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1. Introduction

This paper contains proofs of most of the results announced in [9],
together with some further developments. The basic analytic question
addressed here concerns the mapping properties, on the natural Sobolov
spaces, of elliptic totally characteristic pseudodifferential operators, on a
compact C” manifold with boundary. The ring, ?:(X) y of such operators
was described in detail in [8] and includes as a subring Di{fE(X) C ig(X) '
the ring of all totally characteristic differential operators, those given
locally as the sums of products of vector fields tangent to the boundary.
These differential operators are sometimes called Fuchsian differential
operators by extension from the special case of ordinary differential
operators with regular singular points. A representative example on the
manifold with boundary [0,0) x Y, Y compact Riemannién, ie the element of

Dif42¢10,8) x Y
_ 2
A= D+ A,

and the operators considered here are higher order (and pseudodifferential)
analogues of this, near x=0 , in that they are elliptic transversally and in
the compressed vector field xDx

The basic results obtained are Theorems 6.4 and 4.17 which show that an

m

elliptic element A ¢ ib(X) y acting on the weighted Sobolev spaces described

in Section 2,

ar x*HIOO0 — xaLg(X)

is Fredholm for all but a discrete set of values of a € R. The Kernel
consists of a finite dimensional space of classical conormal distributions on

X , that is €® functions in the interior with asymptotic expansions in
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terms of the distance to the boundary, and the index can be computed once it
is known for one value of a , in terms of the spectral properties of an
associated family of elliptic operators on the boundary. We leave open the
important problem of determining an index formula for operators of this type,
In Theorem 7.12 this analysis is applied to investigate the spectral
properties of a self-adjoint elliptic operator in QE(X).

These results can be considered as generalizations of well-Known
properties of ordinary differential operators, One motivation of this
analysis is the fact that it can be applied to the Laplace-Beltrami operator
on a Riemannian manifold with conic singularities. Such a connection was
made in [9] and further develop&ents, including the relation to the work of
Cheeger [1], [2] will be given elsewhere, The work of Kondratev [4] on
analysis on spaces with conic points is therefore also tlosely related to the
present investigation, However, the main intention here is to give a
systematic format fof the treatment of such singular problems. In this
regard the elliptic totally characteristic case, treated below, is the
simplest of many classes of degenerate elliptic ‘boundary problems’ which
appear on the desingularization of spaces with corners, or creases, of
various codimensions. No boundary conditions as such need to be imposed on
the solutions to an elliptic totally characteristic operator in order to get
Fredholm properties because these would correspond geometrically to
conditions on a set of dimension zero, and as shown below the Kernel is
finite dimensional on any space of distributions of finite regularity at the
boundary. In other cases, examined in [10], this is no longer true and the
theory is more complicated.

The work of R. McOwen [51, [61, [?] is even more closely related to the
results below. Indeed, the introduction of polar coordinates and inversion
in the radial variable reduces discussion of the Laplacian on R" to that of
an elliptic element of Diffg(X) ' X the unit ball. McOwen admits
perturbations of the Laplacian which are more general than would be permitted

here, and obtains results directly comparabie with Theorem &.17 though not
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the structure theorem 6.4; however the methods and results below are of more
general applicability. In [?) it was noted that boundary problems can be
treated by the method below and McOwen has alsoc treated certain boundary
problems for infinite domains in Euclidean space. The full treatment of

boundary problems outlined in [?] will appear elsewhere.




2. Totally characteristic Operators

We shall recall from [B] the main properties of the totally

]
characteristic operators on a compact manifold with boundary. Let C:(X)

]
denote the space of C® test functions on the interior of X and C(X)
0
the corresponding space of distributions, the dual of the space C:(X,QX) of
test densities. By Schwartz’s Kernel theorem any continuous linear operator
o0 __wo
(2.1 A COO — €700
can be represented uniquely in terms of its Kernel

. 0 0 . 0O o o
Ky € CT7ONXG 150X) = CTUXxX) @ CUOX(; 1500,

an element of the space of distributions on the product transforming as a

density in the second factor, through
]
(2.2) (Ah,E) = Kk (F 0 §) U ¢, € CTOO.

The product X X X is a manifold with corner and in [B] an associated
manifold with corner, the stretched product of X with itself, X X X , was

introduced with a natural surjective C* mapping
(2.3 XXX — X xX .

This map identifies the interior of the two manifolds and identifies part,
a;<x X X) y 0of the codimension one boundary of X X X with the codimension

one boundary

-~
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] ]
B X X X) = (X x X) U (X x X
of X X X . The remaining part of X XX s
(X X X) = TTHaX x X)) = aX x X x [-1,1] .

~ ~ ~o ¢ O
In X x X the diagonal A is the closure of 1(A N {XxX>) and is a
proper subset of ;—l(ﬁ). Moreover, A meets the total boundary @d(X X X)
only in the part 8;(X X X) and meets that hypersurface transversally. If

X is doubled across its boundary to give the C” manifold without boundary

X

X U (=X

then the naturality of the construction of X§X means that 8;((—X) X (=X))
can be identified with 8;(X X X) so that
Y= (X X X) U ((=X) X (=X))

becomes a manifold with boundary, but without corners. The doubled diagonal
BY =AU (-A) CY is then a compact embedded submanifold not meeting the

boundary ay. Thus, the space of Lagrangian or conormal distributions
associated to BY s

Mov,A0 € e,

3s a subspace of the space of extendible distributions on Y, can be defined

by requiring that u € CT7(Y) satisfy (2.4) and ¢2.5):




In local coordinates zl""’zn’tl""’tn based at p € AY

(2.4) inwhich Ay = {z, =--»=z_ =0) there is a symbol a € s™R} , Rg)

such that u(z,t) = (290" j e!Z8act, 0> dz in Jtl, lz] <€, € 0.

(2.5) 1f p € C®(Y) has p = 0 near BY s p = 1 near 3Y then pu € C*(Y),

Here, (2.4) is just the coordinate version of the ususal definition of the
distributions which <form the Schwartz Kernels of pseudodifferential
operators, whereas (2.5) requires that wu be smooth up to the boundary 3Y
and vanish there wih all its derivatives, I1f 6 is any C® wvector bundle

on Y define
1M(Y,By; B) = 1”(Y,3Y) 8 C™(Y;6) relative to C™(Y).

