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6.14. Calderòn projector 157
6.15. Poisson operator 158
6.16. Unique continuation 158
6.17. Boundary regularity 158
6.18. Pseudodifferential boundary conditions 158
6.19. Gluing 160
6.20. Local boundary conditions 160
6.21. Absolute and relative Hodge cohomology 160
6.22. Transmission condition 160



6 CONTENTS

Chapter 7. Scattering calculus 161

Chapter 8. The wave kernel 163
8.1. Hamilton-Jacobi theory 175
8.2. Riemann metrics and quantization 179
8.3. Transport equation 180
8.4. Problems 184
8.5. The wave equation 184
8.6. Forward fundamental solution 189
8.7. Operations on conormal distributions 192
8.8. Weyl asymptotics 194
8.9. Problems 198

Chapter 9. K-theory 199
9.1. Vector bundles 199
9.2. The ring K(X) 199
9.3. Chern-Weil theory and the Chern character 199
9.4. K1(X) and the odd Chern character 199
9.5. C∗ algebras 199
9.6. K-theory of an algeba 199
9.7. The norm closure of Ψ0(X) 199
9.8. The index map 199
9.9. Problems 199

Chapter 10. Hochschild homology 201
10.1. Formal Hochschild homology 201
10.2. Hochschild homology of polynomial algebras 202
10.3. Hochschild homology of C∞(X) 207
10.4. Commutative formal symbol algebra 210
10.5. Hochschild chains 211
10.6. Semi-classical limit and spectral sequence 211
10.7. The E2 term 213
10.8. Degeneration and convergence 217
10.9. Explicit cohomology maps 218
10.10. Hochschild holomology of Ψ−∞(X) 218
10.11. Hochschild holomology of ΨZ(X) 218
10.12. Morita equivalence 218

Chapter 11. The index formula 219

Appendix A. Bounded operators on Hilbert space 221

Appendix. Bibliography 223



Preface

This is a somewhat revised version of the lecture notes from various courses
taught at MIT, now for Spring 2003.

There are many people to thank, including:

Benoit Charbonneau.
Sine Rikke Jensen.
Edith Mooers.
Mark Joshi.
Raul Tataru.
Jonathan Kaplan.

7





Introduction

I shall assume some familiarity with distribution theory, with basic analysis
knowledge of the theory of manifolds would also be useful. Any one or two of these
prerequisites can be easily picked up along the way, but the prospective student
with none of them should perhaps do some preliminary reading:

Distributions: I good introduction is Friedlander’s book
Friedlander2
[4]. For a more ex-

haustive treatment see Volume I of Hörmander’s treatise
Hormander2
[8].

Analysis on manifolds: Most of what we need can be picked up from Munkres’
book

Munkres1
[9] or Spivak’s little book

Spivak1
[12].
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CHAPTER 1

Tempered distributions and the Fourier transformTempered

Microlocal analysis is a geometric theory of distributions, or a theory of geomet-
ric distributions. Rather than study general distributions – which are like general
continuous functions but worse – we consider more specific types of distributions
which actually arise in the study of differential and integral equations. Distributions
are usually defined by duality, starting from very “good” test functions; correspond-
ingly a general distribution is everywhere “bad”. The conormal distributions we
shall study implicitly for a long time, and eventually explicitly, are usually good, but
like (other) people have a few interesting faults, i.e. singularities. These singulari-
ties are our principal target of study. Nevertheless we need the general framework
of distribution theory to work in, so I will start with a brief introduction. This is
designed either to remind you of what you already know or else to send you off to
work it out.1Proofs of some of the main theorems are outlined in the problems at
the end of the chapter.

1.1. Schwartz test functionsS.Schwartz.Test

To fix matters at the beginning we shall work in the space of tempered distribu-
tions. These are defined by duality from the space of Schwartz functions, also called
the space of test functions of rapid decrease. We can think of analysis as starting
off from algebra, which gives us the polynomials. Thus in Rn we have the coordi-
nate functions, x1, . . . , xn and the constant functions and then the polynomials are
obtained by taking (finite) sums and products:

1.1 (1.1) φ(x) =
∑

|α|≤k

pαx
α, pα ∈ C, α ∈ Nn

0 , α = (α1, . . . , αn),

where xα = xα1
1 . . . xαn

n =

n∏

j=1

x
αj

j and N0 = {0, 1, 2, . . .}.

