > c and so
H = min(G, d), the minimum of two concave functions there, which is
concave. As H(ξ+) ≥ H(ξ), H is concave on [mH , 1]. We have a sym-
metric proof of the desired properties of H if mH = η. So suppose ξ <
m = mH < η. Then by Claim 4, c < H(m−) ≤ H(m) ≤ H(m+) < d.
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As G can have a possible jump only at m, it is continuous, and so is H,
at ξ and at η. Now G is convex on [0,m] and so on [ξ,m]. As H is non-
decreasing and H(m) < d we have that H = max(c,G) on (−∞,m].
Also, G′(ξ+) = H ′(ξ+) ≥ 0. Thus the two functions H ≡ c on (−∞, ξ]
and H on [ξ,m], each convex on their domains, fit together to form a
convex function on (−∞,m] where m = mH and so on [0,mH ]. Sym-
metrically, H is concave on [m, +∞) and so on [m, 1], so H ∈ V and
part (b) and the Lemma are proved. Q.E.D.

Next is

Claim (v). We can assume that 0 ≤ c ≤ 1/4 and 3/4 ≤ d ≤ 1.

To prove this claim, we already saw we can assume |c| ≤ 1/4 and
3/4 ≤ d ≤ 5/4. Let H1 = max(H, 0). Then H1 is clearly nondecreasing.
It has the properties of H with the following changes if c < 0: ξ is now
replaced by ξ0 = sup{x : G(x) ≤ 0}, and mH1

= ξ0 if mH < ξ0,
otherwise mH1

= mH , and H1 is convex on [0,mH1
] and concave on

[mH1
, 1]. Symmetrically, we replace H1 by H2 = min(H1, 1) with η

replaced by η1 = inf{x : G(x) ≥ 1} and a corresponding definition of
H2. Then H2 ∈ V, 0 ≤ H2 ≤ 1, and clearly ρ(F,H2) ≤ ρ(F,H), so
Claim (v) is proved.

Another step is

Claim (vi). ρ(F,H) ≤ ρ(F,G).

To prove this, for any x ≤ 0 we have |(F −H)(x)| = |(F −H)(0)| =
|(F − G)(0)| and likewise for x ≥ 1, |(F − H)(x)| = |(F − G)(1)|.
For 0 < x < 1, now that c ≥ 0 and d ≤ 1 by Claim v, consider
|(F − H)(x)|, which equals |(F − G)(x)| except in two cases. One is
G(x) < c, in which case it equals |F (x)−c|, which if F (x) ≥ c is clearly
≤ (F −G)(x), whereas if F (x) < c it equals c−F (x) ≤ c = (G−F )(0).
We have a symmetrical proof if G(x) > d, so the claim is proved.

For any a ≥ 1, let J = (−∞,m) and on J let

Ga := GCM(1{x≥−a}H, J).

Define Ga as LCM(1{x ≤ a}H) on [m, +∞). Then Ga(m) ≥ H(m) ≥
H(m−) ≥ Ga(m−), so Ga ∈ W with the given m. We have necessarily
Ga(x) = 0 for all x < −a and since Ga is continuous in the interior of
J , also Ga(−a) = 0. We must have Ga(x) ≤ H(x) for 0 ≤ x ≤ m, and
since Ga is convex, for 0 < λ < 1 we must have Ga(−a(1− λ) + λx) ≤
λH(x). In other words the graph of Ga on [−a, x] must be below the
straight line segment joining (−a, 0) to (x,H(x)). These line segments
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have slopes depending continuously on x for −a < x < m. It will be
shown that the infimum of their slopes is attained at some x1 ∈ [0,m],
if we allow also left limits x1−. If some slope is 0, as it is if and only
if c = 0, then the minimum is 0 and attained at x1 = 0. If c > 0, the
slope goes to +∞ as x ↓ − a. We have x1 ≥ 0. If the slopes approach
their minimum as x ↑ m but do not attain it at m, H must have a
jump upward at m and we set x1 = m and use m− = x1−. Once
x1 is chosen, the graph of Ga on [−a, x1] will be the above-mentioned
straight line segment for x = x1. For c > 0, it’s possible that x1 is not
unique, as the minimum slope s may may be attained for all x in some
interval [u, v] with 0 ≤ u < v < m.