Consider the trivial bundle over Y , B , defined with respect to the

submanifold S = (X X X) N ((-X) X (-X)) by taking the fibre at ¥y € Y as

B, = {f ¢ E2ey/8) 5 tf € C¥¢Y) iF t e C¥(Y), t=0 on S/
(2.6)

f~0 &3 (tf)ly) =0,
4

The basic space of Kernels is

~ ~% . o ©
(2.7) Kpex> = 1™y, &, ; 1 12*(Qx) @B  C CTUXxX QEQX)
XxX




¢ o ~
where in the identification over XxX the isomorphism 1 and the canonical

trivialization of B have been used. Then, by definition
m m
{2.8) A€ ?b(X) & Xp € Kb(X) '

that is, an operator (2.1) is a totally characteristic pseudodifferential
operator of order m if it is a pseudodifferential operator in the interior,
of order m , and in addition its Schwartz Kernel has certain specific
extension properties at the boundary of X x X , as contained in the
definition of KP(X),

More generally if 6 4 H are c® vector bundles over X then the
corresponding space of totally characteristic pseudodifferential operators
from sections of G to sections of H is defined by tensoring the Kernels

with the homomorphism bundle:
(2.9 A€ ¥p(X; B,H) & Ky € KD(OXO @ C¥(X; 6,H) rel. C™(X).

As a space of Lagrangian distributions the space of Kernels has a symbol
mapping (see [3]). Using canonical trivializations over the diagonal this

gives:

(2.10) o, iz(X) — S™T50/8™ (T

where T'X is the compressed cotangent bundle of X . This vector bundle is
[
naturally isomorphic to T*X over X and is defined as the dual of the

compressed tangent bundle, fx '

The compressed tangent bundle is the natural vector bundle over X such that

if W@Ex) C CO(X,TX) is the C®(X)-module of vector fields on X tangent to



8X then

(2.11) C2X,TX) = V(ax) .

The symbol mapping gives an isomorphism

(2.12) o, ¢ ir'goo/i’t"‘"oo — TN T

The basic mapping properties of totally characteristic operators are:

Aa: C20 = %00, A 0 — %0
(2.13) ) ) YA €I, Um,
A T2 — C7%00, A T2 — CT700

where the second pair follows from the first by duality using the fact that
if adjoints are taken with respect to a smooth non-vanishing density v €
X, @X), ¥ >0, 9X=0X®B, then

* *,
(2.14) A" € OO and o (AT) = o (A) .
In view of (2.13) composition is weli-defined and

(2.1%) Ao 00 ¢ ™G0 and s, (AB) = o (A) + 5, (B).
These symbolic properties and the usual techniques of asymptotic summation
allow the approximate inversion of the elliptic elements of ?ﬂ(X). An
operator A € Qg(X) is elliptic if its symbol cm(A) has a representative
a € S™T™)> which is elliptic in the sense that there exists b € § ™(T™)
with ab -1 € 8. Define




- - m
ib (X) = 2 ¥ (XD,

(2.16) 14 A € ig(X) is elliptic then there exists B € i;m(x> such that
A-B=1d + R, B:A=1d+ R with R,R" € i;°<x>.

From the definition (2.8) the residual algebra ?E”(X) is easily
characterized as consisting of those operators (2.1) with Schwartz Kernels
which 1ift from §x; into X X X CY to be smooth sections of the bundle
1"100X @ B vanishing with all derivatives at 8Y but not necessarily at .

From this it follows that
(2.17) R: CT%¢(X) — ACx, R: CT%X) — ACX) URE i;w(X) s

where the range spaces are the conormal distributions associated to the

boundary of X, for example,
(2.18) AOO = {u € C2(X) ; 3 s for which ViVo. . Wy v € HEOO
B Vg,V € VX ),

is the space of distributions with stable regularity, in say the Sobolev
sense, under the arbitrary action of vector fields tangent to aX. For
boundedness properties it is important to consider weighted Sobolev spaces in
place of the standard ones HS(X).

Let vy € Cw(X,QbX) be a strictly positive section, i.e. a density,
such that if r € C®(X) is a defining function for 8X then rvy € C°(X,QX)
is positive everywhere on X. Thus, if B is defined as in (2.6) on X
relative to 38X then Yy is a non-vanishing smooth section of QX @ B over

X . Set
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2 ]
(2.19) LEOO = {u € €700 ;5 v € L}oc<x>, J |u|2vb <o},

which is actually independent of the choice of 4% with these properties,

If m is a non-negative integer, define

(2.20) HPOO = {u € CT700; Vyerabpu € Lg(X) i Ve,V € VEX), po§ om).

P

For a negative integer we define

HROX) = {u € €700 5 €°C0 3 4 ul4ry)
(2.21)

extends by continuity to H;m(X)}
where we note the fact that
(2.22) PO « HIX)  is dense,
for m a non-negative integer, and in fact for any integer. Now,
(2.23) ar o0 = ™0 04 Ae X, with m (o
It is then consistent to define
(2.24) HOO = (u e CT700 5 au e L2 YA edon) mek.
Using the properties of ?g(X) it is easily shown that, for m > 0 , this is
a Hilbert space with respect to the norm (HAqu + Ilullz)l/2 y W0 a Hilbert
norm on Lg(X) and the duality, density and continuity results (2.21), (2.22)
and (2.23) then hold without integrality conditions on the orders.

Another important property of the totally characteristic operators

involves boundary values. Let

i1




(2.25) g 700 — €@
be the restriction to the boundary. Then,
(2.2 (Au)y = Ab(ua), u € CQ(X), A€ ig(X)
where this defines the boundary operator of A and
(2.27) () PO — ¥7(@X)
is a surjection from totally characteristic pseudodifferential operators on
X to pseudodifferential operators on 3X. From definition (2.11) there ic a
projection, and corresponding dual injection
~ * &%
(2.28) TayX — 73X , TaX — TaXX.

With respect to this injection the restriction map has the symbolic property

(2.29) cm(Ab) = cm(A) . .
T 3X

It also follows from the assumption in (2.5) that the Kernels vanish to
all orders at 8;(X X X) that if r € %00 is a defining function for dX
and one considers the multiplication operator
P8 %X — CT000,

which is an isomorphism for any s € € , then under conjugation,

(2.30) FTi%ar’S e oo, i A€ Yoo |

12



Using this we define the

defining function r by

indicial family of

(2.31) 1,(8) = (r"sAriS)b € ¥™(3%) .

It is easy to see that A(s)

A € \!';(X), relative to the

is weakly holomorphic in s .

13
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3. Mellin transform.

