
KOLMOGOROV–SMIRNOV AND

MANN–WHITNEY–WILCOXON TESTS

1. The Kolmogorov test

Let F be any probability distribution function on the real line R. Re-
call that the distribution function of a random variable X is F (x) :=
FX(x) := Pr(X ≤ x). For any real numbers x1, ..., xn, the correspond-
ing empirical distribution function is defined by Fn(x) :=

1
n

∑n
j=1 1xj≤x

where 1xj≤x = 1 if xj ≤ x and 0 otherwise. Let x1, ..., xn in order (order
statistics) be x(1) ≤ x(2) ≤ · · · ≤ x(n). Then we will have Fn(x) = 0 for
x < x(1), Fn(x) = j/n for x(j) ≤ x < x(j+1) for each j = 1, ..., n − 1,
and Fn(x) = 1 for x ≥ x(n).
Usually and here, x1, ..., xn will be the observed values of some ran-

dom variables X1, ..., Xn. Suppose we want to test the hypothesis H0

that X1, ..., Xn are i.i.d. with a given, fixed distribution function F .
Let Fn be the empirical distribution function based on X1, . . . , Xn.
One form of the Kolmogorov test statistic for H0 is

Dn := sup
x

|(Fn − F )(x)|.

Any F is continuous from the right and at each x has a left limit
F (x−) := limy ↑x F (y). Because F is nondecreasing, and Fn is constant
between consecutive order statistics, we will have

Dn = max
1≤j≤n

max(|(Fn − F )(X(j)−)|, |(Fn − F )(X(j))|).

So to compute Dn, given that we can compute F , does not take exces-
sive computation.
If H0 is true, then as n → ∞, Dn will approach 0 at a 1/

√
n rate,

as will follow from Theorem 2. (Similarly, a sample mean X of i.i.d.
variables X1, ..., Xn with E(X2

1 ) < ∞ approaches the true mean µ at
that rate.) So, it can be useful to normalize the statistic, giving

Kn :=
√
n sup

x
|(Fn − F )(x)|.

H0 will be rejected if Kn is too large. Note that 0 ≤ Dn ≤ 1, so it
never becomes large. About the distributions of Dn and Kn under H0,
here is one fact:
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Theorem 1. If X1, ..., Xn are i.i.d. (F ), then for each n = 1, 2, ..., the
distribution of Dn is the same for all continuous F , and so, the same
is true for Kn.

We’ll return later to a proof of the theorem. The practical impor-
tance of it is that for F continuous, one can tabulate the distribution of
Dn (or Kn) for each n, or more economically give quantiles of interest
such as the 0.95 and 0.99 quantiles, so that H0 is rejected at respective
levels 0.05 or 0.01 if the statistic is larger than the respective quantile.
The meaning of “continuous” in Theorem 1 is the usual mathemat-

ical one. For a nondecreasing function such as F it means it has no
jumps. Some beginning probability texts define “continuous” for a dis-
tribution (function) to mean there is a density f of which F is the
indefinite integral. That is the case in practice, for example, for the
usual parametric families of continuous distributions in probability and
statistics. There do exist, however, continuous distribution functions
without densities. One is the “Cantor function,” on which there is
a Wikipedia article. Proofs about continuous F to be given in this
handout will use only continuity, not densities.
For large n, the asymptotic distribution for Kn is useful and exists,

as follows (it is a consequence of facts in Section 5):

Theorem 2. If X1, X2, ..., are i.i.d. with the continuous distribution
function F , then for Kn :=

√
n supx |(Fn − F )(x)|, and any M with

0 < M < ∞,
(1)

lim
n →∞

Pr (Kn ≥ M) = 2
∞
∑

j=1

(−1)j−1 exp(−2j2M2) < 2 exp(−2M2).

This is an infinite series, not summable in closed form, but for M
at all large, it converges very fast. The terms alternate in sign and
decrease in absolute value as j increases. The kth partial sum is given
by the R function (not built in, but supplied for this course on
www-math.mit.edu/∼rmd/465) supabsbt: once this is brought into
one’s R working folder with source(“supabsbt”) it can be called by
supabsbt(M,k).
Dvoretzky, Kiefer and Wolfowitz (1956) proved that for some con-

stant C with 2 < C < ∞, for all n and F , under H0, Pr(Kn > M) ≤
C exp(−2M2). P. Massart (1990) proved this for the best possible con-
stant C = 2:

Theorem 3 (Massart). For any distribution function F (continuous
or not) and empirical distribution function Fn based on X1, ..., Xn i.i.d.
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(F ), for any M > 0,

(2) Pr(
√
n sup

x
|(Fn − F )(x)| > M) ≤ 2 exp(−2M2).

Massart’s inequality has a more detailed proof in Dudley (2014),
§1.5.

