
INTRODUCTION TO THE BOOTSTRAP

Suppose we have observed X1, ...., Xn (not necessarily real numbers,
they can be in any space S) and suppose for simplicity that the n
observations are all different. We can form the empirical measure
Pn = 1

n

∑n
j=1 δXj

where δx(A) := 1A(x) := 1 if x ∈ A and 0 otherwise,
for any subset A ⊂ S. Let P be the unknown probability distribution,
from which we assume Xj are i.i.d. We would like to estimate some
functional T (P ). Here “functional” just means a function whose do-
main is a relatively abstract space, in this case a space of probability
measures P , including Pn and PB

n defined below. For P defined on the
real line, an example of a functional T (P ) is the median of P , defined
as the midpoint of the interval of medians if the interval does not re-
duce to a point. For P defined on any space, another example of a
real-valued functional is T (P ) = EPf :=

∫
f dP where f is a bounded

function which in measure-theoretic terms is measurable, or in proba-
bility terms is a random variable with respect to P , so that since it is
bounded, its expectation is well-defined, as is its variance.
We can give a point estimate T (Pn) of T (P ) but we’d like to know

how uncertain the estimate is, for example to give a confidence interval
for T (P ) if T is real-valued, without knowing anything more about P
than the observations X1, ..., Xn summarized in Pn. For example, we
don’t assume that P belongs to any particular parametric family.
What the bootstrap does is to resample from the given sample, i.e.

to take XB
1 , ..., X

B
K i.i.d. (Pn). Here we’re sampling “with replacement”

from the original sample. In general one could consider different values
of the bootstrap sample size K, but the default choice, to be used here,
will be K = n. Thus from XB

1 , ..., X
B
n we can form the bootstrap

empirical measure

PB
n :=

1

n

n∑

k=1

δXB
k
.

We will be interested not in the (unconditional) distribution of PB
n but

in its conditional distribution given Pn. To estimate this distribution
one can use a Monte Carlo method: one repeats the resampling some
large number R of times (R may be called the number of bootstrap
replications), givingR i.i.d. values of PB

n all for the same Pn, from which
one can estimate the conditional distribution of T (PB

n ) given Pn. This
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requires altogether Rn i.i.d. samples from a given Pn and, to find the
sampling distribution of a functional T (PB

n ), R separate evaluations
of this functional. The intent of the method is, to get a confidence
set (such as a confidence interval if T is real-valued) for the unknown
T (P ), we’d like to know the distribution of T (P ′

n)− T (P ), where P ′
n is

a random empirical measure from P (and so to be distinguished from
the observed Pn from which PB

n is sampled) and we estimate this from
the conditional distribution of T (PB

n )− T (Pn) given Pn, which we can
observe.

When is equality in distribution preserved? When random variables
X and Y have the same distribution or in other words are equal in
distribution, we will write X =d Y (X is equal in distribution to Y ).
It follows that if c is any constant, then X+ c =d Y + c and cX =d cY .
But for example let X and Y be i.i.d. N(0, 1). Then X =d Y and
X =d X, but X +X 6=d X + Y because X +X = 2X is N(0, 4) while
X + Y is N(0, 2).

Need for computation. For reasonably large R (and n), the bootstrap
is a computer-intensive method. The availability of computers made
possible the invention of the bootstrap by Efron (1979), see also the
exposition by Efron and Tibshirani (1993). For example, the paper by
Suzuki and Shimodaira (2006), 3d page, mentions a bootstrap calcula-
tion taking over 7 hours on one processor, or 24 minutes on 20 parallel
processors.