For x1 ≤ x < m we simply have Ga = H. This is vacuous if x1 = m.
If x1 < m, H on [x1,m) is convex, so it is its own GCM, and we can
join the straight line segment to this function and preserve convexity,
because H ′(x1+) is at least equal to the slope of the line segment,
otherwise the graph of H for x a little larger than x1 would go below
the extended line segment and we would contradict the choice of x1.

Now let a → +∞. Then the slope s of the line segment which is
the graph of Ga on [−a, x1] and so on [−a, 0] will approach 0 because
it is ≤ c/a. Since G′(x1−) ≤ s, x1 will decrease down to ξ = ξ0,
and supx<m |(Ga − H)(x)| → 0. By symmetry the same will occur for
x > m. If F has a jump at m then we will want to have chosen G to
be right-continuous at m. Then we will have

ρ(F,Ga) = sup
0≤x≤1

|(Ga − F )(x)| → sup
0≤x≤1

|(H − F )(x)| = ρ(F,H),

which implies that D(F ) ≤ DD(F ) and finishes the proof of Theorem
2. Q.E.D.

The following theorem is easy. Unlike the Hartigans’ statement, here
β ≥ 0 is not required. The following is otherwise their Theorem 2.

Theorem 3. If H is a bounded function, constant on (−∞, 0] and
constant on [1,∞), and U is the U [0, 1] distribution function, then for
any α ≥ 0 and any real β, DD(αH + βU) = αDD(H).

Proof. We have by definition DD(αF + βU) = infG∈V ρ(αF + βU , G),
which equals infγ∈V ρ(αF + βU , αγ + βU) because for any real β and
α > 0, γ ∈ V if and only if αγ+βU ∈ V. To see this, first, multiplication
by α > 0 preserves V . Second, so does adding any constant times U ,
which preserves constancy for x ≤ 0 and for x ≥ 1, and also does not
change convexity on [0,m] nor concavity on [m, 1]. If α = 0 then all the
quantities in the equations shown are 0 so the equations hold. Q.E.D.
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Next is the Hartigans’ Theorem 3:

Theorem 4. For the empirical distribution functions Un of U [0, 1] and
a Brownian bridge B,

√
nD(Un) → DD(B) in distribution as n → ∞.

Proof. By Theorem 2, D(Un) = DD(Un). Next, DD is homoge-
neous under multiplication by positive constants, so

√
nDD(Un) =

DD(
√

nUn), which by Theorem 3 equals DD(
√

n(Un − U)). Next one
applies a theorem on approximation of the empirical process

√
n(Un −

U) by Brownian bridge(s). Specifically, one can use the Komlós–Major–
Tusnády theorem, in the Bretagnolle–Massart form, which appeared in
1989 (after 1985). If ρ(H, J) < δ for some H and J and δ > 0, it’s
easily seen that |DD(H) − DD(J)| < δ. The theorem follows, Q.E.D.

As the sample functions of the Brownian bridge are bounded (in fact
continuous) with probability 1, DD(B) will be a finite, well-defined
random variable, although its distribution might be hard to find in
closed form. Thus one can expect quantiles of

√
nD(Un) to converge

as n → ∞.

8. Notes

The GCM(Fn) and LCM(Fn) on different intervals or half-lines are
used in the proof of Theorem 2 (their Theorem 1) in Hartigan and
Hartigan (1985) and also in the actual computation of dip statistics,
for which P. Hartigan (1985) gave an algorithm. Maechler (2004) gives
some documentation on obtaining relevant GCMs and LCMs for given
data sets x via the dip(x,full.result=TRUE) option.
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