1.1. The one-sample Kolmogorov test: approximate quantiles

by regression. For the Kolmogorov one-sample statistic Dn (which
they call D) under H0, Hollander and Wolfe (1999) tabulate the q =
1−α quantiles for n = 1, . . . , 40 and α = 0.01, 0.02, 0.05, 0.1, and 0.2.
For n > 40 H.& W. propose some coefficients over

√
n, where the coef-

ficients are corresponding quantiles of the asymptotic distribution for
Kn, in other words H. & W. propose to use the asymptotic distribution
as n → ∞ for all n > 40. The quantiles for n ≤ 40 for given α or q
are decreasing monotonically as n increases. However, if one plugs in
and gets the resulting values for n = 40 or 41, the decreasing pattern
is violated by amounts in the third significant digit, and this remains
true if the asymptotic quantiles are replaced by more precise ones such
as 1.6278 in place of 1.63 or 1.3581 in place of 1.358. One can get a
more accurate approximation as follows.
For x(q, n) the quantile given in the table (q = 1− α) let y(q, n) :=√
nx(q, n). Specifically, consider the the q = 0.95 column. For con-

secutive values of n, specifically n = 35, 36, 37, 38, 39, 40 there is a
lot of noise apparently resulting from rounding error, so consider n =
15, 20, 25, 30, 35, 40. For these n’s, the 0.95 and 0.99 quantiles of Dn

underH0 are given in www/math.mit.edu/∼rmd/465/onesamplequants.
A correlation of −0.98980 of y(q, n) with 1/

√
n suggests regression

should work well. Regressing y(q, n) on 1/
√
n gave an intercept of

1.3591 and a slope of −0.1948. But more precisely, for the asymptotic
distribution, the 0.95 quantile is 1.3581 to the given number of decimal
places, so let’s use that as the intercept. To fit a line y = a + bx for
least-squares y-on-x regression with fixed a and given data vectors X
and Y , one can see that the slope bmust equal X ·(Y −a)/(X ·X) where
· is the dot product and Y − a means the vector with jth component
Yj − a for each j. This gives b

.
= −0.1439

.
= −0.144. The resulting

regression predicted the 0.95 quantile accurately to three significant
digits (which is all the given x’s have) up to an error of 1 in the third
digit, for n = 30, 35, 40, and for n → +∞, when the quantile y(q, n)
converges to a limit which equals 1.3581 to the given number of digits.
In summary, for q = 0.95, in place of the formula 1.36/

√
n for n > 40

(proposed by Hollander and Wolfe), a more accurate formula appears
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to be
1.358√

n
− 0.144

n
.

The formula should work well if n is very large since 1.3581 is asymp-
totically correct. Similar formulas could be found for other q’s by the
same method.

1.2. The Kolmogorov test in the R system. There are 18 para-
metric families of probability distributions defined in R, listed in Ven-
ables and Ripley Table 5.1 p. 108. Some are discrete and some con-
tinuous. For the Kolmogorov test we’re focusing on continuous distri-
butions. One of the parametric families, for example, is the uniform
distributions U [a, b] for −∞ < a < b < +∞. The R code for the
family is “unif.” It may be preceded by any of the four letters p, d, q,
or r. Here “p” is used for the (cumulative) distribution function. Thus
punif(x,a,b) would call for R to find the value at x of the distribution
function of U [a, b] at x, which is simply 0 for x ≤ a, (x − a)/(b − a)
for a ≤ x ≤ b, and 1 for x ≥ b. Next, dunif(x,a,b) would give the
density of the distribution at x, namely 1/(b − a) for a ≤ x ≤ b and
0 otherwise; qunif(y,a,b) calls for the y quantile, if 0 < y < 1, of
the U [a, b] distribution, in other words the x for which punif(x,a,b)

equals y, that is, x = a+ (b− a)y. (For a lot of distributions, such as
the beta, gamma, t, and chi-squared distributions, the quantiles don’t
have such simple closed forms.) Lastly, v = runif(n,unif,a,b) in
R would generate V1, ..., Vn i.i.d. U [a, b] and store them in a vector
v = (V1, ..., Vn).
Conversely, to test in R whether a given data vector v, with corre-

sponding empirical distribution function Fn, has distribution U [a, b],
by the Kolmogorov test, one can type
ks.test(v, “punif”,a,b).
Note that one needs not just “unif” but “punif.” If the parameters

“a” and “b” in a uniform distribution are omitted in R, the default is
the U [0, 1] distribution.
Likewise for the family of normal distributions, “norm” is the basic

code. The two parameters are the mean µ and the standard deviation
σ, with default values 0 and 1.

1.3. Some mathematical facts relating to the Kolmogorov test.

Probability distribution functions can converge pointwise but not uni-
formly: for example, as n → ∞, 1[−1/n,+∞)(x) → 1[0,+∞)(x) for all x
but not uniformly. We have, however:
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Theorem 4 (Glivenko–Cantelli, 1933). For any distribution function
F (continuous or not) and corresponding empirical distribution func-
tions Fn based on X1, ..., Xn i.i.d. (F ), almost surely,
Dn = supx |(Fn − F )(x)| → 0 as n → ∞, in other words, with proba-
bility 1, Fn → F uniformly.

A proof will be given later. The Glivenko–Cantelli theorem implies
that the Kolmogorov test is what is called consistent against all alter-
natives:

Corollary 1. Suppose that X1, ..., Xn, ... are i.i.d. F but we test by
Kolmogorov’s test the hypothesis H1 that they are i.i.d. for some distri-
bution function G 6= F (where F and G need not be continuous). Then
with probability → 1 as n → ∞, H1 will (correctly) be rejected.