High-level probability theory of the bootstrap. Let’s see what can be
said about the bootstrap from a theoretical viewpoint. The bootstrap
has good properties for suitable sample means or collections of them.
Let g be a function on S. Then

∫
gdPn is just the observed sample

mean of g(Xj). We know that if g is a random variable with finite
variance, so that

∫
g(x)2dP (x) < ∞, then by the central limit theo-

rem,
√
n
∫
gd(Pn−P ) converges in distribution as n → ∞ to a normal

variable with mean 0 and the same variance as g. Moreover if g1, ..., gk
are random variables each with finite variance, then the random vec-
tor

√
n{

∫
gid(Pn − P )}ki=1 converges in distribution to a vector, say

{GP (gi)}ki=1, with k-variate normal distribution having mean 0 and the
same covariance matrix as that of the gi for P . Since P is unknown, it’s
useful to take the functions gi to be bounded, so we can be sure that
finite means, variances and covariances will exist. The convergence to
normality holds uniformly over some infinite families of functions, for
example on the real line, over the set of all indicator functions 1(−∞,x]

for all x, as shown in the KMT (Komlós-Major-Tusnády) theorem,
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made more precise by Bretagnolle and Massart. General conditions on
a family of functions for such uniform central limit theorems to hold
are given for example in van der Vaart and Wellner (1996) and Dudley
(2014). Moreover, Giné and Zinn (1990) proved under general condi-
tions that if the uniform central limit theorem holds over a family F
of functions, then it holds also for the bootstrapped empirical process√
n(PB

n −Pn) conditional on Pn, in probability as n → ∞. Expositions
are given in van der Vaart and Wellner (1996, §3.6) and Dudley (2014,
§§9.2–9.4).
We saw however that even in the most classical case of empirical

distribution functions, the Bretagnolle-Massart theorem didn’t give a
fast enough rate of convergence to be of direct practical use, and that
quantiles for the supremum norm of classical empirical processes (Kol-
mogorov statistics) seemed to converge to their limits at a 1/

√
n rate

rather than the (log n)/
√
n rate given by the KMT theorem. In general,

still less is known about the speed of convergence of empirical processes
to their limiting Gaussian processes. In some cases the convergence is
known to be slow. For example, in Euclidean space R

d, let Bd be the
collection of all closed balls B(x, r) := {y : |y−x| ≤ r} for all possible
x ∈ R

d and all r > 0. Let P be the uniform distribution on the unit
cube Id := {x : 0 ≤ xi ≤ 1, 1 ≤ i ≤ d}. It is known that

√
n(Pn − P )

converges in distribution with respect to uniform convergence over Bd

to GP , but but Beck (1985) showed that for d ≥ 2 convergence is no
faster than at the rate O(n−1/(2d)). Rather the Giné–Zinn theorem gives
us some overall reassurance that the bootstrap works asymptotically
rather generally.
A functional with general, in fact possibly infinite-dimensional, val-

ues, is as follows: let F be a class of bounded measurable functions,
and let T (P ) := {

∫
f dP : f ∈ F}. Such functionals arise in the Giné–

Zinn theorem mentioned previously. In this course we’ll be concerned
at least for the time being with real-valued functionals.

Definition. For a real-valued functional T and for X1, . . . , Xn i.i.d.
(P ) with empirical measure Pn, we’ll say that the bootstrap is valid for
T and P if there exists some t > 0 such that as n → ∞:
(a) The distribution of nt(T (P ′

n) − T (P )) converges to that of a fi-
nite valued, non-degenerate random variable Y , where non-degenerate
means that P (Y = 0) < 1;
(b) The conditional distribution of nt(T (PB

n ) − T (Pn)) given Pn con-
verges to that of the same Y as n → ∞, in probability with respect to
Pn, where the last phrase means that as n → ∞, the probability that
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Pn is such that the given conditional distribution is close to that of Y
approaches 1.

Remarks. If part (a) of the definition holds for some t > 0, then it holds
only for that t, because if 0 < s < t < u then ns(T (Pn) − T (P )) → 0
in probability, and nu(T (Pn)−T (P )) is not bounded in probability, so
it cannot converge in distribution.
If (a) holds, then most often in practice, t = 1/2. For example let

T (P ) =
∫
g dP for some bounded function g which is a random vari-

able with respect to P , with variance σ2 > 0 depending on P . Then
part (a) of the definition holds with t = 1/2, as

√
n(T (Pn) − T (P ))

converges in distribution to N(0, σ2) by the central limit theorem.
In this case the bootstrap is valid, as the conditional distribution of√
n(T (PB

n )−T (Pn)) given Pn does converge to the same limiting distri-
bution, in probability with respect to Pn (or so it seems, by the Linde-
berg triangular arrays central limit theorem), but the bootstrap is not
helpful or needed. One can estimate σ2 by s2g =

1
n−1

∑n
j=1(g(Xj)− g)2

where g =
∫
gdPn and and apply the central limit theorem directly.

