Fact. If $X$ and $Y$ are independent random variables, $X$ is $N\left(\mu, \sigma^{2}\right)$ and $Y$ is $N\left(\nu, \tau^{2}\right)$, then $X+Y$ is $N\left(\mu+\nu, \sigma^{2}+\tau^{2}\right)$.

Note. For any two random variables $X$ and $Y$ with finite means (independent or not), $E(X+Y)=E X+E Y$. And, for any two random variables $X$ and $Y$ with $E\left(X^{2}\right)<\infty$, $E\left(Y^{2}\right)<\infty$, and $\operatorname{Cov}(X, Y)=0$, for example, if $X$ and $Y$ are independent, we have $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$. So, if $X+Y$ has a normal distribution, it must have the given mean and variance.

Proof. Clearly, $X-\mu$ has a $N\left(0, \sigma^{2}\right)$ distribution and likewise $Y-\nu$ has a $N\left(0, \tau^{2}\right)$ distribution. If we can show that $X+Y-\mu-\nu$ has a $N\left(0, \sigma^{2}+\tau^{2}\right)$ distribution, it will follow that $X+Y$ has a $N\left(\mu+\nu, \sigma^{2}+\tau^{2}\right)$ distribution. So we can assume that $\mu=\nu=0$.

Recall that $\exp (u)$ means $e^{u}$. The convolution of the $N\left(0, \sigma^{2}\right)$ and $N\left(0, \tau^{2}\right)$ densities, omitting the constant factor $A=1 /(2 \pi \sigma \tau)$, is

$$
h(t)=\int_{-\infty}^{+\infty} \exp \left[-\frac{(t-y)^{2}}{2 \sigma^{2}}-\frac{y^{2}}{2 \tau^{2}}\right] d y
$$

We can bring a factor $\exp \left(-t^{2} /\left(2 \sigma^{2}\right)\right)$ not depending on $y$ outside the integral. The remaining expression inside the integral, whose exponential is taken, if put over a common denominator, becomes $-\left(\left(\sigma^{2}+\tau^{2}\right) y^{2}-2 t \tau^{2} y\right) /\left(2 \sigma^{2} \tau^{2}\right)$. Completing the square, then subtracting a term to compensate, this becomes

$$
\frac{-\left(\sigma^{2}+\tau^{2}\right)\left[(y-v)^{2}-v^{2}\right]}{2 \sigma^{2} \tau^{2}}
$$

where $v=\tau^{2} t /\left(\sigma^{2}+\tau^{2}\right)$. Then

$$
\exp \left(\frac{\left(\sigma^{2}+\tau^{2}\right) v^{2}}{2 \sigma^{2} \tau^{2}}\right)=\exp \left(\frac{\tau^{2} t^{2}}{2 \sigma^{2}\left(\sigma^{2}+\tau^{2}\right)}\right)
$$

and we can bring this factor outside the integral because it doesn't depend on $y$. Then, the value of the remaining integral doesn't depend on $v$ and so doesn't depend on $t$; it's a constant $B$ depending on $\sigma$ and $\tau$, specifically, $B=\sqrt{2 \pi} \sigma \tau / \sqrt{\sigma^{2}+\tau^{2}}$. The function of $t$ we wind up with, leaving aside such constant multiples, is

$$
\exp \left[-\frac{t^{2}}{2 \sigma^{2}}\left\{1-\frac{\tau^{2}}{\sigma^{2}+\tau^{2}}\right\}\right]=\exp \left[-\frac{t^{2}}{2\left(\sigma^{2}+\tau^{2}\right)}\right]
$$

This is just the function of $t$ we wanted. The constant multiplier, taking the product of those that were left aside, is

$$
A B=\frac{1}{2 \pi \sigma \tau} \frac{\sqrt{2 \pi} \sigma \tau}{\sqrt{\sigma^{2}+\tau^{2}}}=\frac{1}{\sqrt{2 \pi\left(\sigma^{2}+\tau^{2}\right)}}
$$

which is also the correct normalizing constant (as it would have to be, since the convolution of two probability densities is a probability density). The proof is complete.