Proof. By the Glivenko–Cantelli theorem, the statistic Dn will con-
verge to supx |(F −G)(x)| > 0, so Kn → ∞ and by Theorem 2, H1 will
be rejected. �

1.4. Testing composite hypotheses. If X1, ..., Xn are i.i.d. G for
some unknown G, then the Kolmogorov test is of the simple hypothesis
H0: G = F for a specified F against the general alternative H1: G 6= F .
Such a test is sometimes, but not often, useful in practice. Much
more often, the hypothesis H0 is tested against a simple alternative
H1: G = H. Then let F have a density f and H a density h. One
forms the likelihood ratio h/f (defined as +∞ if h > 0 = f and 0 when
h = 0) and the product LRn :=

∏n
j=1(h/f)(Xj). One decides in favor

of H1 if LRn > c and in favor of H0 if LRn ≤ c (likelihood ratio test,
Neyman–Pearson lemma) where c may be selected based on the costs
ci when Hi is true and H1−i is chosen, and on the prior probabilities of
the two hypotheses, assuming they are given. The problem is treated
in beginning statistics (e.g. 18.443).
Against a general alternative, rather than testing a simple hypoth-

esis, one often wants to test a composite hypothesis H0, for example,
that Xj are i.i.d. with a distribution of a given parametric form, say a
normal distribution N(µ, σ2) for some unknown µ and unknown σ > 0,
against the alternative that the distribution is not in the given family.
In the normal case, (Xj−µ)/σ are i.i.d. N(0, 1) but not observed. If we
try to estimate µ by the sample mean X := (X1+ · · ·+Xn)/n and σ by

the sample standard deviation sX :=
(

1
n−1

∑n
j=1(Xj −X)2

)1/2

, then

(Xj −X)/sX all have the same distribution, but they are not indepen-
dent, nor are they normally distributed (recall that

√
n(X−µ)/sX has

a t distribution, which is very different from normal for small n). The
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normality hypothesis can be tested by quite a different method, not via
empirical distribution functions, in the Shapiro–Wilk test, which we’ll
get to in a couple of weeks.
A highly composite hypothesis that can be tested using empirical

distribution functions is the following:

2. The Kolmogorov–Smirnov two-sample test

Suppose we’re given X1, ..., Xm i.i.d. (F ), independent of Y1, ..., Yn

i.i.d. G, and we want to test the hypothesisH0 that the two distribution
functions F and G are the same, where neither of them is specified in
advance.
A natural test statistic is Dm,n := supx |(Fm −Gn)(x)|. As in Theo-

rem 1 in the one-sample case we have:

Theorem 5. For given positive integers m and n, if the variables
X1, ..., Xm, Y1, ..., Yn are all i.i.d. with a continuous distribution func-
tion F , then the distribution of Dm,n does not depend on F .

By the Glivenko–Cantelli theorem 4, if H0 holds, then Dm,n → 0
with probability 1 as m and n both go to +∞. A test of H0 based on
a suitable multiple of Dm,n, namely, one takes KSm,n :=

√

mn
m+n

Dm,n,
will have the same asymptotic distribution as Kn:

Theorem 6. If H0: F = G continuous holds, with X1, ..., Xm, Y1, ..., Yn

all i.i.d. (F ), then

(3) lim
m,n →∞

Pr (KSm,n ≥ M) = 2
∞
∑

j=1

(−1)j−1 exp(−2j2M2).

If F = G is not continuous, then

(4) lim sup
m,n →∞

Pr (KSm,n ≥ M) ≤ 2
∞
∑

j=1

(−1)j−1 exp(−2j2M2).

This will follow from facts to be given in Subsection 5.2.

Corollary 2. A test of H0 : F = G, based on KSm,n, is consistent
against all alternatives F 6= G as m and n both go to +∞, i.e. H0 will
be (correctly) rejected.

Proof. For F 6= G, we will have with probability 1, as m,n → ∞,
Dm,n → supx |(F − G)(x)| > 0 by the Glivenko–Cantelli theorem. We

also have
√

mn/(m+ n =
√

1/
(

1
m
+ 1

n

)

→ +∞, and so KSm,n →
+∞. Thus for any M < ∞, Pr(KSm,n > M) will approach 1, whereas
by Theorem 6, for F = G, the probability is small for M large. �
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But, finding p-values in the two-sample case with a given accuracy is
considerably harder than in the one-sample case. The possible values of
Dm,n are of the form

∣

∣

i
m
− j

n

∣

∣ where i = 0, 1, . . . ,m and j = 0, 1, . . . , n
are integers. If the integer L := L(m,n) is the least common multiple
of m and n, then all possible values of J := L(m,n)Dm,n are integers.
Under H0 the value J = 0 can’t occur except with probability 0.
The distribution of J under H0 for 1 ≤ m ≤ n = 1, . . . , 20 is tabu-

lated by Hollander and Wolfe (1999) pp. 606-630, a 25-page table for
the

(

20
2

)

= 190 possible pairs of values. For m = n = 20, so L = 20, the
distribution has large atoms, and relatively few p-values are possible.
For example 0.0811 is the smallest possible p-value larger than 0.05 and
0.0335 is the largest possible p-value less than 0.05. The probability
that J = 8, the borderline value, is 0.0476 under H0. There is an even
larger atom of size 0.0934 at J = 7. If Gm,n is the distribution function
of KSm,n, and F is any continuous distribution function (such as the
asymptotic one), then supx |(Gm,n − F )(x)| is at least half the size of
the largest atom (jump of Gm,n), so it can’t be small.
For a statistic that has a continuous distribution, if one finds how

often H0 is rejected at level α, one will find that for a large number N of
simulations it will be rejected about Nα times, or in a fraction about
α of the simulations. But for m = n = 20 the fraction of times H0

will be rejected by the two-sample K-S test at level 0.05 will converge
toward 0.0335 since that is the largest possible p-value less than 0.05.
On the other hand, form = 19 and n = 20 the least common multiple

is L = mn = 380 (since 19 is a prime), the table has to show many more
values, and the atoms are much smaller. Since Pr(J ≥ 152) = 0.0503
one can do a test at level 0.05 almost exactly.
How to get quantiles for m or n larger than 20 but not very large?