A general function φ : Rn −→ C is differentiable at x̄ if there is a linear function

`x̄(x) = c+
n∑

j=1

(xj − x̄j)dj such that for every ε > 0 there exists δ > 0 such that

1.2 (1.2) |φ(x) − `x̄(x)| ≤ ε|x− x̄| ∀ |x− x̄| < δ̄.

The coefficients dj are the partial derivative of φ at the point x̄. Then, φ is said
to be differentiable on Rn if it is differentiable at each point x̄ ∈ Rn; the partial
derivatives are then also functions on Rn and φ is twice differentiable if the partial

1I suggest Friedlander’s little book
MR86h:46002
[3] (there is also a newer edition) as a good introduction

to distributions. Volume 1 of Hörmander’s treatise
Hormander1
[7] has all that you would need and a good

deal more; it is a good general reference.
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12 1. TEMPERED DISTRIBUTIONS AND THE FOURIER TRANSFORM

derivatives are differentiable. In general it is k times differentiable if its partial
derivatives are k − 1 times differentiable.

If φ is k times differentiable then, for each x̄ ∈ Rn, there is a polynomial of
degree k,

pk(x; x̄) =
∑

|α|≤k

aαi
|α|(x − x̄)α/α!, |α| = α1 + · · ·+ αn,

such that for each ε > 0 there exists δ > 0 such that

1.3 (1.3) |φ(x) − pk(x, x̄)| ≤ ε|x− x̄|k if |x− x̄| < δ.

Then we set

1.4 (1.4) Dαφ(x̄) = aα.

If φ is infinitely differentiable all the Dαφ are infinitely differentiable (hence con-
tinuous!) functions.

1.5 Definition 1.1. The space of Schwartz test functions of rapid decrease consists
of those φ : Rn −→ C such that for every α, β ∈ Nn

0

1.6 (1.5) sup
x∈Rn

|xβDαφ(x)| <∞;

it is denoted S(Rn).

From (
1.6
1.5) we construct norms on S(Rn) :

1.7 (1.6) ‖φ‖k = max
|α|+|β|≤k

sup
x∈Rn

|xαDβφ(x)|.

It is straightforward to check the conditions for a norm:

(1) ‖φ‖k ≥ 0, ‖φ‖k = 0⇐⇒ φ ≡ 0
(2) ‖tφ‖k = |t|‖φ‖k, t ∈ C
(3) ‖φ+ ψ‖k ≤ ‖φ‖k + ‖ψ‖k ∀ φ, ψ ∈ S(Rn).

The topology on S(Rn) is given by the metric

1.8 (1.7) d(φ, ψ) =
∑

k

2−k ‖φ− ψ‖k
1 + ‖φ− ψ‖k

.

See Problem
31.1.2000.260
1.4.

1.9 Proposition 1.1. With the distance function (
1.8
1.7), S(Rn) becomes a complete

metric space (in fact it is a Fréchet space).

Of course one needs to check that S(Rn) is non-trivial; however one can easily
see that

(1.8) exp(−|x|2) ∈ S(Rn).

In fact there are lots of smooth functions of compact support and

1.2.2000.266 (1.9) C∞c (Rn) = {u ∈ S(Rn);u = 0 in |x| > R = R(u)} ⊂ S(Rn) is dense.

The two elementary operations of differentiation and coordinate multiplication
give continuous linear operators:

31.1.2000.263 (1.10)
xj : S(Rn) −→ S(Rn)

Dj : S(Rn) −→ S(Rn).
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Other important operations we shall encounter include the exterior product,

1.10 (1.11)
S(Rn)× S(Rm) 3 (φ, ψ) 7→ φ� ψ ∈ S(Rn+m)

φ� ψ(x, y) = φ(x)ψ(y).

and pull-back or restriction. If Rk ⊂ Rn is identified as the subspace xj = 0, j > k,
then the restriction map

31.1.2000.264 (1.12) π∗
k : S(Rn) −→ S(Rk), π∗

kf(y) = f(y1, . . . , yk, 0, . . . , 0)

is continuous (and surjective).