Consider the Mellin transform in one dimension:

- ]
= - -is dx
{(3.1) Mu(s) = uM(s) = j X uix? i
, 0
For u € C?(R+), R = (0,2) , this integral coverges absclutely and uM(s)
is entire in s ., This can be seen easily by introducting t = log(x) acs

variable of integration, reducing the Mellin transform to the Fourier

transform:
L« ]
(3.2) uy(s) = G(e) = J e %ty dt, Wt = w0, x = et
-w
Thus, the Paley-Wiener theorem can be applied, showing that
¢ = Mu, U € C?(R+), sup(u) C [a_,a,] =
(3.3 _ _
¢ is entire and U N sup le¢s)| (14 |s|)N exp(a, Im(s)) ( o,

+Im(s)>30

The inversion formula is therefore

(3.4) u(x) = (2p) "} J x!Suys) ds .

-®

set €' = {s €€ ; Im(s) >0) . The L2 version of the Paley-Wiener theorem

shows that (3.1) extends by continuity to an isomorphism

14




M:(uetZ®D ju0 =0, x»o0) = L2 _&H

b,c
3.5 — {uM T A iUy is holomorphic and 3 b s.t, (
0
sup luy¢s+it)) 2 e Bt de ¢ @),
0(t{> * -o
Next consider the Mellin transform of conormal distributions. Set T
M
(3.6 ILZRY = (u e L2 5 0 ku ¢ LZRY Yk € N).
¢
(3.7) LEMMA. The Mellin transform gives an isomorphism t
=4 -4
M: {u ¢ ILg(R ) yulx) =0, x X 0)= ILg,c(R b/ ¢
— {uM= (Y | iUy is holomorphic and 3 b s.t. d
® N 2 _-bt
sup (I+]s]) fu(s+it)|“ e de ( @« Y N},
0<{t{o "~
L
f1
Proof. The Mellin transform has the property
(3.8 (xDxu>M(s) = s uyis) .
is
Thus the stated estimates follow from (3.3) and continuity. in
The Mellin transform also satisfies the identity, for u € C:(R*),
(3.9 T e = gcsety  toe e s
ce
Using this it follows easity from Lemma 3.7 that for any a € R,
15




. LA 2 4
M: x ILb,c(R ) —

(3.1 {uM(s) is holomorphic in Im(s) > -a and 3 b s.t.

(-]
sup J' fug¢s*+it) ] 241N e gs (o, N} = Holca)
—a{t{a>

-

The element in the quotient space Hol(a)/Hol(a+1) can be considered as the

Mellin symbol of the conormal distribution u € xaILg c(i+)'
]

(3.11) LEMMA. Choose p € C?(R) with pix) =1, x < %, p(x) =0, x> 1,

then the map

(3.12) M, xangciU/xa”ng(ﬁ*) — Hol{a)/Hol(a+1)

defined by Ma(u) = (pu)M is an isomorphism independent of the choice of p.

Proof. Notice that Ma is well-defined since if p’ is another cutoff

function with the required properties then
(pu)H - (p’u)H = ({(p - p’)u)M

is the Mellin transform of an element of C:(§+) with compact support so is

in Hol¢a”) for all a’ € R by (3.3). The remainder of the lemma is clear.

In fact M, can be converted into a coordinate independent Mellin
symbol map. Before doing this note that (3.10) actually includes all

conormal distributions. If Y is any C® manifold without boundary, set

14



1.2
(3.13)

and ¥ Vyye. by € C°0NTD, Ky bR vy, v e et

and let

b,c

R xD=(uel

2,5t
bR

Ac(i* xY) ¢ aRt xv

=+

XY) 5 u{x,¥y) =0 in

support compact in R Xx Y,
(3.14) LEMMA. AR x Yy =
Proof. Using simple commutation arg

C(R x Y)

x 0,

2
b

R* x V),

uments it is easily seen

be the subspace of distributions with

that the

requirement u € Ac(l—i+ X Y) is eguivalent to the existence of r such that

kK _K
Dx X

Sobolev’s embedding theorem shows that if K ) -r+i

2

~-K
U € x lLb,c

p LIS r-+
(xD IV Vyerely € H(R™ X Y)

R xY) .

Let Hol(a,Y)

Hol(a),

(3.15)

M

a

R Y-
I ILb

Y Vgyae Yy € CO0Y,TY

The converse is similar.

be the space of

RY x YI/x

is again an isomorphism,

Suppose that N

is an oriented, trivial

is the positive half of

v € C%¢r,NY

(3.16)

Applying Lemma 3.11

N

in the x

a+l

c® functions on

variable shows that

Y

this implies that

with values in

ILZRY X Y) = Hol(a,Y)/Hol(at1,Y)

line bundle over Y,

1+ N

then the choice of a non-vanishing section

gives a linear isomorphism

N

+

AN
=

+

xY

with

17

v(y) «— (1,y)

S

(3

ac

ta

(3

(3

i

ang

Tht

(3-



Such & choice of section therefore gives an isomorphism

2
b

2

: ® xv,

x2ILSINY)  — x3IL

and so defines the Mellin symbol map, Ma on xaILg(N+)/xa‘!lL§(N+). Under
a change of section, to v’ = ¢v, 4 € CO(Y), ¢ > 0, the linear coordinate

X is replaced by x’ = Q—lx. Thus the new Mellin symbol, H;u is simply

‘ - is
(3.17) Mau(s> = ¢ (Mau)(s).

There is a natural trivial bundle over Y with sections which transform
according to the law (3.17). For any s € € the bundle N*° s defined by
taking the fibre to be

°

(3.18) N:S = (f: N

+

, S C ) = t'%0) Y teRr).,

Here, tiS is the standard branch. I1f v s a non-vanishing section of

N*  then there are associated sections of all the density, or power, bundies
N*s, namely
(3.19) vy = 1 Yyey

fixes the section »*S s With the homogeneity property (3.18). If ¥’ s

another section, as above, then
¥y = 3T SGyy = ¢ Tis,
Thus from (3.17), (3.19) we see that the section

(3.20) (Hau)(s)-(v*s)

18



is independent of the choice of v. Defining Hol(a,N*s) = Hol(a,Y) in any

trivialization of N, this proves:

(3.21) PROPOSITION. If N is an oriented, trivial line bundle over Y
then

M,: xaILg(N+)/xa+11L§(N+) — Hol(a,N*S)/Hol (a+1 ,N*®)

defined by (3.20), is independent of the choice of trivialization.

1+ §: N = N is a diffeomorphism of a neighbourhood of the zerc

section onto its range with the properties

(3.22) f: ON — qq is the identity
(3.33 f*: TON — TON is the identity
and if x: N* = R is a non-trivial linear function on the fibres, i.e.