The bootstrap — basic properties. Suppose again for convenience that
X1, ..., Xn are all distinct. The probability that a given observation,
say Xj, is omitted from the bootstrap sample, i.e. XB

k 6= Xj for all
k = 1, ..., n, is

(
1− 1

n

)n
, which converges to 1/e as n → ∞. Thus, on

average, for large n, a fraction about 1/e of the original observations
are omitted from the bootstrap sample. Further, as n → ∞, if nj

is the number of times Xj is selected in one bootstrap sample of size
n, then (n1, ..., nn) have a multinomial (n; 1/n, ...., 1/n) distribution, so
the marginal distribution of each nj is binomial(n, 1/n) which converges
as n → ∞ to a Poisson(1) distribution, i.e. Pr(nj = k) → 1/(ek!) as
n → ∞ for each k = 0, 1, ... .
Since the Xj are all different, each choice of n1, . . . , nn gives a differ-

ent value of PB
n . The number of possible choices of integers nj ≥ 0 such

that
∑n

j=1 nj = n is
(
2n−1
n

)
, as is known from basic combinatorics. [It

can be seen as follows: consider the set of all strings of 2n−1 characters
consisting of n 1’s and n− 1 0’s. There are clearly

(
2n−1
n

)
such strings.

There is a one-to-one correspondence between such strings and choices
of nj as follows. Let n1 be the number of 1’s before the first 0, let nj be
the number of 1’s between the (j−1)st and jth 0’s for j = 2, . . . , n−1,
and let nn be the number of 1’s after the last 0.]
As n → ∞, it can be seen via Stirling’s formula that

(
2n−1
n

)
is asymp-

totic to 4nnbC for some b and some constant C, where the dominant
factor 4n grows geometrically with n. So, unless n is rather small, it’s
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not practicable to find the exact distribution of T (PB
n ) given Pn, as

one would have to compute T at roughly 4n different PB
n ’s. One would

also need to compute, for each possible n1, . . . , nn, the multinomial
probability

(
n

n1,...,nn

)
n−n. So there is a need for bootstrap sampling.

In such sampling we do R bootstrap replications for some large
enough R. Specifically, let XB

ki be i.i.d. (Pn) for k = 1, ..., n and
i = 1, ..., R. Let

PB
ni :=

1

n

n∑

k=1

δXB
ki

for i = 1, ..., R. Thus we have R independent copies of PB
n . We can

form the R i.i.d. random variables Ti := T (PB
ni).

The bootstrap for real-valued Xj, order statistics, and quantiles. For Xj

real, The bootstrap sample has its own order statisticsXB
(k), k = 1, ..., n,

which for given Pn have a discrete distribution. As will be seen in PS6,
the probability distributions of these order statistics can be evaluated
in terms of binomial distributions. So, it’s unnecessary actually to do
bootstrap sampling in these cases as we have the exact distribution.
As to be found in PS6 one can get approximate bootstrap 100(1 −
α)% confidence intervals for quantiles. (They can only be approximate
because of the discrete distribution of the bootstrap order statistics.)
But as will also be seen in PS6, one can directly get nonparametric
confidence intervals for quantiles without the bootstrap. Then one can
compare the bootstrap and non-bootstrap confidence intervals to see if
they agree exactly or approximately. If they do, they can give further
reassurance of the validity of the bootstrap, even if it is not really
needed in this case.
For extreme order statistics, however, the bootstrap may not be

valid.