That seems difficult to do by hand or with tables. Partly because of the
discrete distribution of the statistic, and since we have two variables
m and n, the kind of regression done in the one-sample case seems not
feasible. The 2-sample Kolmogorov–Smirnov test, given two samples
x = (X1, . . . , Xm) and y = (Y1, . . . , Yn), can be done in R, ks.test(x,y),
so that will be the recommended method. According to the documenta-
tion, exact p-values are computed for mn < 10, 000. For mn ≥ 10, 000,
the asymptotic approximation is used.
As the asymptotic distribution for m → ∞ and n → ∞ of the two-

sample statistic KSm,n under the null hypothesis F = G continuous
(3), and the upper bound when F = G discontinuous (4) is the same as
the asymptotic distribution for the one-sample statisticKn (1), namely,
the distribution of the supremum of the absolute value of the Brownian
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bridge (10), and the equal sums are each < 2 exp(−2M2) as noted in
(1), it’s natural to ask whether one one has a two-sample version of the
Dvoretzky–Kiefer–Wolfowitz inequality, namely, for some C,

(5) Pr(KSm,n > M) ≤ C exp(−2M2),

for all m and n and all M > 0, and if so, whether it holds with C = 2 as
in the one-sample case (Massart’s inequality (2)). Fan Wei (MIT S.B.
2012) settled the case m = n. Namely, she proved that (5) does hold
for C = e

.
= 2.71828 for all n, but that it holds with C = 2 if and only

if n ≥ 458. The inequality with C = 2 also fails for 1 ≤ m < n ≤ 3.
We don’t know of any other violations. The paper by Wei and Dudley
(2012) states results, and the longer version by Wei and Dudley (2011)
gives more details, including Wei’s proofs for m = n.

3. The Mann–Whitney–Wilcoxon rank-sum test

This is a test of whether two samples come from the same distribu-
tion, against the alternative that members of one sample tend to be
larger than those of the other sample (a location or shift alternative).
No parametric form of the distributions is assumed. They can be quite
general, as long as the distribution functions are continuous.
The general assumption for the test is that real random variables

X1, . . . , Xm are i.i.d. with a distribution function F , and independent
of Y1, . . . , Yn which are i.i.d. with another distribution function G, with
both F and G continuous. The hypothesis to be tested, as in the
Kolmogorov–Smirnov test, is H0: F = G. There are two formulations
of the test, one due to Mann and Whitney and the other to Wilcoxon.
R uses the Mann–Whitney form, as follows: let W be the number of
pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that Yj ≤ Xi. Then
W is the test statistic. H0 will be rejected if either W is too small,
indicating that the X’s tend to be less than the Y ’s, or if W is too
large, indicating that the Y ’s tend to be less than the X’s.
For m and n not too large, one can tabulate the distribution, but

as with the Kolmogorov–Smirnov tests, tabulation is rather unwieldy.
One can find the mean and variance of TX under H0 in terms of m
and n and use that it is asymptotically normal if m and n are both
large. The test can be done in R via wilcox.test(x,y) for x=
(X1, ..., Xm), y= (Y1, ..., Yn), which will evaluate the statistic W and
give a p-value for the test. Since there are mn total pairs, if one does
instead wilcox.test(y,x) one will get for the statistic W ′ = mn−W ,
but with the same p-value. R gives a warning message saying p-values
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are not exact if any of the variables are tied. That is because the p-
values are computed assuming the distributions are continuous. Ties
Xi = Yj for some i and j are a still worse problem because the value of
the statistic W is uncertain, as it can be affected by arbitrarily small
changes in Xi or Yj.

4. Some facts about distribution and quantile functions

Beginning in this section, there will be some theoretical developments
including proofs of statements made previously. Let F be a function
from R = (−∞,∞) into itself. The “df properties” (which turn out
to characterize of probability distribution functions) will be defined as
the following four properties:

(i) F is nondecreasing;
(ii) F (x) → 1 as x → +∞;
(iii) F (x) → 0 as x → −∞;
(iv) F is right-continuous, i.e. F (y) → F (x) as y ↓x for all x.

It follows from (i), (ii), and (iii) that F takes values in the interval
[0, 1]. If F is continuous, it follows from (ii), (iii), and the intermediate
value theorem that F takes all values in the open interval (0, 1).
Each real-valued random variable X has a distribution function F =

FX such that FX(x) = P (X ≤ x) for all x. Then FX is easily seen to
have all four df properties.
If F is continuous and strictly increasing from (−∞,∞) onto (0, 1),

as is the standard normal distribution function Φ, then it has a unique
inverse F−1 from (0, 1) onto R such that F (F−1(u)) = u for 0 < u < 1.
But even if F is discontinuous or not strictly increasing, one can also
define a kind of inverse as follows.

Definition. Let F be any function from R into [0, 1] having the four df
properties. For any y with 0 < y < 1, let F←(y) := inf{x : F (x) ≥ y}.
Then we have the following fact:

Theorem 7. Let F have the four df properties. Then:
(a) For any y with 0 < y < 1, F←(y) is a well-defined real number.
(b) For 0 < y < 1, F (F←(y)) ≥ y.
(c) For any x ∈ R and y ∈ (0, 1), F (x) ≥ y if and only if x ≥ F←(y).
(d) If U is a random variable having the uniform U [0, 1] distribution,
then F←(U) is a random variable having the distribution function F .

