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HIERARCHICAL CLUSTERING

Suppose given n observations X7, ..., X,, with values in some R%. They can be repre-
sented by an n x d matrix. On R? we have the usual Euclidean metric. For simplicity,
let’s assume for now that all the observations are distinct (no ties). Later, adaptations
in case there are ties will be mentioned. Let S be the set { X, ..., X,,}.

Clustering can be done in two directions. One is called “agglomerative,” where we
start with the n singletons {X;} and step by step take unions of clusters. The other
is called “divisive,” where we first may decompose S two clusters, and then possibly
subdivide each cluster into two, and so on. This handout is mainly about agglomerative
clustering, but here is one divisive method.

1. A METHOD OF DIVISIVE CLUSTERING WHEN d = 1

Apply the dip test to the data vector x (which may contain tied observations). If
unimodality is not rejected, then decide there is just one cluster and don’t subdivide
into further clusters. If unimodality is rejected for x, then estimate a point ¢ from the
adapted R software “diprad” (“decomposition point” in its output) at which to subdivide
the data into two parts, xlow consisting of X; < ¢ found by the R code cutlow(x,c)
and xhigh consisting of X; > ¢ found by cuthigh(x,c). Then do the dip test on xlow
and xhigh, stopping on any branch where unimodality is not rejected but continuing if
it is rejected. This method is hierarchical in the sense that if at different stages we have
m and m’ clusters with m < m’, each of the m clusters is a union of some of the m/
clusters.

2. AGGLOMERATIVE HIERARCHICAL CLUSTERING

We begin with the n singletons {X,} as clusters, then proceed iteratively to join
clusters, at each stage taking the union of the two clusters that are closest according to
some measure of distance. We will then have decomposed the set C' into m clusters for
each m = 1,2,...,n. For each m = 2,...,n — 1, each of the m clusters is a union of
some of the m + 1 clusters, so m — 1 of those clusters are kept the same and one takes
the union of two of the m + 1 clusters to get one of the m clusters. Any such method is
also hierarchical. What values of m are most useful and interesting will depend on the
data set.

2.1. Distances between clusters. At each stage, one takes the union of the two clus-
ters A, B that are closest according to some measure of distance D(A, B) (which is not
usually a metric). For singletons we will have D({z},{y}) = d(z,y) for all methods.
(This also holds if there are tied observations, so that ng, > 1 for some u = x or y or
both. The first stage of clustering by any method is to observe such tied observations
and assign the correct ny,y to each u = X for any j =1,...,n.)

The agglomerative hierarchical clustering function “hclust” in R provides seven op-
tions called “average,” “complete,” “ward,” “single,” “mcquitty,” “median,” and “cen-
troid.” These are not very explicitly described in the system documentation, but they

are by Murtagh (1983) except for “mcquitty,” which is given in other sources. According
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to a comment at the beginning of the R source code for hclust, Murtagh in 1992 was
the original author of the code.

In 2003, bugs were reported in the code for the “median” and “centroid” methods,
which are said to have been fixed later in 2003, but in July 2012, a new bug report was
made for the centroid method. See the Appendix. So, it seems best not to use these
methods until the bugs are fixed.

One distance between clusters is

Dyin(A, B) := min{d(z,y) : v € A, y € B}.

Clustering by this distance is implemented by the “single” option. Note that D,,;, does
not satisfy the triangle inequality (it is not a metric in the mathematical sense) because
we can have Dyin(A, D) > Dyin(A, B) + Dyin(B, D). Use of this can produce long,
stringy clusters where points are like beads close to their neighbors on a string, but on a
long string, which may not be very far from a different long string. If d = 1 all clusters
will be 1-dimensional by whatever method, so this behavior of Dy, (single) clustering
is not particularly a drawback.
Another distance between clusters is defined by

Dyax(A, B) == max{d(z,y): v € A, y € B},

which is implemented by the “complete” option. Here D,. is also not a metric, in
fact Dyax(A, A) > 0 if A contains more than one point. Clustering by joining the two
clusters with smallest D,,,, produces more compact clusters than does clustering with
Dmin-

A third distance between clusters is the “average” distance defined by

1
1 Duve(A, B) = d(X;, X.).
0 AB)=—— > dXX)
i,j: X;€A,X;€B

This is implemented by the “average” option in hclust. o
The “centroid” of a cluster A is defined as the sample mean X4 = > . v ., Xi/na.
The centroid distance is defined by

Deent(A, B) = || X4 — Xp||* = d(X 4, X )%

At this writing (Sept. 29, 2012) the “centroid” method in hclust does not actually
implement this (correctly), see the Appendix.