Example. Consider the functional T (P ) = sup{x : P ((−∞, x]) = 0}.
Then T (Pn) = X(1) and T (PB

n ) = XB
(1). We will have XB

(1) = X(j1)

for some j1. Suppose that X1, . . . , Xn are all distinct. Then X(1) <
X(2) < · · · < X(n). By definition of bootstrap sampling, Pr(j1 ≥ j) =(

n−(j−1)
n

)n

for j = 1, . . . , n, which converges as n → ∞ to e1−j. It

follows that limn→∞Pr(j1 = j) = e1−j − e−j = qj−1p where q = 1/e
and p = 1− q. Thus the distribution of j1 converges to a geometric(p)
distribution, and we have the asymptotic distribution of XB

(1) in terms
of the X(j).
For simplicity, let P be U [0, 1], so that T (P ) = 0. The following is

known: for the order statistics X(1) < X(2) < · · · < X(n) from U [0, 1],
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define X(0) = 0, X(n+1) = 1, and sj = X(j)−X(j−1) for j = 1, . . . , n+1.
Then for each n ≥ 1, the joint distribution of the spacings {sj}n+1

j=1

equals that of {Yj/Sn+1}n+1
j=1 where Y1, . . . , Yn+1 are i.i.d. standard ex-

ponential random variables and Sn+1 =
∑n+1

i=1 Yi. A reference for this
is Shorack and Wellner (2009, §8.2, Proposition 1 p. 335).
Since EYj = 1 for each j, by the law of large numbers, Sn+1/(n +

1) → 1 as n → ∞, and so Sn+1 ∼ n + 1 ∼ n. It follows that
n(T (Pn) − T (P )) = n(X(1) − 0) = ns1 converges in distribution to
standard exponential, so part (a) in the definition of bootstrap validity
holds with t = 1.
However, n(T (PB

n ) − T (Pn)) = n(XB
(1) − X(1)) equals 0 with prob-

ability converging to p > 0, so it does not have the same limiting
distribution as in part (a), and the bootstrap is not valid for this T
and P . There would be a similar failure for the same T and any P
with a density f such that f(x) approaches a positive limit as x ↓ a
for some a and f(x) = 0 for x < a, such as U [a, b] or the distribution
of a + X where X has an exponential (λ) density. Here a might be
unknown and we might want to estimate it.

The bootstrap and standard errors. Recall that if X1, . . . , Xn are i.i.d.
with finite mean µ, variance σ2 and standard deviation σ, then for
X = (X1 + · · · + Xn)/n we have EX = µ and Var(X) = σ2/n,
so the standard deviation of X is σ/

√
n, which is called the stan-

dard error of the mean. It can be estimated by ŜE = sX/
√
n where

s2X = 1
n−1

∑n
j=1(Xj − X)2. For n large enough, by the central limit

theorem,
√
n(X−µ) is approximately N(0, σ2), so we can get approxi-

mate 100(1−α)% confidence intervals for µ with endpoints X±ŜEzα/2
where P (Z ≥ zβ) = β for a N(0, 1) variable Z.
Applying the same idea to the bootstrap (Efron and Tibshirani,

Chapter 6), where now T is general or complicated enough that we
cannot treat it as directly as we can for means or quantiles, but we
can calculate T (Pn), suppose we observe a given Pn and take R i.i.d.
bootstrap samples giving PB

ni, i = 1, . . . , R, recall Ti = T (PB
ni), take the

sample mean

T =
1

R

R∑

i=1

Ti

and sample variance (sBT )
2 = 1

R−1

∑R
i=1(Ti − T )2. One can get an ap-

proximate confidence interval for T (P ) for the unknown P as described
below.
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For the R bootstrap library “boot,” one begins with a sample y
such as (X1, ..., Xn). For example, suppose the functional T to be
bootstrapped is the median. One can create a bootstrap object which
may be called y.boot by
> library(boot)
> set.seed(101)
> y.boot = boot(y,function(x,i) median(x[i]), R = 1000)