Proof. Let 0 < y < 1. Then because F (x) → 1 as x → +∞, there must
exist some x such that F (x) ≥ y, so we are not taking the infimum
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of the empty set. Moreover, the infimum cannot be −∞, because if
F (xn) ≥ y for some xn → −∞, that would contradict property (iii),
which implies that such F (xn) must approach 0. So the infimum F←(y)
equals some finite x, proving part (a).
To prove part (b), let x := F←(y). For some xn ↓x we have F (xn) ≥

y and therefore by right-continuity of F at x, F (F←(y)) = F (x) ≥ y
as stated.
To prove part (c), if F (x) ≥ y then F←(y) ≤ x by definition of

F←(y). Conversely, if F←(y) ≤ x, then by part (b), y ≤ F (F←(y)), and
by the nondecreasing property of F , F (F←(y)) ≤ F (x), so F (x) ≥ y
as stated.
Now for part (d), using part (c), for any real x,

Pr(F←(U) ≤ x) = Pr(U ≤ F (x)) = F (x)

since 0 ≤ F (x) ≤ 1 and U has U [0, 1] distribution, having distribution
function equal to the identity function on [0, 1]. So F←(U) does have
distribution function F and the theorem is proved. �

In computer generation of (pseudo-) random variables, U [0, 1] vari-
ables are the most basic ones and are used in generating other random
variables. If F is a distribution for which F← is easy to compute, then
taking U1, . . . , Un to be i.i.d. U [0, 1] and letting Xj = F←(Uj) may be
an efficient way to generate Xj i.i.d. (F ). If F← is relatively hard to
compute there may be better ways. Later in the course we’ll return to
techniques of generating random variables with a given distribution.
For the present, we’ll use the theorem for another purpose, to show

how the distributions of Kolmogorov–Smirnov statistics don’t depend
on F for F continuous. Let U(x) = max(0,min(x, 1)), the uniform
U [0, 1] distribution function, which equals x for 0 ≤ x ≤ 1, 0 for x < 0,
and 1 for x > 1. We can take U1, . . . , Un i.i.d. with this distribution
and form the corresponding empirical distribution function Un. For
any two functions f and g such that f is defined on the range of g
the composition f ◦ g is defined by (f ◦ g)(x) = f(g(x)) for all x in
the domain of g. We can, if we choose, form empirical distribution
functions Fn for any distribution function F as follows.

Proposition 1. Let F be any distribution function on R, let X1, . . . , Xn

be i.i.d. F and let Fn be the empirical distribution function they define.
Also let Un be empirical distribution functions for U [0, 1]. Then Un ◦F
have all the properties of Fn, so that we can assume Fn ≡ Un ◦ F .

Proof. By Theorem 7(d) we can assume that Xj = F←(Uj) for each
j = 1, . . . , n. For each x and j, F←(Uj) ≤ x if and only if Uj ≤ F (x)
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by Theorem 7(c). Thus for each x, the number of values of j for which
these inequalities occur is the same, and we have Fn(x) = Un(F (x)),
so the conclusion follows. �

We also have, clearly, U ◦ F ≡ F for any distribution function F
and therefore for the one-sample Kolmogorov statistic we have, if the
hypothesis H0 of sampling from F holds,

(6) sup
x

|(Fn − F )(x)| = sup
x

|(Un − U)(F (x))| ≤ sup
0≤t≤1

|(Un − U)(t)|.

We have (Un−U)(y) = 0 with probability 1 for y = 0 or 1. Therefore if
F is a continuous distribution function, so that its range includes the
open interval (0, 1) (and may or may not include either endpoint) it
follows from (6) that under H0.

(7) sup
x

|(Fn − F )(x)| = sup
0<y<1

|(Un − U)(y)|.

In general the random variables on the two sides might have been
defined on different probability spaces, but at any rate we can say
that they are equal in distribution. Thus we have proved that the
distribution of the one-sample Kolmogorov statistic doesn’t depend on
F for F continuous (Theorem 1). Moreover we can see from (6) that if
F is discontinuous, the statistic will be smaller in distribution than if
F is continuous. Thus we can still reject the hypothesis that F is the
true distribution function when F is not continuous if we would when
it is continuous, as this will tend to be overly conservative if anything.
Let Um be an empirical distribution function for m i.i.d U [0, 1] ran-

dom variables and let Vn be another, independent, such empirical dis-
tribution function for n further i.i.d. U [0, 1] variables. Then in the
two-sample Kolmogorov–Smirnov test, if X1, . . . , Xm are i.i.d. (F ) and
Y1, . . . , Yn are i.i.d. (G) and independent of X1, . . . , Xm, under the hy-
pothesis H0 that F = G, we will get as in (6)

(8) sup
x

|(Fm−Gn)(x)| = sup
x

|(Um−Vn)(F (x))| ≤ sup
t

|(Um−Vn)(t)|,

and under the further condition that F is continuous, we will get as in
(7) that

(9) sup
x

|(Fm −Gn)(x)| = sup
0<y<1

|(Um − Vn)(y)|,

and so the distribution thus will again not depend on F , proving The-
orem 5.

Proof of the Glivenko–Cantelli theorem, Theorem 4: By Proposition 1,
and since U ◦F ≡ F , it suffices to prove this for the U [0, 1] distribution
U . Given ε > 0, take a positive integer k such that 1/k < ε/2. For
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each j = 0, 1, ..., k, Un(j/k) → j/k as n → ∞ with probability 1 by the
ordinary strong law of large numbers. Take n0 = n0(ω) such that for
all n ≥ n0 and all j = 0, 1, ..., k, |Un(j/k) − j/k| < ε/2. For t outside
[0, 1] we have Un(t) ≡ U(t) = 0 or 1. For each t ∈ [0, 1] there is at least
one j = 1, ..., k such that (j − 1)/k ≤ t ≤ j/k. Then for n ≥ n0,

(j − 1)/k − ε/2 < Un((j − 1)/k) ≤ Un(t) ≤ Un(j/k) < j/k + ε/2.