N - (x,y) is a trivialization, then

*x = x(1 + xbix,y)),

where b is C° near ON. It follows that if f is used as a change of

variable of integration in (3.1), with | u supported sufficiently near 0,

then
L . ]
uy(s) = J xT S0 J xSeex, mxf Fuen X
0 ]
where c(x,s) is C° in x and entire in s. If u € xaIL2 (NH it

b,c

19



follows that

(3.24) Mau = Maf*u if f satisfies (3,22), (3.23).
Suppose that X is a compact C® manifold with boundary. Then there
always exists a normal fibration of X near 83X, i.e. a tubular neighbour-

hood of @X in X. Thus, there exists a diffeomorphism of a neighbourhood,

6, of 8X in X

(3.25) g: 6 — N'ax

with a neighbourhood of 0 in the positive, i.e. inward pointing, half of

the normal bundie to 38X with the additional properties:

(3.26) g: 8X — ONSX is the natural identification

(3.27) gyt N3X — NONSX is the natural identification.

Recall that Nx&X = TXX/TXGX for each x € 38X , so N8X is a trivial line
bundie over 8X. Thus there is a natural identification of the zero section
of N3X and the base aX, this is the meaning of (3.26). Since g: 3IX — ONax
the Jacobian g3 TXSX — Tx’ONax is an isomorphism. Thus g, projects to
a map as claimed in (3.27). Since Na@x is a vector bundle there is a
natural identification of TxNx with Nx for each x € 8X and hence of the

quotient

NxCIx = Tx(NaX)/Ton x Nx

it is this identification which is involved in (3.27).

It is easy to see that if 9y» gp are two maps as in (3.24)>, (3.27),

2



then § = 91951 satisfies (3.22) and (3.23). Thus the invariance result

(3.24) gives the invariance of the Mellin symbol.

(3.28) THEOREM. If X is a compact €® manifold with boundary the Mellin
symbol, defined by reference to a normal fibration (3.25) - (3.27) gives an

isomorphism independent of choice:

2

b<x>/xa*‘1L2<X) — Hol¢a,N*S)/Hol(a+1 ,N*S) ,

- |
(3.29) Myt X IL b

As well as functions holomorphic in a half-space we need to consider,
briefly, functions in a strip. 14 a, { a, Tet Hol(ai,a2,8X) be the

space of holomorphic functions
f1 {s € €5 ~a; < Im(s) < - a,} — CT(AX
satisfying estimates analogous to (3.5):

(3.30) sup J N Cs—-i tH1? 1+ 1spNds < o Yp, N
ay(t<a, HP (ax)

The inversion formula (3.4) shows that § = Uy where u € xaILg(lﬁ+ X ax)

for every a € [az,all. Choose p € C:(R) with p{x> =1 in |x] {1 and

consider the map

(3.31) Com: Hol(al,az,SX) 3f (pu)M € Hold(a,3x) ,

*S)

Simitarly, it Hol(al,az, N is the space of holomorphic sections of the

N¥s

power bundies, reducing to Hol(al,az,SX) when the are simul taneously

trivialized by the choice of a trivialization of N , then replacing p by

2]

ar

(3

(3



an element of C:(N’EX) equal to one near the zero section, gives

*5)

(3.32) Com: Hol(a ,a,,N*®) — Hol(a N any a, < a; .

(3.3) LEMMA. The compactification map (3.32) has the property

M (AU = Com(l,(s)f) mod Hol(a+t, N¥*S)

#s

it A€ ig(X) , f € Hol(a,a’,N" %) with a’ ¢ a , and

M,u) = Com(f) mod HolCa+l, N**),

Proof. 14 u € xaILg(X) then by assumption, Ma(Au) = IA(s)Ma(u) =

IA(S)Com(f) mod Hol(a+l, N*S). Now, 0, = Com(+> - + is the Mellin
transform of an element of xaIILg(N+8X) with support disjoint from the zero
section. Thus, 9y satisfies estimates (3.30) with a, = a‘ and for any
3 o, say @ = a+l . Similarly for 9, = Com(IA(s){) - lA(s)f. Thus, h = -
lﬁ(s.)g1 t 9 catisfies the estimates (3.30) with a = atl, a, = a’ and is
holomorphic in the corresponding strip. In fact, h = Com(lﬁ(s){) -
IA(s)Com(i) € Hol(a,N*s) , is therefore holomorphic throughout the hal4f-
space Im(s) > a-t, and so is an element of Hol(a+1,N*s), proving the

Lemma.
A similar argument shows that

(3.34) Com: Hol¢a,N*®) — Hol(a,N*%) is the identity mod Hol(at1,N"%).



4. Boundary spectrum.

14 A€ Qg(X) sy X a compact manifold with boundary, then the family of
pseudodifferential operators on the boundary of X given by (2.31) is the
indicial family of A. To make this family coordinate free we shall consider

N*S;

each element as acting on sections of the power bundle
(4.1) I,(5) € ¥™@X,N*%) is entire in s € C.
The boundary spectrum of A is the set

spec, () = (s € € 1,090 HM@X) — L2(ax)
(4.2)

is not an isomorphism}.

(4.3) THEOREM: If A € Qg(X) is elliptic and X is compact then spec, (A)

b
is a discrete subset of the complex plane wih

specb(A) N{s et ; |Im(s)] <R} finite for every R ¢ R,
(4.4

i.e, if s; € specb(A) and lRe(sJ)l — @ then |Im(s)] — o,

Proof. Under a change of section of N, IA(s) is conjugated by an entire
non-vanishing function .is which does not alter specb(A) y SO it is
certainly enough to consider IA(s) in the form (2.31). 1In proving ¢4.4) it
is enough to show that for each R € R there exists R’ € R such that if
|Im(s)] ¢ R and [Re(s)] > R’ then IA(s) is invertible. Indeed, once this
is done it follows that IA(s) y &s an entire family of elliptic oberators on
the compact manifold 3X , has constant index zero; hence the set of points
of non-invertibility is discrete and satisfies (4.4) as claimed.

Now, consider the parametrix B of A as in (2.18). Passing to the
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corresponding indicial operators shows that
(4.5) lB(s)-lA(s) = ]d + Ip(s), IA(s)-IB(s) = ld + In-(8) .

For R € igo(X) the indicial family IR(s) € ¥7°(38X) has Schwartz’ Kernel

obtained as

(4.6) k(s,y,y’)dy’ = J alO,t,y,y" tis %1 dy’
0

where a(l,t,y,y") € c*RY x 3xX x 3X) is rapidly decreasing with all
derivatives as t + @ and vanishes to all order at t=0. As |Re(s)| — w,
with Im¢s) bounded, x{s,y,y’) tends to 0 rapidiy in C%(3X x 3x). Thus,
given R € R there exists R’ € R such that if | Im¢s)] ¢ R , |[Re(s)] > R’
then

Mgt , Mg ol < 1 on L%ax).