1.2. Linear transformationsS.Linear.transformations

A linear transformation acts on Rn as a matrix2

1.2.2000.267 (1.13) L : Rn −→ Rn, (Lx)j =

n∑

k=1

Ljkxk.

The Lie group of invertible linear transformations, GL(n,R) is fixed by several
equivalent conditions

L ∈ GL(n,R)⇐⇒ det(L) 6= 0

⇐⇒ ∃ L−1 s.t. (L−1)Lx = x ∀ x ∈ Rn

⇐⇒ ∃ c > 0 s.t. c|x| ≤ |Lx| ≤ c−1|x| ∀ x ∈ Rn.

1.2.2000.268 (1.14)

Pull-back of functions is defined by

L∗φ(x) = φ(Lx) = (φ ◦ L)(x).

The chain rule for differentiation shows that if φ is diffferentiable then3

1.2.2000.269 (1.15) DjL
∗φ(x) = Djφ(Lx) =

n∑

k=1

Lkj(Dkφ)(Lx) = L∗((L∗Dj)φ)(x),

L∗Dj =

n∑

k=1

LkjDk.

From this it follows that

1.2.2000.270 (1.16) L∗ : S(Rn) −→ S(Rn) is an isomorphism for L ∈ GL(n,R).

To characterize the action of L ∈ GL(n,R) on S ′(Rn) consider, as usual, the
distribution associated to L∗φ :

1.2.2000.271 (1.17) TL∗φ(ψ) =

∫

Rn

φ(Lx)ψ(x)dx

=

∫

Rn

φ(y)ψ(L−1y)| detL|−1dy = Tφ(| detL|−1(L−1)∗ψ).

2This is the standard action, but it is potentially confusing since it means that for the basis

elements ej ∈ Rn, Lej =
n

P

k=1

Lkjek.

3So Dj transforms as a basis of Rn as it should, despite the factors of i.
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Since the operator | detL|−1(L−1)∗ is an ismorphism of S(Rn) it follows that if we
take the definition by duality

1.2.2000.272 (1.18) L∗u(ψ) = u(| detL|−1(L−1)∗ψ), u ∈ S ′(Rn), ψ ∈ S(Rn), L ∈ GL(n,R)

=⇒ L∗ : S ′(Rn) −→ S ′(Rn)

is an isomorphism which extends (
1.2.2000.270
1.16) and satisfies

1.2.2000.273 (1.19)
DjL

∗u = L∗((L∗Dj)u), L
∗(xju) = (L∗xj)(L

∗u), u ∈ S ′(Rn), L ∈ GL(n,R),

as in (
1.2.2000.269
1.15).

1.3. Tempered distributionsS.Tempered.distributions

As well as exterior multiplication (
1.10
1.11) there is the even more obvious multi-

plication operation

1.11 (1.20)
S(Rn)× S(Rn) −→ S(Rn)

(φ, ψ) 7→ φ(x)ψ(x)

which turns S(Rn) into a commutative algebra without identity. There is also
integration

1.12 (1.21)

∫
: S(Rn) −→ C.

Combining these gives a pairing, a bilinear map

(1.22) S(Rn)× S(Rn) 3 (φ, ψ) 7−→
∫

Rn

φ(x)ψ(x)dx.

If we fix φ ∈ S(Rn) this defines a continuous linear map:

1.13 (1.23) Tφ : S(Rn) 3 ψ 7−→
∫
φ(x)ψ(x)dx.

Continuity becomes the condition:

(1.24) ∃ k, Ck s.t. |Tφ(ψ)| ≤ Ck‖ψ‖k ∀ ψ ∈ S(Rn).