In dimension d = 1, for any method of clustering being considered, each cluster will
consist of some consecutive order statistics X;), X(j+1),..., X®x). For sets A and B in
the line let A < B mean that < y for all x € A and y € B. Suppose we have disjoint
clusters A and B (e.g. any two of the m clusters for a given m). Then A < B or B < A,
so suppose A < B. Then for each x € Aand y € B, d(z,y) = y — , and it’s easily seen
that (1) reduces to X 3 — X 4, the distance between the two cluster sample means. Thus
in one dimension (although not in higher dimensions), the distance between centroids
is the same as the average distance. But G. Chan in 2007 found differing results of
“average” and “centroid” for the 1-dimensional “galaxies” data set (n = 83, with 5607
adjoined), further evidence that either hclust may have computed the centroid results
wrongly, or it may compute something different.
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In dimension 2, consider the 5 points (—21,—10), (—21,10), (0,0), (22,-1), (22,1).
For agglomerative hierarchical clustering, by any of the four methods we’ve considered,
one would first join the 4th and 5th points, then the first and second. We then have
three clusters, with respective sample means (—21,0), (0,0), and (22,0). The two whose
sample means are closest are the first and second. But, to minimize (1), we would join
the second and third clusters because /222 + 1 = 22.0227 < /212 + 100 = 23.2594.
Thus for dimension d > 2, minimizing (1) and merging the two clusters whose sample
means are closest are not the same.

A further distance measure closely related to the centroid one, is Ward’s distance,

which satisfies
nanpg

DWard(AaB) - ||7A_7BH2

na+ng

2.2. Updating distances. Given m clusters for m > 3, we take the union of two of
them, say A and B, to get m — 1 clusters. Before doing the next step we need to update
the distances, namely, to find the distance D(C, AU B) for each of the m — 2 clusters
C disjoint from A and B. One will need to do this for m —2 =n—-2,n—3,...,1, so
one will need to do Z;:fj = 2(n —1)(n — 2) = O(n?) updates. To keep computation
to a minimum, it will be good if each update can be done by a simple formula based on
the already known cluster distances for the m clusters (stored in memory) rather than
computing D(C, AU B) from scratch from its definition. Updating formulas exist for
the five distances mentioned so far. They are instances of “Lance-Williams” formulas
given in general by Lance and Williams (1967).
For Dyin) and Dyay we have

Dm-m(C', A U B) = min(Dmin(C’, A), Dmin(C, B),

Diax(Cy, AU B) = max(Dypax(C) A), Diax(C, B).
For D,,. we have

nADave<C7 A) + nBDave(Cv B)

2 D..(C,AUB) =
@) (©.AuB) 2t
For the centroid distance D ey we have
Dcen ) A Dcen 9 B
Dcent(ca A U B) = na t<C ) i "5 t<C ) - nAnG Dcent(Aa B)>

na+ng (na + np)?

where the first term is of the same form as for D,,. but the second is different. For the
Ward distance we have

Dwara(C;, AU B) =

(na + nc)Dwara(C, A) + (np + ne) Dwara(C, B) — (na + np) Dwara(A, B)
na+ng -+ ne '

So the first five distances do have relatively simple update formulas.
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2.3. The median and McQuitty distances. By analogy with the average distance,
one might consider defining the “median” distance between clusters A and B by

Ded(A, B) = median{d(X;, X;) : X; € A, X, € B},

the sample median of nanp distances. This appears however not to have a convenient
update formula. Consider the following

Erample. Let 0 <r < s <t <wu<v<w where s—r and t — s are small, u — t, v — u,
and w — v are large, and r is still larger. Consider the clusters C' := {0}, A := {r, s, t},
and B := {u,v,w}. Then clearly Dpea(C,A) = s and Dpeq(C, B) = v. One can check
that Dpea(A, B) = v — s. Clearly, Dyea(C, AU B) = (t + u)/2, which is not a function
of v and s. (Here ny =ng =3 and nge = 1 are fixed.)

Murtagh (1983) gives, and so very possibly also hclust uses for its “median” option,
an update formula related to a “Gower median” (Gower, 1967) for a distance I'll call
DGmeda namely

1 1
DGmed(Aa BU C) = 5 (DGmed(Cv A) + DGmed(C7 B)) - ZDGmed(A7B)'

That is certainly a simple formula. The starting formula Dameq ({2}, {y}) = d(x,y) and
the update formula completely determine Dgpeq. Since it seems to have no close relation
with actual medians, it might be better to call the distance the “Gower” distance?

