A SUPPLEMENT ON MARKOV CHAIN MONTE CARLO

The handout "Markov chain Monte Carlo" as of today mentions on p. 5, third paragraph, a "Wikipedia article," but in lieu of such an article, here are some remarks.

There are at least two relevant WP articles, "Metropolis-Hastings algorithm" and "Markov Chain Monte Carlo," which itself mentions the Metropolis-Hastings algorithm (to be called MH algorithm here) although without precise definitions.

The distribution of proposed moves from a given $x, Q(x, \cdot)$, may be for example the normal $N\left(x, \sigma^{2} I\right)$. Why might one want to adjust σ during the process?

Suppose σ were too large, then one might be taking long jumps leading to regions where the target $P(x)$ is small, and so rejecting moves too often and seldom actually moving.

If σ were too small, then one might be taking small steps not changing the value of $P(x)$ very much, and the process would be slow in exploring the sample space. For example, in PS8, problem 3, for $P(x)$ having two sharp modes, if σ is small it is hard to get away from one mode and move to the other.

So one might experiment with σ during early stages, in what has been called a "burn-in" period, aiming at some desired acceptance rate. The article "Metropolis-Hastings algorithm", near the end of the text, says the ideal acceptance rate for a one-dimensional Gaussian distribution is about 50%, decreasing to about 23% for an N-dimensional target distribution. This is actually unchanged since October 2012. I don't know where the rate 0.6 mentioned in PS8, problem 3 came from, but rather than changing the problem, it will be left as is; this is in one dimension, and 60% is not all that different from 50%.
"Burn-in period" can also make sense if the proposal distribution is unchanged, as in a relatively short time the distribution of the Markov chain's position will not yet come close to the target distribution. In the WP article "Metropolis-Hastings algorithm" p. 4, it's suggested that the first 1,000 or so steps should be thrown away.