Thus the invertibility of IA(s) follows from (4.5), completing the proof of

the theorem,

(4.7) COROLLARY. Under the hypotheses of Theorem 4.3, Igl(s) is a
meromorphic family of elliptic pseudodifferential operators acting on secions
of N*%3x y with poles only at specb(A) and with residues there smoothing
operators, of finite rank. With respect to any trivialization of N y and
for Im(s) uniformly bounded, Iz!(s>: WX(aX) — HW*™@X> has norm at most

polynomially growing as |Re(s)| — o.
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S. Graded conormal distributions.

The simplest conormal distribution on a C® manifold with boundary, X ,
apart from the elements of c®¢x) are those having complete asymptotic
expansions at the boundary. Thus, if r is a defining function for 83X

with r (5 and ¢ € C°00  then
riS TogPreg € ACX)

for any s € € and any integer p. More generally if s(j) form a sequence
in € with Im(sj) — - ® as JjJ — @ and J(j) is a sequence in N then

for any segquence ¢ € C®(X) the formal series

Jyp

(5.1 U= z 'y . riS(J) ]ogpr
Dgpgdcyy Y0P

determines a unique class in A(X)/ém(X). In fact, if + € C®(R) has +ir)

=1 in |r}] ¢ 1 and e(J)lO tend to zero sufficiently rapidly as | — @

. the series

(3.2 u= )> $ir/edjd) ¢, . riS(J) logpr
0¢p¢I§) il

converges to u € A(X). More precisely each of the series as (5,2) with |
restricted to the range j 3} Jj‘ converges in some rt(J’)Ct(J')(X) for j’
large and as ' — o, t(j’) — =@, The class [u] of (5.1) is fixed
analogously as consisting of those u € A(X) with the property that for N
sufficiently large

where
will b

denotec

and sil

(5.49)

(5.5

In pa

(5.6)

onto

(5.7

The
$ing

wrif
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where T(N) — @ as N — o, Elements of A(X> with the property (5.3)
will be caled graded elements, the subspace of graded elements will be

denoted

Agr (X) € ACX)

and similarly,

a 2 - a,, 2
X1 Lb(X) = x lLb(X) N A

or P

9

For each a € R let Mer(a) be the space of meromorphic functions,

uy» on the plane with poles P; satisfying

(5.4) Im(p.) ¢ -a, Im(P.) — -@ , u € Hol(ad
J 4 M Im(g)l-a

(5.9 luM(s)I (1+|s|)N — 0 as |[Re(s)] — @ with Im(s) bounded, Y N.

In particular, Mer¢a) C Hol(a).

2 =~ ¢

(5.6) LEMMA. The Mellin transform (3.1) is an isomorphism of xaIgPLb C(R )
- ]

onto Mer(a) for every a € R.

Proof. 1 ¢ € C™(R) has 4(r) =1 for |r| § 5 then
c Z

2 =+ _
b,c(R ) & Im(s) ( -a .

(5.7) ri® 10gPr .« 9(r) € xPIL
The Mellin transform of this function is easily seen to be in Mer(a) with a
single pole, of multiplicity p , at s = 8. Thus, if v € Mer(a) it can be

written, for any b > a , as a sum
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where the uj are of the form (5.7) and vy € Hol(b). This proves that
v = uy with u of the form ¢(5.3). The converse is similar.

0f course this lemma applies equally in the case that X = R x v y or
X is N+ corresponding to an oriented trivial line boundle over Y s With
the obvious changes, namely Mer(a) should be replaced by Mer(a,Y) , the
space of €® functions on Y with values in Mer(a) , so in particular the
poles p; are independent of y € Y , or by the space Mer(a,N*s) of
sections of N5 of the appropriate type.

For a, a € R let Mer(a,a’) be the space of meromorphic functions,
v, in Im(s) > -a’ holomorphic in Im(s) > -a and such that for some finite

set Uy,;...,U of elements of the form (5.7), v - z (u.), € Hol(a"),
1 N . J'M
14N

Similarly let Mer(a,a’,Y) and Her(a,a’,N*s) be the corresponding spaces

with €° coefficients in Y and power transition laws. Thus we have

immediately,

2

(5.8) PROPOSITION. If u ¢ x?IL%(X) has uy € Mer(a,a’,N*S) C

Hol(a,N*®)/Hol(a’ ,N*®) modulo Hol(a’,N*$), for a { a’ ¢ a+! then

2

u e x21_ L2 + xa’lLb(X).

gr b

Note that graded connormal distributions are acted upon by arbitrary

totally characteristic pseudodifferential operators.
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(5.9) PROPOSITION. I+ A ¢ i}g(X) sy X 8 compact manifold with. boundary
then

2

A: x] L§<x> — xalgrLb(X) YacR.

ar

Proof. This can easily be seen to follow from (2.3). Thus, r-isﬁris is a
totally characteristic pseudodifferential operator depending holomorphically

on s. Differentiating gives:
(5.10) A-logir) - Jog(r):A = A, € ¥](X),
Iterating this commutation result, and using (2.30) again shows that
Anris logp(r) = z ris long AL, A ¥ .
04J¢p ! o

Since ig(X) acts on C™(X) it follows that if ¢ € C°(X),

(5.11) Ar'® logPr . 4 = ¥ r‘5(¢J . Togir) 4 € 700,
0gi¢p

Since, for any a ¢ R, u € Agr(X) ic a finite sum of such terms modulo

xang(X) » which is preserved by A , it follows from (5.11) that A maps

A (X)) into itself and in view of (3.7, xalgrLg(X) into itself for any

gr
a, proving the proposition.

Note that if f is a rational function, with values in CQ(GX), then
{ is not the Mellin symbol of a conormal distribution, unless it is
identically zero. However, if Rat(a) is the space of rational functions,

with values in C®(@X) and no poles in the half-space Im(s) > -a we can

define a compactification map:




(5.12) Cm: Rat(a) — N x3 IL200
a‘f{a b

as follows. First choose a trivialization of N3X , and a normal fibration,
F, of X near 3X. Now, for b >> 0, q(s) = exp(-(-is—b)l/z) € Hol{a+1)
with the square root taken as the principal branch. Since q has no zeros

in Im{s> > -a-1 we can define
(FXom(£))y = q()f ,
and so ensure that
Ma,(Cm(+)) = q{(s)f mod Hol(a’+ {, 8X), a’ > a

with respect to the same trivialization, gives an injection from

Rat(a)/Rat(a+l).