We generalize this by denoting by S ′(Rn) the dual space, i.e. the space of all
continuous linear functionals

u ∈ S ′(Rn)⇐⇒ u : S(Rn) −→ C

∃ k, Ck such that |u(ψ)| ≤ Ck‖ψ‖k ∀ ψ ∈ S(Rn).

1.14 Lemma 1.1. The map

1.15 (1.25) S(Rn) 3 φ 7−→ Tφ ∈ S ′(Rn)

is an injection.

Proof. For any φ ∈ S(Rn), Tφ(φ) =
∫
|φ(x)|2dx, so Tφ = 0 implies φ ≡ 0. �

If we wish to consider a topology on S ′(Rn) it will normally be the weak topol-
ogy, that is the weakest topology with respect to which all the linear maps

(1.26) S ′(Rn) 3 u 7−→ u(φ) ∈ C, φ ∈ S(Rn)

are continuous. This just means that it is given by the seminorms

1.16 (1.27) S(Rn) 3 u 7−→ |u(φ)| ∈ R
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where φ ∈ S(Rn) is fixed but arbitrary. The sets

1.101 (1.28) {u ∈ S ′(Rn); |u(φj)| < εj , φj ∈ Φ}
form a basis of the neighbourhoods of 0 as Φ ⊂ S(Rn) runs over finite sets and the
εj are positive numbers.

1.17 Proposition 1.2. The continuous injection S(Rn) ↪→ S ′(Rn), given by (
1.15
1.25),

has dense range in the weak topology.

See Problem
P1.4
1.8 for the outline of a proof.

The maps xi, Dj extend by continuity (and hence uniquely) to operators

1.18 (1.29) xj , Dj : S ′(Rn) −→ S ′(Rn).

This is easily seen by defining them by duality. Thus if φ ∈ S(Rn) setDjTφ = TDjφ,
then

(1.30) TDjφ(ψ) =

∫
Djφψ = −

∫
φDjψ,

the integration by parts formula. The definitions

(1.31) Dju(ψ) = u(−Djψ), xju(ψ) = u(xjψ), u ∈ S ′(Rn), ψ ∈ S(Rn)

satisfy all requirements, in that they give continuous maps (
1.18
1.29) which extend the

standard definitions on S(Rn).

1.4. Two big theoremsS.Two.big.theorems

The association, by (
1.15
1.25), of a distribution to a function can be extended

considerably. For example if u : Rn −→ C is a bounded and continuous function
then

(1.32) Tu(ψ) =

∫
u(x)ψ(x)dx

still defines a distribution which vanishes if and only if u vanishes identically. Using
the operations (

1.18
1.29) we conclude that for any α, β ∈ Nn

0

(1.33) xβDα
xu ∈ S ′(Rn) if u : Rn −→ C is bounded and continuous.

Conversely we have the Schwartz representation Theorem:

1.19 Theorem 1.1. For any u ∈ S ′(Rn) there is a finite collection uαβ : Rn −→ C
of bounded continuous functions, |α|+ |β| ≤ k, such that

(1.34) u =
∑

|α|+|β|≤k

xβDα
xuαβ .

Thus tempered distributions are just products of polynomials and derivatives of
bounded continuous functions. This is important because it says that distributions
are “not too bad”.

The second important result (long considered very difficult to prove, but there
is a relatively straightforward proof using the Fourier transform) is the Schwartz
kernel theorem. To show this we need to use the exterior product (

1.10
1.11). If K ∈

S ′(Rn+m) this allows us to define a linear map

(1.35) OK : S(Rm) −→ S ′(Rn)
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by

(1.36) OK(ψ)(φ) =

∫
K · φ� ψ dxdy.

1.20 Theorem 1.2. There is a 1-1 correspondence between continuous linear oper-
ators

(1.37) A : S(Rm) −→ S ′(Rn)

and S ′(Rn+m) given by A = OK .

Brief outlines of the proofs of these two results can be found in Problems
P2.4
1.15

and
P2.5
1.16.