It follows that |Un(t) − t| < ε, and since t was arbitrary, the theorem
follows. �

5. Central limit theorems and the asymptotic

distribution

Now we’ll consider the limiting behavior of αn := n1/2(Fn − F )
as n → ∞. For any fixed t, the central limit theorem in its most
classical form, for binomial distributions, says that αn(t) converges in
distribution toN(0, F (t)(1−F (t))), in other words a normal (Gaussian)
law, with mean 0 and variance F (t)(1− F (t)).
In what follows, “RAP” will mean the book Real Analysis and Prob-

ability (Dudley, 2002).
For any finite set T of values of t, the multidimensional central limit

theorem (RAP, Theorem 9.5.6) tells us that αn(t) for t in T converges
in distribution as n → ∞ to a normal law N(0, CF ) with mean 0 and
covariance CF (s, t) = F (s)(1− F (t)) for s ≤ t.
Although the multidimensional central limit theorem was proved by

mathematicians only about 1930, Karl Pearson, in his publication of
the χ2 test of goodness of fit in 1900, implicitly assumed a central limit
theorem for multinomial distributions.
For any set T and any probability space Ω on which a probability P

is defined, a real-valued stochastic process {xt(ω), t ∈ T, ω ∈ Ω} is a
function of t ∈ T and ω ∈ Ω such that for each t ∈ T , xt(·) is a real-
valued random variable defined on Ω. Empirical distribution functions
Fn(t) for any n and empirical processes

√
n(Fn−F )(t) are examples of

stochastic processes.
The Brownian bridge (RAP, Section 12.1) is a stochastic process

Bt(ω) defined for 0 ≤ t ≤ 1 and ω in some probability space Ω, such
that for any finite set S ⊂ [0, 1], Bt for t in S have distribution N(0, C),
where C = CU for the uniform distribution function U(t) = t, 0 ≤
t ≤ 1. So by Proposition 1 the empirical process αn converges in
distribution to the Brownian bridge composed with F, namely t 7→
BF (t), at least when restricted to finite sets.
It was then natural to ask whether this convergence extends to infi-

nite sets or the whole interval or line. Kolmogorov (1933) showed that
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when F is continuous, the supremum supt αn(t) and the supremum of
absolute value, supt |αn(t)|, converge in distribution to the laws of the
same functionals of BF . Then, these functionals of BF have the same
distributions as for the Brownian bridge itself, since F takes R onto an
interval including (0, 1) and which may or may not contain 0 or 1; this
makes no difference to the suprema since B0 ≡ B1 ≡ 0. Also, Bt → 0
almost surely as t ↓ 0 or t ↑ 1 by sample continuity; the suprema can be
restricted to a countable dense set such as the rational numbers in
(0, 1) and are thus well-defined random variables (in measure-theoretic
terms, they are measurable).
To work with the Brownian bridge process it will help to relate it

to the well-known Brownian motion process xt, defined for t ≥ 0, also
called the Wiener process. This process is such that for any any finite
set T ⊂ [0,+∞), the joint distribution of {xt}t∈F is N(0, C) where
C(s, t) = min(s, t). This process has independent increments, namely,
for any 0 = t0 < t1 < · · · < tk, the increments xtj −xtj−1

for j = 1, ..., k
are jointly independent, with xt − xs having distribution N(0, t − s)
for 0 ≤ s < t. Recall that for jointly Gaussian (normal) random
variables, joint independence, pairwise independence, and having co-
variances equal to 0 are equivalent. Having independent increments
with the given distributions clearly implies that E(xsxt) = min(s, t)
and so is equivalent to the definition of Brownian motion with that
covariance.
Brownian motion can be taken to be sample continuous, i.e. such that

t 7→ xt(ω) is continuous in t for all (or almost all) ω. This theorem,
proved by Norbert Wiener in the 1920’s (while teaching 20 hours a
week here at MIT), is Theorem 12.1.5 in RAP; a proof (due to Paul
Lévy) will be indicated here. If Z has N(0, 1) distribution then for any
c > 0, Pr(Z ≥ c) ≤ exp(−c2/2) (RAP, Lemma 12.1.6(b)). Thus if X
has N(0, σ2) distribution for some σ > 0 then Pr(X ≥ c) = Pr(X/σ >
c/σ) ≤ exp(−c2/(2σ2)). It follows that for any n = 1, 2, ... and any
j = 1, 2, ...,

Pr

(

∣

∣xj/2n − x(j−1)/2n
∣

∣ ≥ 1

n2

)

≤ 2 exp
(

−2n/(2n4)
)

.

It follows that for any integerK > 0, the probability of any of the above
events occurring for j = 1, ..., 2nK is at most 2n+1K exp(−2n/(2n4)),
which approaches 0 very fast as n → ∞, because of the dominant factor
−2n in the exponent. Also, the series

∑

n 1/n
2 converges. It follows by

the Borel–Cantelli Lemma (RAP, Theorem 8.3.4) that with probability
1, for all t ∈ [0, K], for a sequence of dyadic rationals tn → t given by
the binary expansion of t, xtn will converge to some limit Xt, which
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equals xt almost surely. Specifically, for t < K, let tn = (j − 1)/2n

for the unique j ≤ 2nK such that (j − 1)/2n ≤ t < t/2n. Then
tn+1 = tn = 2j/2n+1 or tn+1 = (2j − 1)/2n+1, so that tn+1 and tn are
either equal or are adjacent dyadic rationals with denominator 2n+1,
and the above bounds apply to the differences xtn+1