4. Fredholm properties.

The basic tool used to analyse the Kkernel of an elliptic element of

i’;(X) is the indicial operator, which arises in the following manner,

2

(6.1) PROPOSITION. If u € xalLb(X) and A € ig(X) then M_(Au) = 1,(s)M u,

A

Proof. Using a normal fibration of X near 3X the computation can be
transferred to N*ax. on N'ax the R*-action singles out the class of
R'-invariant elements of 'i"g(N+8X). From the form of the kernel of A €

N3,

, % *

t]o

exists in ?';(X) and is R’-inuariant, where my: N*ax — N*ax  is the R

action. Moreover, (Ao)b=Ab 80

(6.2) A - Ay = x0, o ¢ ¥lN'ax.
. + + +
Since x: xang’c(N ax) — x3 1IL§,C(N ax
Fd s —-— *
(6.3 MAw = M A, u = £,

¢ being a normal fibration. From the inversion formula (3.4},



s - -1 is “/
u’lx,y) = (21 X uM(s,y) ds € >0
3

Im{s)=-a+e¢

in terms of some section of N'3X and corresponding linear coordinate x ,

Thus,
Agu (x,y) = (zm ! J x's(x—'son's)uM(s,y) gé.

Since x_'%aoxis is itself R'-invariant, x-isﬁoxisv(y) = (x_isAxis)bu(y)
= IA(s)u(y). Thus, (Aou’)M = Ié(s)ug, which together with (4.3) proves the

proposition.

Using the results of Section 4 this leads to structure theorem for

elements of the kernel of an elliptic totally characteristic operator.

{6.4) THEOREM. If A € QE(X) is elliptic on a compact manifold with
boundary, X , and u € C™(X) satisfies Au € Agr(X) then u € Agr(X)'

Proof. The existence, see (2.16), of a parametrix modulo ?;Q(X) shows that

U = B:Au - R'u € A(X). From Lemma 3.14, u € xaILg(X) for some a € R.

Thus, if Au=v € A ) then by Proposition 6.1,

gr(x
IA(s)Hau(s) = Mau(s) € Mer(a)/Holla+l)

since v € x‘n.§<x> N a0 = x*1_ L2

o] gr b
IA(s), described in Section 4 show that Mau(s) = IA(s)-lﬂau(s) is

(X). The inversion properties of

holomorphic in Im(s) > =-a and meromorphic in Im(s) > a-1 , with only

finitely many poles there. There may be a pole of either Mau(s) or
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IA(s)_1 on Im(s) = -a-1 but for ¢ > O sufficiently small,
Mau € Mer(a,a’) , a’ =a+ ] -¢€,

From Proposition 5.8 it follows that u = uy t u, u; € x21

x"lLﬁ(X). Thus,

2
grLb(X), usy €

Au2 = Au - Au1 =y - Aul € Agr(X)

by Proposition 5.9, Proceeding by induction it follows that

a 2 a’; 2
U € x IgrLb(X) + x ILb(X)

for any a < a‘ , hence u ¢ Agr(X) proving the Theorem.

(6.5) COROLLARY. If u ¢ xaHga(X) satisfies Au =10, A ¢ ig<x> elliptic

and X compact then Hau € Mer(a,a’,N*s) for any a‘ { atl has poles only

at

specb(A) N{s el ; -a>Imis) -a‘}.

As usual the Fredholm properties of operators are related to embedding

properties of associated spaces,

(6.6) LEMMA. If X s a compact C® manifold with boundary then for any

a’ > a, m >m the inclusion x‘ng,(X) hd x‘Hg(X) is compact,




Proof. Since multiplication with the power of a defining function gives an
isomorphism, rb: xaH%(X) — xa+bﬂg(X) it is enough to consider the case
a=0 or a =0 for each pair m, m’. In fact it is enough to consider
the case m’ > m ) 0, since if m” >0, m< 0 then compactness follows
from the case m =0 and if 0 ) m” >m it follows by duality. Now,
assuming a“ >0, a=0, m" >m) 0 it is immediate that on a norm bounded

set in xa!Hg,(X) the function Bu , B € ?g(X) , has uniformiy small L2

norm near 4dX , and is uniformly equicontinuous in the Lz-mean over any
compact subset of the interior, and similarly for u itself. Thus, from the
L2 form of the Ascoli-Arzela theorem such a bounded set is precompact in

#“(X), proving the Lemma.
b

(6.7) PROPOSITION. If A € ?E(X) is elliptic and X is compact then for
any a € R and m € R the kernel of A in xaHg(X) is finite dimensional,

and is independent of m .

Proof. From (2.18) if u € xaﬂg<x> satisfies Au =0 then u € xang(X) =

n x‘H@(X). Thus,
m

2(x)

Ker (A = {u€ x*HpOO 5 Au =0} C x3IL
is independent of m. From Corollary 6.5 it follows that if u € kera(A) and
€ >0 is sufficiently small, independent of u, then H.(u) € Hol(ate, N*S).
Thus, from Theorem 3.28 it follows that kera(A) C x‘+‘IL§(X). Either

directly, or from the closed graph theorem the first inclusion in

Ker (A) © x3* Ui o0 @ x 3200




is continuous, so the composite is compact. As a closed subspace of

x'Lg(X), kera(A) is therefore finite dimensional,

We proceed to construct a parametrix for A € ?z(X), elliptic, modulo a

finer remainder than i;°(X). Fixing a , suppose ¢ € xang(X). Choosing a

normal fibration F and a cut-off function p € C:(N+3X), restricting

supports to near DNBX s consider the map
Qg (pF*g)M € Hol(a,N*S).
Suppose that
4.8 ad - Im specb(A) ’
Then, IA(s)_1 has no pole on the line Im{(s) = -a, Thus, for some 3’ ¢ a,
= 1;’(s>(pF*g>H : Hol(a,a’ ,N*®) as defined following ¢3.31). Indeed the

estimates (3.30) follow from (4.8) and the estimates on I;l(s) of Section

4. Appliying the compactification map (3.32), set
(6.9 E.<0 = F 1w € x¥ILZ00 04 vy = Comchd,
Then,

M (AE, (@)) = 15°M<E <(@)) = 1,-Com(f) = Com(l,-f)
by Lemma 3.33. Since, using Lemma 3.34

Com(lA-f) = Com(pF*g)M) = Ha(g) mod Ho1(a+l,N*s)

we conclude that



(6.10) AE, = Id+5S,, S x‘1L§<x> —_ x‘*‘lLﬁ(X), €)>0

with Sa certainly continuous., Thus we have proved:

(6.11) LBEMMA. If A ¢ ?g(X) is elliptic, X compact, then if (4.8) holds
the map

(6.12) 6. =B - E R : x®00 — x2X*Mx) Y a,
a b b

where B € i;m(X) is 8 parametrix as in (2.14), satisfies

k

(6.13) AG, =Id+ T, T, xaHb

. 00— x¥IL20 Yk, with € 0.