1.5. ExamplesS.Examples

Amongst tempered distributions we think of S(Rn) as being the ‘trivial’ exam-
ples, since they are the test functions. One can say that the study of the singularities
of tempered distributions amounts to the study of the quotient

(1.38) S ′(Rn)/S(Rn)

which could, reasonably, be called the space of tempered microfunctions.
The sort of distributions we are interested in are those like the Dirac delta

“function”

(1.39) δ(x) ∈ S ′(Rn), δ(φ) = φ(0).

The definition here shows that δ is just the Schwartz kernel of the operator

(1.40) S(Rn) 3 φ 7−→ φ(0) ∈ C = S(R0).

This is precisely one reason it is interesting. More generally we can consider the
maps

(1.41) S(Rn) 3 φ 7−→ Dαφ(0), α ∈ Nn
0 .

These have Schwartz kernels (−D)αδ since

1.21 (1.42) (−D)αδ(φ) = δ(Dαφ) = Dαφ(0).

If we write the relationship A = OK ←→ K as

(1.43) (Aψ)(φ) =

∫
K(x, y)φ(x)ψ(y)dxdy

then (
1.21
1.42) becomes

(1.44) Dαφ(0) =

∫
(−D)αδ(x)φ(x)dx.

More generally, if K(x, y) is the kernel of an operator A then the kernel of A ·Dα

is (−D)α
yK(x, y) whereas the kernel of Dα ◦A is Dα

xK(x, y).
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1.6. Two little lemmasS.Two.little.lemmas

Above, some of the basic properties of tempered distributions have been out-
lined. The main “raison d’être” for S ′(Rn) is the Fourier transform which we
proceed to discuss. We shall use the Fourier transform as an almost indispensable
tool in the treatment of pseudodifferential operators. The description of differential
operators, via their Schwartz kernels, using the Fourier transform is an essential
motivation for the extension to pseudodifferential operators.

Partly as simple exercises in the theory of distributions, and more significantly
as preparation for the proof of the inversion formula for the Fourier transform we
consider two lemmas.

First recall that if u ∈ S ′(Rn) then we have defined Dju ∈ S ′(Rn) by

(1.45) Dju(φ) = u(−Djφ) ∀ φ ∈ S(Rn).

In this sense it is a “weak derivative”. Let us consider the simple question of the
form of the solutions to

2.1 (1.46) Dju = 0, u ∈ S ′(Rn).

Let Ij be the integration operator:

2.2 (1.47)

Ij : S(Rn) −→ S(Rn−1)

Ij(φ)(y1, . . . , yn−1) =

∫
φ(y1, . . . yj−1, x, yj , . . . yn−1)dx.

Then if πj : Rn −→ Rn−1 is the map πj(x) = (x1, . . . , xj−1, xj+1 . . . , xn), we define,
for v ∈ S ′(Rn−1),

(1.48) π∗
j v(φ) = v(Ijφ) ∀ φ ∈ S(Rn).

It is clear from (
2.2
1.47) that Ij : S(Rn) −→ S(Rn−1) is continuous and hence π∗

j v ∈
S ′(Rn) is well-defined for each v ∈ S ′(Rn−1).

2.3 Lemma 1.2. The equation (
2.1
1.46) holds if and only if u = π∗

j v for some v ∈
S ′(Rn−1).

Proof. If φ ∈ S(Rn) and φ = Djψ with ψ ∈ S(Rn) then Ijφ = Ij(Djψ) = 0.
Thus if u = π∗

j v then

(1.49) u(−Djφ) = π∗
j v(−Djφ) = v(Ij(−Djφ)) = 0.

Thus u = π∗
j v does always satisfy (

2.1
1.46).

Conversely suppose (
2.1
1.46) holds. Choose ρ ∈ S(R) with the property

(1.50)

∫
ρ(x)dx = 1.