Here i indexes bootstrap replications and will run from 1 to R. If
one then types “y.boot” one gets output with labels in the first line:
“original bias std.error” and numbers under each. This output relates
mainly to the normal-based confidence intervals, which Venables and

Ripley, and I, de-emphasize. The first number “original” is just T (Pn),
in this case the sample median of the sample y. The second number,
“bias,” equals T − T (Pn), recalling that T is the sample mean of the
Ti.
“Standard error” means the standard deviation of a statistic, or an

estimate of it. Sometimes, and especially when called “standard error
of the mean,” it means standard deviation of a sample mean, or an
estimate of it, namely, for i.i.d. random variables Ti with standard
deviation σ, the standard deviation of T is σ/

√
R, estimated by sBT /

√
R.

In this situation, the relevant statistic is an individual Ti = T (PB
ni).

Assuming that T (P ′
n) − T (P ) is approximately normally distributed

with mean µ (not necessarily 0 in general) and standard deviation σ,
one would estimate σ by the sample standard deviation sBT of the Ti.
In a simple “toy” example y = (0, 1, 3), the mean of the bootstrap

sample median mB is 1.2593, and its median is 1, so that the true bias
of T is 0.2593. Applying “boot” with R = 1000, the estimated bias R
gave was 0.246. The true standard deviation ofmB is 1.1086 and R gave
the estimated “standard error” of 1.1067. Dividing by

√
R would give

something much smaller. Of course, one would like n much larger than
3 so that the bootstrap would become valid and approximate normality
might hold. The example was chosen just to check the meaning of the
outputs of some of R’s bootstrap functions.
The normal-based confidence intervals from the bootstrap work as

follows. Assume as in general with the bootstrap that the conditional
distribution of T (PB

n )− T (Pn) given Pn is approximately the same as
the distribution of T (P ′

n) − T (P ) and now moreover, that this distri-
bution is approximately N(µ, σ2) for some µ and some σ > 0. One
then estimates µ by µ̂ = T − T (Pn) which is the “bias,” and σ by the
sample standard deviation of the Ti which is the “standard error.” If
T (Pn)−T (P ) as a random variable has approximately this distribution,
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then a point estimate of T (P ) is T (Pn) − µ̂. (This may be somewhat
surprising since one might have thought T (Pn) itself was the natural
point estimator of T (P ).)
Besides what is displayed at first, a bootstrap object such as y.boot

above actually has much more information in it, including the order
statistics of the Ti, T(1) ≤ T(2) ≤ · · · ≤ T(R). The R command boot.ci
gives a choice of confidence intervals in which those of this form are
called “normal” in the output, abbreviated “norm” in the command as
in
> boot.ci(y.boot,conf=c(0.90,0.95),type = c(“norm”, “basic”, “perc”))
where “basic” and “perc,” as we’ll see below, use the order statistics
T(i). In PS6 you can see how they behave in some cases.

Using the bootstrap order statistics. An idea seemingly better than
the standard error approach in bootstrapping is to use not only the
sample mean and variance of the bootstrap observations Ti but all the
information in them, via their order statistics T(1) ≤ T(2) ≤ · · · ≤ T(R).
From these one can estimate quantiles of the distribution of the Ti for
the given Pn. For 0 < q < 1 the qth sample quantile of the Ti is defined
as T(⌈Rq⌉) if Rq is not an integer, where ⌈x⌉ is defined as the least integer
≥ x, or as 1

2
[T(Rq) + T(Rq+1)] if Rq is an integer, as in the familiar case

of the sample median where q = 1/2. For the similar case of Monte
Carlo sampling, where we have some N instead of R, recall that in
finding quantiles for the dip statistics, the Hartigans used N = 9999
and Maechler used N = 106 + 1 so that Nq is not an integer for any
of the q’s used. Whereas, for R = 1000 as suggested in the bootstrap,
Rq will be an integer for the usual values of q.
One can get a nonparametric (as opposed to normal-based) 100(1−