We also need some more information on the kernel of A .

{4.14) LEMMA. Suppose A € ig(X) , is elliptic X compact , and

a € -Im specb(A). I+ € > 0O is sufficiently small then there exists a
finite dimensional subspace F_C x® ¢1L200 , with F,_ 0 x®** 1200 = (0)

such that for any K ,

ue x*HEOO has Au € x*HETO0 &3 u e x* EHEOO @ F

Proof. Select a trivialization of N*aXx and consider IA(s) as acting on
c™(3x). By assumption a € - Im spec (A) , so for each s € spec, (A) wi th
Im(s) = -a , let J(s) be the order of the pole of l‘.,'(s.)-1 at s , where a

simple pole is taken to have order zero, and set




Fg = (f: E — c®¢ax) i f is a polynomial of degree J{(s) and
(6.15)

Io(s)f(s) wvanishes at s with its first J(3) derivatives).

The ellipticity of lA implies that each F; is finite dimensional.

Recalling the compactification map of (5.12), consider

(6.16)  F, =@ cn{s™VSF_ ;5 ¢ spec, (A), Im(Br=-a) C x> “1L2) ¥ ¢ > 0.
s

-J(—) ’ *
1# uw eF, then M (W =g s s, f; € F2 ,  q € Holca’, N*%)
&

a’ »» a ., Thus, Ma(Au) = 0 modulo Hol(a+g, N*s), from the definition of

Fgo 50 Au € x** € 1L200 | and therefore AGRTHEOO 0 F) € x¥ A OO L The

converse is similar.

b

(6.17) THEOREM. Suppose A € &Q(X) is elliptic and X is a compact

manifold with boundary. As a map A: xaHg(X) —_ x‘Hg'm<x>, A is Fredholm if

and only if
(6.18) ad-Im specb(A)
The index of Ind{a) is independent of k and if a’ > a both satisfy (6.18),
(6.19) Ind(a) - Ind(a’) = N,
a’>-Im(s)>a s

where for © ¢ specb(A) s Ng is the dimension of the space F; in (6.19).



Proof. In Proposition 6.7 it was shown that the kernel of A was finite
dimensional, without any assumption on a. Given condition (4.18), Lemma 6.1!
provides a right parametrix modulo the map Ta , which is compact since the
inclusion xangl(X) “ xaHg(X) is compact whenever a’ > a, Kk’ > k by
Lemma 6.6. Thus (Id + Ta) is Fredholm and hence so is A . Since the
kernel of A lies in xaILg(X) , and there is always a cokernel in this
space, ind(a) is indeed independent of Kk .

The formula (6.19) for the jump in the index as a crosses -Im specb(A)
follows from Lemma 6.14. Thus, Ind(a) = Ind(x %Ax®) acting as HE(X).
This is a continuous family of Fredholm operators, provided a does not

cross -Im specb(é) , 50 the index is constant and it suffices to consider

Ind{a - ¢) - Ind(a+¢) when a € -Im specb(A) for € >0 small. Then,
ker(a-¢) = Ker(ate) & H1 & H2 '

where H1 is the kernel of A on Fa , and

dim(Hy) = dim(A(F_) N A(xa+EHE(X))) .

2
Thus, if f € F, has Af =Ag, 9 ¢ xa*‘Hg(x> , then (f-g> € H, ,
i ¢ xa-EHE(X). Similarly, if Hy C A(F) is a complement to A(F) N
Ax2EHM(X)) and K is a complement in xa_eLg(X) to the range of A on

b
xa-eHE(X) then H; @ K is a complement in xa+€Lg(X)

to the range on
xa+€Hg(X) . Since A, on F , has finite rank, dim(F)) = dim(H,) + dim(Hy)
+ dim(H3) . This proves (6.19) since the sum on the right is, in this case,
dim(F ).

Finally, to complete the proof of the theorem note that A cannot be
Fredholm from x®HE(X to x®HWE™(X) 4 a € -Im spec,(A) . Indeed, if it
were Fredholm the index would be constant in a across -Im specb(A) s which
contradicts (6.19). Thus, when (4.18) does not hold the range of A is not

closed.
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(6.20) THEOREM. Suppose that A ¢ ?ﬁ(X) is elliptic and X is compact and

(4]
that A is formally self-adjoint with respect to a density v € C°(X,QX)
such that if r is a defining function for 3X then r 2071, ¢ C®(X,X) s

positive definite. Then for any a satisfying ¢(4.18),

(6.21) Inda) = z N- + & z N .

-Im(Ereca,b) ° ¢ -Im(E)=b

Proof. rbAr—b € %ﬂ(X) is formally sef-adjoint with respect to a density

r-lw @ € CQ(X,QX) positive definite. This density defines a Hilbert norm

on LS(X), with respect to which rbAr-b is an unbounded self-adjoint
operator with domain HE(X). 1f b ¢ - Inm specb(A) y then rbAr-b is

Fredhoim so has Indb) = 0 ., This gives (é.21) under this additional

hypothesis.
Thus, we can assume that A € ig(X) is formally self-adjoint on Lg(X)

but then, by examining Kernels and cokernels, it is clear that Ind(a) =

- Ind¢-a). Thus, (4.21) follows from (4.19).



7. Spectral theory.

As an application of the ideas and constructions above we shall examine
the structure of the spectrum of a formally self-adjoint elliptic totally
characteristic operator, of positive order, on a compact manifold. As noted
above, if A € i@(X) is formally self-adjoint with respect to a positive

density v € c°(x,9bx> then
. ym 2
(7.1 Ar HPOO — LEOO

is self-adjoint with respect to v . We shall simply say A is self-adjoint

leaving v understood. Thus we wish to investigate

spec(A) = E\N{2 € C ; A - }: HE(X) — Lg(X) has dense range and is 1-1

with inverse (A-2)"! bounded on Lg(X)).

Since A is elliptic, and continuous on Lg(X) with range in H;m(X) , if

- w7l = R € L2000, fe 20> then (A - Mu = £ in
HOMX)  shows that (A - Mu € L2060 so u € HIOO and  R¢A): LZx) —

Hg(X) must be bounded by the closed graph theorem. In particular,

U =

(7.2) spec(A) = {2 € € ; A-X: H@(X) —t Lg(X) is not an isomorphism)} C R.