Then each φ ∈ S(Rn) can be decomposed as

2.4 (1.51) φ(x) = ρ(xj)Ijφ(x1, . . . , xj−1, xj+1, . . . xn) +Djψ, ψ ∈ S(Rn).
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Indeed this is just the statement

ζ ∈ S(Rn), Ijζ = 0 =⇒ ψ(x) ∈ S(Rn) where

ψ(x) =

xj∫

−∞

ζ(x1, . . . , xj−1, t, xj+1, . . . , xn)dt

=

xj∫

∞

ζ(x1, . . . , xj−1, t, xj+1, . . . , xn)dt.

Using (
2.4
1.51) and (

2.1
1.46) we have

(1.52) u(φ) = u (ρ(xj)Ijφ(x1, . . . , xj−1, xj+1, . . . xn)) .

Thus if

(1.53) v(ψ) = u (ρ(xj)ψ(x1, . . . , xj−1, xj+1, . . . xn)) ∀ ψ ∈ S(Rn−1)

then v ∈ S ′(Rn−1) and u = π∗
j v. This proves the lemma. �

Of course the notation u = π∗
j v is much too heavy-handed. We just write

u(x) = v(x1, . . . , xj−1, xj+1, . . . , xn) and regard ‘v as a distribution in one addi-
tional variable’.

The second, related, lemma is just a special case of a general result of Schwartz
concerning the support of a distribution. The particular result is:

2.5 Lemma 1.3. Suppose u ∈ S ′(Rn) and xju = 0, j = 1, . . . n then u = cδ(x) for
some constant c.

Proof. Again we use the definition of multiplication and a dual result for
test functions. Namely, choose ρ ∈ S(Rn) with ρ(x) = 1 in |x| < 1

2 , ρ(x) = 0 in
|x| ≥ 3/4. Then any φ ∈ S(Rn) can be written

2.6 (1.54) φ = φ(0) · ρ(x) +

n∑

j=1

xjψj(x), ψj ∈ S(Rn).

This in turn can be proved using Taylor’s formula as I proceed to show. Thus

(1.55) φ(x) = φ(0) +

n∑

j=1

xjζj(x) in |x| ≤ 1, with ζj ∈ C∞.

Then,

(1.56) ρ(x)φ(x) = φ(0)ρ(x) +

n∑

j=1

xjρζj(x)

and ρζj ∈ S(Rn). Thus it suffices to check (
2.6
1.54) for (1 − ρ)φ, which vanishes

identically near 0. Then ζ = |x|−2(1− ρ)φ ∈ S(Rn) and so

(1.57) (1− ρ)φ = |x|2ζ =

n∑

j=1

xj(xjζ)
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finally gives (
2.6
1.54) with ψj(x) = ρ(x)ζj (x) + xjζ(x). Having proved the existence

of such a decomposition we see that if xju = 0 for all j then

(1.58) u(φ) = u(φ(0)ρ(x)) +
n∑

j=1

u(xjψj) = cφ(0), c = u(ρ(x)),

i.e. u = cδ(x). �

1.7. Fourier transformS.Fourier.transform

Our normalization of the Fourier transform will be

2.7 (1.59) Fφ(ξ) =

∫
e−iξ·xφ(x)dx.

As you all know the inverse Fourier transform is given by

2.8 (1.60) Gψ(x) = (2π)−n

∫
eix·ξψ(ξ) dξ.

Since it is so important here I will give a proof of this invertibility. First however,
let us note some of the basic properties.

Both F and G give continuous linear maps

2.9 (1.61) F ,G : S(Rn) −→ S(Rn).

To see this observe first that the integrals in (
2.7
1.59) and (

2.8
1.60) are absolutely con-

vergent:

(1.62) |Fφ(ξ)| ≤
∫
|φ(x)|dx ≤

∫
(1 + |x|2)−n dx× sup

x∈Rn

(1 + |x|2)n|φ(x)|,

where we use the definition of S(Rn). In fact this shows that sup |Fφ| < ∞ if φ ∈
S(Rn). Formal differentiation under the integral sign gives an absolutely convergent
integral:

DjFφ(ξ) =

∫
Dξj

e−ixξφ(x)dx =

∫
e−ix·ξ(−xjφ)dx

since sup
x

(1 + |x|2)n|xjφ| <∞. Then it follows that DjFφ is also bounded, i.e. Fφ
is differentiable, and (

2.10
1.7) holds. This argument can be extended to show that Fφ

is C∞,

2.11 (1.63) DαFφ(ξ) = F
(
(−x)αφ

)
.

