18.465 PROBLEM SET 2, DUE FRI., FEB. 20, 2015

1. Let X be a non-constant random variable with $E\left(|X|^{3}\right)<\infty$ and standard deviation $\sigma>0$. Recall that the skewness of X or its distribution is defined as $E\left((X-E X)^{3}\right) / \sigma^{3}$.
(a) Show that the skewness is preserved if we add a constant a to X or multiply it by a constant $b>0$.
(b) If X has a distribution symmetric around its mean $E X$, in other words $X-E X$ has the same distribution as $E X-X$, show that the skewness of X is 0 .
(c) In particular show that any normal distribution $N\left(\mu, \sigma^{2}\right)$ with $\sigma>0$ or any uniform distribution $U[a, b]$ with $a<b$ has zero skewness.
2. (a) Find the skewness of a an exponential variable V having, for some $\lambda>0$, density $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ and 0 for $x<0$. Hint: it suffices to consider $\lambda=1$.
(b) Generate, in R , a sample of 20 i.i.d. standard exponential random variables by the command
$>\mathrm{x}=\operatorname{rexp}(20)$
and then test it for normality by the Shapiro-Wilk test,
$>$ shapiro.test(x)
Repeat this a few times. (You don't need to retype the commands; hit the "up arrow" key until you get back to the command you want to repeat, then "Enter" and for generating random variables you will get new ones, starting from a different seed than before. Likewise to redo the test on the new sample.) Is normality rejected, i.e. is the p-value less than 0.05 , at least in most tries?
(c) A uniform $U[a, b]$ distribution is symmetric around its mean, so it has 0 skewness, although in other ways it's clearly very different from a normal distribution. We may as well consider $U[0,1]$ as changes of location and scale won't matter. Find the kurtosis of any $U[a, b]$ distribution.
(d) Try
$>\mathrm{x}=\operatorname{runif}(20)$
which will generate $x=\left(X_{1}, \ldots, X_{n}\right)$ i.i.d. $U[0,1]$ and do the ShapiroWilk test on x to see if normality is rejected. Try a few times. If it is not rejected, then instead of $n=20$ try larger multiples of 10 such

Date: 18.465, Feb. 13, 2014.
as $n=30$, 40, etc. until you find n large enough so that normality is rejected in several trials. (The Shapiro-Wilk test is "consistent against all alternatives," meaning that for any non-normal distribution, for n large enough, normality should be rejected with probability increasing toward 1.)
3. In R, the command
$>\mathrm{z}=\operatorname{rnorm}(6)$
generates 6 i.i.d. standard normal random variables. To do a simple linear regression of z on x, where x is the index one can generate by $>\mathrm{x}=1: 6$
which is the easiest way to enter the vector $x=(1,2,3,4,5,6)$ or in $R, x=c(1,2,3,4,5,6)$, would seem useless and uninteresting because we know that the simple linear regression hypothesis holds with $a=b=0$, so we would not expect either the intercept \widehat{a} or the coefficient \widehat{b} of x in the regression to be significantly different from 0 (p -value less than $\alpha=0.05$) except of course with probability about 0.05 . We would also expect the Shapiro-Wilk test not to reject normality, even for a much larger value of n in place of x, except again with probability α.

But, suppose we take the order statistics of the z_{i} to get $z_{(1)} \leq z_{(2)} \leq$ $\cdots \leq z_{(6)}$. In R, doing $>\mathrm{sz}=\operatorname{sort}(\mathrm{z})$
will give sz as the vector of order statistics. It is still useless to do the Shapiro-Wilk test on sz, because it should give exactly the same output on sz as on z . But if we do the simple linear regression
$>$ out $=\operatorname{lm}(\mathrm{sz} \sim \mathrm{x})$
in R, then
$>$ summary(out)
to see the results, it will not be surprising at all that the coefficient \widehat{b} of x is positive (order statistics, by definition, have an increasing trend). It will not be too surprising if \widehat{b} is significantly different from 0 , the only question being perhaps whether $n=6$ is large enough to produce a significantly non-zero slope.
(a) Do you find, in a few tries, that \widehat{b} is significantly different from 0 ?
(b) Is \widehat{a} also significantly different from 0 ? Explain why you think that should, or should not, happen.
4. In R, generate vectors as follows:
$>\mathrm{x}=1: 10$
$>y=\sin \left(\mathrm{pi}^{*} \mathrm{x} / 20\right)$
$>\mathrm{v}=\mathrm{y}+0.1^{*}$ rnorm(10)
where "sin" does give the sine function in R, "pi" does give $\pi=$ $3.14159 \ldots$, and ${ }^{*}$ gives multiplication; thus 0.1^{*} rnorm(10) is equivalent to rnorm $(10,0,0.1)$. The sine function is increasing on the interval $[0, \pi / 2]$, although nonlinearly. So when we do the simple linear regression of v on x,
$>$ out $=\operatorname{lm}(\mathrm{v} \sim \mathrm{x})$
$>$ summary (out)
(a) we expect that the coefficient of x will be positive and are not surprised if it's significantly different from 0 . Are these things true?
(b) But we know that the sine function is not exactly linear. Find all the ten residuals of the simple linear regression by
$>$ residuals(out)
and see if there is a pattern in them.
(c) Do the quadratic regression
$>$ qout $=\operatorname{lm}\left(\mathrm{v} \sim \mathrm{x}+\mathrm{I}\left(\mathrm{x}^{\wedge} 2\right)\right)$
$>$ summary(qout)
and see if the coefficient \widetilde{c} of x^{2} is significantly different from 0 . If so, we can reject the simple linear regression hypothesis by the test based on \widetilde{c}.
(d) Is the coefficient \widetilde{c} positive or negative? Is the sign surprising? Why or why not?
(e) Find the residuals of the quadratic regression by $>$ residuals(qout)
Is there any pattern in them? Of course, we know that the sine function is not exactly quadratic, either. If we replaced 10 by some larger number n and likewise 20 by $2 n$, we should eventually be able to reject quadratic regression also, by doing cubic regression and finding a significantly non-zero coefficient of x^{3}.