(7.3) LEMA. If A ¢ ?ﬂ(X), m>O0, is elliptic and formally self-adjoint
on the compact manifold X and in addition o (R) € sP1%0/8™ 1(T*)  has

a positive representative then spec(A) s bounded below.



Proof. Since (2] is formally self-adjoint and has a positive elliptic
principal symbol an approximate square-root can be constructed by standard

symbolic methods

1
(7.4) a=8B4+6, Be¥y o0, B =B, B¢y X0,
b
Now, G is bounded on L2(X> , sowith X = - UG,
(7.5 A - 2 has no Kernel in HE(X) for X < ).

Moreover, consider the indicial operator. For s € R, IA(s) € ™) s
self-adjoint with respect to ¢’ € CQ(QX,QGX), v = giv’ at 3X. Passing

from (7.4) to the corresponding indicial operators gives

- 2
(7.8) IA(S) = IB(s) + IG(s) '
where IG(s) is rapidly decreasing in 20X as |Re(s)] — o , with
Im(s) bounded. In particular, when s is real, IB(s)* = IB(s) y 80 it

follows from the fact that IA(s) is Fredholm and (7.6) that for some X €
R,

(7.7) spec (A - D NR=4g if R3IX<).

Thus, from Theorem é.17, A - X is Fredholm as an operator (7.1) for

) s and so an isomorphism if X << 0 , by (7.5 , proving the lemma.

Consider the set



(7.8) Abad(m = {2 €ER ; 3 )AJ — > in R and s; € specb(A - )\J.)
with Im(sJ) 0, Im(sJ) — 0},

of values of 3 at which the number of real points, with multiplicity, in

specb(A - 2) changes.

(7.9) LEMMA. I+ m >0 and A € ?'g(X) is formally self-adjoint and
elliptic in the compact manifold, X , then Abad(m CR is discrete and on
R\Abad , specb(A) NR is the image of a locally constant number, N = N(}),

of real analytic functions of & .

Proof. Near any point > € € the points s € specb(A - 2> near

s € spec, (A - }) can be obtained as the zeros of a polynomial
b

r r
(7.10) pis, ) =s" + %

c (s
=t 4

where the coefficients cJ(A) are real analytic in X . Indeed, let H™(3%)
= Kl & Ft1 y L2(8X) = K2 ® R2 be a decomposition with K1 the kernel of

IA(E) -3 , R2 the range of IA(§) - A . In the corresponding decomposition

Tl(S) -2 Tz(s)

T3(s) T4(s) )

T4(s) - X is invertible for s near & and X near 2. Thus, IA(s) -3

is invertible if and only i+¢

4]

ni

t



-1
P(sy3) = T (s) = 3 = To(8)(Ty¢sd = ) "+Ta(s)

is invertible, P(s,X) is an operator on K1 s S0 taking pl(s,l) to be its
determinant gives an analytic function with specb(A - X)) as its zero set
near (i,i). The fact that IA(s) - 3 has a finite pole at s allows the
Weierstrass preparation theorem to be applied to reduce Py to a polynomial,
as in ¢7.10), in s , with r the order of zero of p(s,x) at s =5,

By assumption, if A€ R\Abad then p(s,)) has no complex zeros near

s € specb(A - 2) N R. By the use of Pusieux series it is immediately seen

that these zeros must be analytic functions of X , proving the Lemma.

1+ sq(l) € specb(A - A N R are the points near & ¢ specb(A - i),

with 2 € R\A then use of Puiseux series shows that the orthogonal

bad

projections 1q(l), for 3 real, onto the eigenspaces of lg(sq(h)) are

also analytic in A. In particular the generalized eigenspaces

Eq(l) = range iq(})
consist just of eigenvectors, even for 2 € C, |A - il { ¢. This also means
that the spaces Fs y Of (6.15), after siight reorganization, have analytic
bases. Notice that if J(S) is replaced by J(s) + N, N € N, in (4.15
the resulting space of polynomials F: is naturally isomorphic to F_ :
s s

F 34 = (-8 4 g, deglgd (N +— § €F_,
s s

and replacing F_ by F: in (6.16) leaves the identity unchanged.
s s

Now, suppose 3 € R\Abad and

(7.1 spec, (A - M NR = {8,8,,:00,5;)
b 1252 K
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For each J=1,00.4K let sg(k), 1;(1), be the corresponding points in

i? q=ly--~9nj s

onto the eigenspaces, as above selected to be analytic in X. I+ F is a

specb(A - 2, with sé(i) = 5 and orthogonal projections
normal fibration of X near 33X , r € C°¢X) is a defining function for the
boundary and € € CZ(R) has p€x) =1 near x = 0 and is such that p(r)
has support in the range of F , consider the kKernel obtained by transferring

] o
to X x X the Schwartz Kernel of

(7.12)

is () —is (M) ds_(3) ,
§ AT NOPR IO T sgn[——g-—} pcr) perny 7Ly,
d)

Let dEl(l) be the operator-valued measure obtained on R\Abad in this way.

(7.13) THEOREM. 1f m > 0 and A € ?g(X) is formally self-adjoint with
respect to some positive section of CQ(X,QbX) and is elliptic on the
compact manifold with boundary, X , then as an unbounded operator on L§<X),
as in (7.1), the spectrum of A in R\Abad consists of a discrete set of
eigenvalues of finite multiplicity and continuous spectrum of uniform
multiplicity equal to the cardinality of specb(A - 2 N R , counted with
multiplicity. Moreover, on the complement of the eigenspaces the spectral

measure dEess y satisfies

(7.14) dE M) = dE  (0) ¢ dR(}) on R\A 4

where RC(M) is real-analytic on R\Abad with values in the compact

operators on Lg(X).

Proof. Notice that dsq/d% = 0 for all roots sq(h) near X € R\Abad .

The spectral measure dE(}) can be constructed as the jump of the resolvent

9

R(F

par
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R(A,2) = (A - l)_l across the real axis, so consider the behavior of the
parame trix

Ga =B - Ea » R
of Lemma .11, for (A-2) as Im ) l 0. When Im X > O, specb(A - NR=g,
since IA(S) is self-adjoint for s € R, Thus, with a = 0 , the only
points in specb(A - A) which need contribute to the correction term E0 in
the parametrix are those with Im(s) > 0, Im(s) l 0 as Im 2 l 0, i.e.

the sq(X) with dsq/dl > 0. The construction of E0 and a simple residue

argument shows that

E‘= lim E. - lim E
0 0
Im xlo 1m 2o

has kKernel as in (7.12). Furthermore,
R{A,2) = (B - EO-R)(Id + Sl)

where SA is meromorphic in X% with compact values. From this (7.14)

follows easily.
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