α)% confidence interval for T (PB
n ) given Pn as [L,U ] where L is the α/2

sample quantile of the Ti and U is the 1−(α/2) quantile. This is called
the “percentile” confidence interval, also in the R output, abbreviated
“perc” in the command as above. It’s an observed confidence interval
for T (PB

n ). Then subtracting T (Pn) from both endpoints, we get such
a confidence interval for T (PB

n )− T (Pn) conditional on Pn.
Let P ′

n be (again) a general empirical measure for the given P , as
opposed to the observed Pn from which PB

n are sampled. Certainly
T (P ′

n) =d T (Pn), and since T (P ) and
√
n are constants,

√
n(T (P ′

n)− T (P ) =d

√
n(T (Pn)− T (P )).

If the bootstrap works, then the left side of the given equation is ap-
proximately equal in distribution to

(
√
n(T (PB

n )− T (Pn))|Pn).
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But we saw earlier that one has to be careful in algebraic manipulations
with quantities equal in distribution. If there are conditional proba-
bilities involved, still more care may be needed. Davison and Hinkley
(1997 or earlier) proposed to plug in T (Pn) in place of T (P ′

n). That
would give

1− α ∼ Pr (L− T (Pn) ≤ T (Pn)− T (P ) ≤ U − T (Pn))

= Pr (2T (Pn)− U ≤ T (P ) ≤ 2T (Pn)− L) ,

a proposed confidence interval for T (P ).
Namely, as [L − T (Pn), U − T (Pn)] is an observed 1 − α confidence

interval for T (PB
n ) − T (Pn) given Pn, if we take it as an approximate

1−α confidence interval for T (P ′
n)−T (P ), and then by the plug-in for

T (Pn)− T (P ), then the inequalities

L− T (Pn) ≤ T (Pn)− T (P ) ≤ U − T (Pn)

are equivalent by simple additions and subtractions to

2T (Pn)− U ≤ T (P ) ≤ 2T (Pn)− L

and so give us as an approximate 1− α confidence interval for T (P ),

[2T (Pn)− U, 2T (Pn)− L].

This is the interval called “basic” in the R output and command (not
abbreviated). On p. 136 Venables and Ripley say “the intervals based
on normality are not adequate” (because of asymmetry) and that the
“basic” intervals are preferable to (“more rational” than) the percentile
intervals as confidence intervals for T (P ).

Drawbacks of the basic interval. It is not clear that the plug-in P ′
n = Pn

is valid. One needs to do experimental (Monte Carlo) checking to see
how well different intervals work. Davison and Hinkley (inventors of the
basic interval) did so themselves in their 1997 book. They found that
the basic interval worked no better than the percentile interval and
that neither worked as well as some other bootstrap-based intervals,
such as the BCa (bias-corrected, accelerated interval, implemented in
R “boot” as “bca”).
Suppose that T (·) > 0, so that 0 < TL < TU < ∞. Use of the basic

interval can lead to strange results if T (P ) > 2T (Pn), or equivalently
T (Pn) < T (P )/2, as can happen with probability > 0 in case T (P ) is
the variance of P (see PS6 problem 5). So it seems the basic interval
should not be recommended.

Phylogenetic trees. The paper by Efron, Halloran and Holmes (1996)
treats an application of the bootstrap which has become rather popular.
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They mention that application of the bootstrap to phylogenetic trees
had been proposed earlier by Felsenstein (1985). I found from the
Web of Science that the Felsenstein paper has been cited over 15,000
times by other papers through October 2010, or 27,170 times through
March 2015 according to Google Scholar, a very large impact. The
paper by Efron et al. had been cited over 570 times. It proposes some
improvements to the method which have been incorporated in the R
package pvclust (Suzuki and Shimodaira, 2006). We will not be using
that in our first week on the bootstrap. We will get to it later.

Notes. In the title of Shorack and Wellner (1986, repub. 2009), “Empir-
ical Processes” meant classical empirical processes

√
n(Fn −F ) except

in the last Chapter 26. In Chapter 26, and in van der Vaart and Wellner
(1996), it means general empirical processes

√
n(Pn − P ).
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