Murtagh (1983) does not mention “McQuitty” as far as I saw. From other sources, it
seems that the McQuitty (1966) distance has the even simpler update formula

1
Duea(4, BUO) = 5 (Daiea(C, 4) + Dyea(C. B)) .

Since weighting clusters by their number of members, as in the update formula (2) for
D.ye, seems (to me) natural, the advantage of the Gower and McQuitty distances seems
to be essentially their easier computation (not having to recall or use numbers ny4, ng,
n¢) for updating, which could be important for possibly large numbers of possibly large
data sets. One might use these methods in such a situation in an exploratory way. Then
if some of the data sets seemed to have an interesting clustering structure, one could
cluster them with another distance such as D,..

2.4. A “least squares” rationale for the Ward distances. The Ward distance
resulted from the following considerations. Suppose that the ith cluster A; contains n;
observations X1, ..., X;n,, which are vectors in a Euclidean space. Let X, be its sample
mean, i.e. centroid. One criterion is to try to find m clusters so as to minimize

i=1 j=1
Thus in joining two clusters, we will get SS,,_1 > 595, and we’d like to make the
difference as small as possible. If we join the ith and kth clusters, the sample mean
of the joined cluster will be X, := (n;X; + nxXx)/(n; + ny) and it will be shown (by
ANOVA-like algebra) that
(3) SSm_1 — SSm = 7’LZ|Y1 — 7i,k|2 —|— nk|7k — Xi,k|2 = Miltk

% %P
n; + ng
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Thus we want to choose i # k to minimize the right side, which was already defined
above as the Ward distance Dwy,q between the ith and kth clusters.
To prove (3), we have

n; ng
SSm-1— Sm = Z 1 Xi; — Xokl® — | Xi5 — Xo? + Z | Xnj — Xiwl” — | Xnj — Xil?
j=1

j=1

= ni(|Xoal = X)) = 2> Xy - (X — X3)
j=1

ng
(| Xinl® — 1 Xe)?) — QZij (Xip — Xi)
j=1
= (nz + nk) ’7i7k|2 — nz|71|2 — nk\7k|2 — 2”171 . Yi,k: + 2711‘71’2 — 2nk7k . 7@].; + 2nk|7k‘2
= nz|72|2 + nk|7k|2 — (nz + nk)||727k|2
The middle expression in (3_) is easﬂy seen to reduce to the same. The last equation in
(3) follows from X, = (n;X; + nxX)/(n; + ng) and simple algebra, so (3) is proved.

2.5. The one-dimensional case. In dimension d = 1, by any of the methods, each
cluster will consist of some consecutive order statistics X(;), X(j1),..., Xx) for some
j < k. For the “single” (D) method, the divisions between clusters are done in order
of the size of the spacings s; = X(;) — X(;_1) for j = 2,...,n. Thus for m = 2, if s; is
the largest spacing, the two clusters will be {X(;) : i < j} and {X(; : i > j}. Then for
m = 3, one of these two clusters will be decomposed at the next-largest spacing, and so
on. For a data set of 83 galaxies’ redshifts, namely the 82 observations in “galaxies” from
MASS with 5607 adjoined, the results hclust gave by all its 7 methods for m =2,...,7
found by Gabriel Chan in 2007 have been distributed. (Correcting 26690 to 26960
seemingly would have little effect on the clustering, as the observation would keep its
rank relative to the others, and the spacing just below it would remain the 6th largest
spacing.) Notably, for m = 3, five of the 7 hclust methods gave 8 + 72 + 3 galaxies,
which corresponds reasonably to an astronomical situation with 72 galaxies in the main
supercluster, 8 in the foreground, and 3 (intrinsically bright) galaxies in the background.
But the “Ward” method makes the split 8 + 38 + 37. It seems to me rather undesirable
to split the main cluster in that way. The McQuitty method gives 8 + 63 + 12. Looking
at the data in the source Postman, Huchra and Geller (1986), and asking about the
9 = 12 — 3 galaxies which the McQuitty method classifies as in the background but five
other agreeing methods do not, the supercluster includes several clusters of galaxies.
One of them, Abell 2061 (northern part) has in the same direction two of the nine with
velocities 24366 and 26960, but not among the nine, velocities 23263, 23484, 23542, and
23706. It seems arbitrary and unphysical to separate these from 24366 which is also close
in direction. The case of 26960 is less clear. In Abell 2061 (southern part), are among
the nine, velocities 24285, 24289, and 24717, while in the same sky region, not among
the nine, are velocities 23206, 23263, 23538, 23666, and 23711. Again the separation of
these, at such a late stage of the McQuitty clustering of the data into 3 or even 2 clusters,
seems to violate the unity of the astronomers’ Abell 2061 cluster. A more interesting
case is Abell 2079, in which region are two of the 9 with velocities 24990 and 25633,