− xtn .
The process Xt is sample-continuous and is itself a Brownian motion,

as desired. From here on, a “Brownian motion” will always mean a
sample-continuous one.
One can represent Bt for 0 ≤ t ≤ 1 as Xt − tX1 or as Xt conditional

on X1 = 0 or more rigorously, as the limit of Xt given |X1| < ε as ε
decreases to 0.
Under H0,

√
nDn converges in distribution to sup−∞<x<∞ |BF (x)|

(some details are given in Subsection 5.1). If F is continuous, this
supremum equals sup0≤t≤1 |Bt| (it doesn’t matter whether F takes the
values 0 or 1, because Bt = 0 with probability 1 for t = 0 or 1.) The dis-
tribution of this supremum is known: for eachM > 0, Pr(sup0≤t≤1 Bt ≥
M) = exp(−2M2) (RAP Prop. 12.3.3) where exp(x) ≡ ex and for the
absolute value we’re actually interested in,

(10) Pr

(

sup
0≤t≤1

|Bt| ≥ M

)

= 2
∞
∑

j=1

(−1)j−1 exp(−2j2M2)

(RAP, Prop. 12.3.4), which is the same as the asymptotic distributions
given in (1) and (3).

5.1. The Komlós–Major–Tusnády statement with Bretagnolle

and Massart’s constants. To show how the uniform empirical pro-
cess

√
n(Un − U) converges to the Brownian bridge process Bt with

respect to uniform convergence for 0 ≤ t ≤ 1, a rate of convergence has
been found. It’s formulated as follows.
Komlós, Major, and Tusnády (1975), to be called KMT hereafter,

stated a rate of convergence, namely that on some probability space
there exist Xi i.i.d. U [0, 1] and Brownian bridges Bn such that

P

(

sup
0≤t≤1

|(αn −Bn)(t)| >
x+ c log n√

n

)

< Ke−λx(11)

for all n and x, where c,K, and λ are positive absolute constants.
Assuming this and taking x also to be of the form C log n, we see that
the probability will go to 0 like any desired power of n, so that αn

and Bn will be uniformly close of order (log n)/
√
n. This is rather

remarkable, as in the one-dimensional central limit theorem, the best
possible rate of convergence in general (given non-zero skewness) is
of order 1/

√
n, and here we have an infinite-dimensional central limit



KOLMOGOROV–SMIRNOV AND MANN–WHITNEY–WILCOXON TESTS 15

theorem with convergence slower only by the very moderate factor
log n.
KMT formulated a construction giving a joint distribution of αn and

Bn, and this construction has been accepted by later workers. But
KMT gave hardly any proof for (11). After partial proofs by others,
Bretagnolle and Massart (1989) gave a proof of the inequality (11) with
specific constants, as follows.

Theorem 8 (Bretagnolle and Massart). The approximation (11) of
the U [0, 1] empirical process by the Brownian bridge holds with c = 12,
K = 2 and λ = 1/6 for n ≥ 2.

A proof, with more details than in Bretagnolle and Massart’s (1989)
paper, is given in Dudley (2014), §1.4.
The Komlós–Major–Tusnády–Bretagnolle–Massart theorem is very

important theoretically, as it establishes how uniform empirical pro-
cesses become close to Brownian bridges. But let’s compare what we
might learn from this theorem in practice about the distribution of the
one-sample Kolmogorov statistic, as compared to what we get from the
Dvoretzky–Kiefer–Wolfowitz–Massart inequality (2). From the latter,
we get that we can reject H0 in the one-sample case at the 0.05 level
if supx

√
n|(Fn − F )(x)| = √

nDn = M where 2 exp(−2M2) ≤ 0.05.

This is equivalent to M ≥
√

(log 40)/2
.
= 1.358102

.
= 1.3581. But

now supposing n is large so that the asymptotic distribution holds to a
sufficient approximation, and we could apply the distribution given by
(10). We can compute the series up through k terms by the R function
supabsbt(x,k). R gives
supabsbt(1.3581,k) = 0.05000041
for k = 1 (just giving the Massart bound), whereas for k = 2, 3 or
larger,
supabsbt(1.3581,k) = 0.04999963,
which is the same to 7 decimal places or rather to 5 significant digits.
Thus, there is only a tiny, almost imperceptible improvement in adding
the further terms beyond the first term of (10) for the critical value
1.3581 of M . It seems that n would have to be extremely large to apply
the KMT–Bretagnolle–Massart theorem to take advantage of this small
possible improvement, given that (log n)/

√
n does not approach 0 very

fast.
Neither of the methods just compared, based on proved theorems,

shows how for finite n,
√
nDn is actually smaller in distribution than the

limit distribution. For example, for n = 40, α = 0.05, the Hollander
and Wolfe table gives the critical value for

√
nDn as 0.210 ·

√
40

.
=

1.33 < 1.3581.
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5.2. The two-sample case. The two-sample statistic Dm,n defined as

supx |(Fm−Gn)(x)| is normalized by multiplying it times
√

mn/(m+ n),
as has been mentioned. Here is an explanation of that. Recall that Y
is a Bernoulli(p) random variable if Pr(Y = 1) = p = 1 − Pr(Y = 0).
Such a variable has mean p and variance p(1 − p). If Y1, ..., Yn are
i.i.d. Bernoulli(p), then their sample mean Y has mean p and variance
p(1 − p)/n. If X is a random variable with distribution function F ,
then for each x, 1X≤x is Bernoulli(p) with p = F (x). The empirical
distribution function Fn(x) is the sample mean of n such variables,
so it has mean F (x) and variance F (x)(1 − F (x))/n. It follows that
E((Fn − F )(x)2) = F (x)(1− F (x))/n.
We can evaluate, under the hypothesis G = F ,