6

whereas galaxies in the physical cluster seem to have velocities no more than about
22,250. Thus the two might be said to be somewhat in the background of Abell 2079
which they are behind, but they are not in the background of the supercluster when we
consider the other cluster A2061. So, the five methods which agree on 8 + 72 + 3 seem
to have correctly identified the 3 galaxies truly in the background of the supercluster.

For dimension d > 2 the situation seems to be much more complex. There is no
sorting of the data as useful as the one in one dimension. One cannot so easily identify
candidates {X;} to be clusters for m = 2.

3. DETAILS OF USING THE R COMMAND HCLUST

(Cf. Venables and Ripley, p. 217, ignoring “S” lines.) Suppose given a data set, say
x, of n points in d-dimensional space, so that x is given by an n X d matrix. (If d =1 it
reduces to a vector.)

The function “dist(x)” will evaluate all the n(n — 1)/2 distances between pairs of
members of x. The object y = dist(x), if displayed on the screen (it does not need to
be in general), will be in an array form, with rows of different lengths, column names
1,...,n — 1, and row names 2,...,n. Here y is a vector in R, so that y[j| is defined for
j=1,...,n(n—1)/2 but “y[i,j]” gives an error message for any i and j. If one is going to
be using the distances with several methods, one might give dist(x) some name so that
it doesn’t have to be computed over and over, a concern if n is large. Give a command
such as cmx = hclust(dist(x),method = “...”) where you insert whichever of the seven
available methods you want to use. (Here “cmx” is used the same way as Venables
and Ripley use “h.” If you want you could replace “m” in “cmx” by a mnemonic for
method.)

Then, give the command

plclust(cmx);
then

cutree(cmx,m)
will describe the clustering into m clusters by giving a list of integers from 1 to m. There
will be as many occurrences (repetitions) of “j” as there are members of the jth cluster.
For 1-dimensional data, if they are first sorted into order statistics, the occurrences of j
will be consecutive. Then it’s easy to read off how many members each of the smaller
clusters has. If there is only one large cluster, one can find how many members it has
as n minus the sum of numbers of members in the other clusters.

After giving the “plclust(...)” command, a dendrogram may appear in a window. It
can (at least on the math department system) be printed by the command dev.print().

4. APPENDIX: BUGS IN “CENTROID”

The following are included in an online file called “Bug 4195 — hclust: median, cen-
troid.” Peter Kleiweg (September 2003) reported a bug in hclust for the clustering
methods “median” and “centroid.” Brian Ripley (co-author of Venables and Ripley) in
November 2003 said he had fixed the bug. However M. Maechler in April 2012 wrote
that “before the fix (in 2003), hclust() was very fast for large n, but it no longer was
after the fix.” Instead he said he would write another hclust.f [Fortran program| which
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would fix the bug and still be fast. Daniel Miillner (2012) wrote a package of programs
meant to replace hclust and said to be fast.

Notably, Murtagh (1983, end of §3.2) said that to get fast computation one may have
only “approximate” centroid and median algorithms.

Meanwhile, in another file called “Bug 14977 — Problem with centroid method in
hclust function,” Mateus Teixeira in July 2012 gave an example in one dimension of a
data set equivalent by translation to, after sorting, (—.7,—.1,.6,1.1,1.8,2.5). He found
that the merges of clusters were all done in the correct order, but that the distances
between clusters, other than singletons, were not found correctly. I confirmed this in
the version of R on the math department system. In the same file, Jean V. Adams,
also in July 2012, confirmed the error and Teixeira’s conjecture that the centroids were
not being computed correctly. For a cluster containing two numbers a and b, whose
centroid should be (a + 0)/2 = .5a + .5b, hclust actually took (a + 3b)/4 = .25a + .75b
instead. So it would not be at all surprising if in other data sets, in one dimension, such
as “galaxies” and small modifications of it, hclust with the “centroid” method would
assemble clusters the wrong way. Since in dimension 1, the “average” method should be
equivalent, one could just use that instead of “centroid.” In higher dimensions, it seems
one has to wait for the bug(s) to be fixed before using “centroid.”
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