E((Fm −Gn)(x)
2) = E([(Fm − F )(x)− (Gn − F )(x)]2) =

E((Fm − F )(x)2) + E((Gn −G)(x)2) =

(

1

m
+

1

n

)

F (x)(1− F (x),

where the second equality holds because (Fm−F )(x) and (Gn−G)(x)
are independent with mean 0, so the expectation of their product is 0.
So to get a multiple of Fm −Gn whose mean-square at each x doesn’t
depend on m or n, we multiply it by 1/

√
m−1 + n−1, which equals

√

mn/(m+ n).
It follows from (9) that if the two-sample null hypothesis holds, so

that Fm and Gn are independent empirical distribution functions from
the same F , and if F is continuous, then

√

mn
m+n

supx |(Fm − Gn)(x)|
has the same distribution as

√

mn

m+ n
sup
0≤t≤1

|(Um − Vn)(t)|

where Um and Vn are independent empirical distribution functions from
U [0, 1]. It will be shown here that as m and n both go to +∞, the
displayed random variable converges in distribution to the same limit
distribution as in the one-sample case, namely that of the supremum
of the absolute value of the Brownian bridge, given by (10). We can
write Um − Vn as (Um − U)− (Vn − U) and then

(12)

√

mn

m+ n
(Um − Vn) =

√

n

m+ n
αm +

√

m

m+ n
βn

where αm =
√
m(Um − U) and βn =

√
n(Vn − U) are two inde-

pendent empirical processes for U [0, 1]. By the KMT–Bretagnolle–
Massart Theorem 8, we can approximate αm by a Brownian bridge
Bα,m and βn by another Bβ,n where we can take these Brownian bridges
to be independent because the empirical processes are. If X, Y are
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two i.i.d. normal random variables with mean 0 and a, b are two con-
stants with a2 + b2 = 1, then aX + bY has the same distribution
as X or Y . The same holds if X, Y are i.i.d. normal vectors or in
fact Gaussian processes with mean 0. For each m and n, taking
a =

√

n/(m+ n) and b =
√

m/(m+ n) we see that a2 + b2 = 1
and so aBα,m + bBβ,n is also a Brownian bridge, which approximates
the two-sample empirical process (12). This shows why the distribu-

tion of
√

mn/(m+ n) supx |(Fm − Gn)(x)| under the null hypothesis
F = G continuous has a distribution converging to (10). If F = G is
not necessarily continuous then we can apply the upper bound in (8)
to get (4).

NOTES

The table in Hollander and Wolfe (1999) for the Kolmogorov (one-
sample) statistic is based on Table 1 of the paper by Miller (1956).
There are various differences. (1) Miller’s table has n = 1, ..., 100, and
H&W’s only 1, ..., 40; (2) The numbers in the body of Miller’s table are
given to 5 decimal places, rounded to 3 by H&W; (3) Miller does not
actually claim to give 0.8 quantiles of Dn, but rather 0.9 quantiles of
supx(Fn − F )(x) without absolute values; anyhow, these would seem
not very interesting. (4) Also, Miller says that the quantiles are exactly
computed for n ≤ 20 (to 7 places, then rounded to 5) and approximated
for n > 20. He gives a further discussion of approximations.
Some Russian probabilists, including A. N. Kolmogorov, published

much of their work in German, in German books or journals, in the
late 1920’s and early 1930’s. Kolmogorov had also on occasion pub-
lished papers in French. In 1933, whether this was related to earth-
shaking events in Germany that year I don’t know, both Glivenko and
Kolmogorov decided to publish papers in the Italian actuarial jour-
nal, edited by F. P. Cantelli. Glivenko’s paper proved the “Glivenko–
Cantelli” theorem in case F is continuous, and Cantelli (1933), having
early knowledge of Glivenko’s work, extended the theorem to general F .
At the time, I believe there were no specialized probability journals in
the world. There were statistics journals in England (Biometrika; the
British Royal Statistical Society was founded in 1834, and its Journal
started publishing in 1838) and since 1930 in North America, Annals
of Mathematical Statistics, but apparently, there were none per se on
the continent of Europe.
My expanded proof of the Bretagnolle–Massart (1989) theorem ap-

peared in the lecture notes Dudley (2000) and is now incorporated as
§1.4 in Dudley (2014).
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Komlós, J., Major, P., and Tusnády, G. (1975). An approximation of
partial sums of independent RV’-s and the sample DF. I. Z. Wahrschein-
lichkeitstheorie verw. Gebiete 32, 111–131.

Massart, P. (1990). The tight constant in the Dvoretzky–Kiefer–Wol-
fowitz inequality. Ann. Probability 18, 1269-1283.

Miller, L. H. (1956). Table of percentage points of Kolmogorov statis-
tics. J. Amer. Statist. Assoc. 51, 111-121.

Wei, Fan, and Dudley, R. M. (2011). Dvoretzky–Kiefer–Wolfowitz
inequalities for the two-sample case (Preprint). Available in MIT
DSpace, also at http://arxiv.org/abs/1107.5356v2 [math.ST].

Wei, Fan, and Dudley, R. M. (2012). Two-sample Dvoretzky–Kiefer–
Wolfowitz inequalities. Statist. Probab. Letters 82, 636–644.

* I have not seen these references in the original. I learned of them
from secondary sources.