Similarly, starting from (
2.7
1.59), we can use integration by parts to show that

ξjFφ(ξ) =

∫
e−ixξξjφ(x)dx =

∫
e−ix·ξ(Djφ)(x)dx

i.e. ξjFφ = F(Djφ). Combining this with (
2.11
1.63) gives

2.12 (1.64) ξαDβ
ξFφ = F

(
Dα · [(−x)βφ]

)
.

Since Dα
x ((−x)βφ) ∈ S(Rn) we conclude

(1.65) sup |ξαDβ
ζFφ| <∞ =⇒ Fφ ∈ S(Rn).

This map is continuous since

sup |ξαDβ
ξFφ| ≤ C · sup

x
|(1 + |x|2)nDα

x [(−x)βφ]

=⇒ ‖Fφ‖k ≤ Ck‖φ‖k+2n, ∀ k.
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The identity (
2.12
1.64), written in the form

2.13 (1.66)
F(Djφ) = ξjFφ
F(xjφ) = −Dξj

Fφ
is already the key to the proof of invertibility:

2.14 Theorem 1.3. The Fourier transform gives an isomorphism F : S(Rn) ←→
S(Rn) with inverse G.

Proof. We shall use the idea of the Schwartz kernel theorem. It is important
not to use this theorem itself, since the Fourier transform is a key tool in the
(simplest) proof of the kernel theorem. Thus we consider the composite map

(1.67) G ◦ F : S(Rn) −→ S(Rn)

and write down its kernel. Namely

2.15 (1.68)
K(φ) = (2π)−n

∫∫∫
eiy·ξ−ix·ξφ(y, x)dxdξdy

∀ φ ∈ S(Rn
y × Rn

x) =⇒ K ∈ S ′(R2n).

The integrals in (
2.15
1.68) are iterated, i.e. should be performed in the order indicated.

Notice that if ψ, ζ ∈ S(Rn) then indeed

2.16 (1.69) (G · F(ψ))(ζ) =

∫
ζ(y)(2π)−n

(∫
eiy·ξ

∫
e−ix·ξψ(x)dx dξ

)
dy dξ dy

= K(ζ � ψ)

so K is the Schwartz kernel of G · F .
The two identities (

2.13
1.66) translate (with essentially the same proofs) to the

conditions on K :

2.17 (1.70)

{
(Dxj

+Dyj
)K(x, y) = 0

(xj − yj)K(x, y) = 0
j = 1, . . . , n.

Next we use the freedom to make linear changes of variables, setting

2.18 (1.71)
KL(x, z) = K(x, x− z), KL ∈ S ′(R2n)

i.e. KL(φ) = K(ψ), ψ(x, y) = φ(x, x − y)
where the notation will be explained later. Then (

2.17
1.70) becomes

2.19 (1.72) Dxj
KL(x, z) = 0 and zjKL(x, z) = 0 for j = 1, . . . n

This puts us in a position to apply the two little lemmas. The first says KL(x, z) =
f(z) for some f ∈ S ′(Rn) and then the second says f(z) = cδ(z). Thus

(1.73) K(x, y) = cδ(x− y) =⇒ G · F = c Id .

It remains only to show that c = 1. That c 6= 0 is obvious (since F(δ) = 1).
The easiest way to compute the constant is to use the integral identity

(1.74)

∞∫

−∞

e−x2

dx = π
1
2

to show that4

4See Problem
1.2.2000.278
1.9.
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(1.75)

F(e−|x|2) = π
n
2 e−|ξ|2/4

=⇒ G(e−|ξ|2/4) = π−n
2 e−|x|2

=⇒ G · F = Id .

�

Now (2π)nG is actually the adjoint of F :

1.103 (1.76)

∫
φ(ζ)Fψ(ζ)dζ = (2π)n

∫
(Gφ) · ψdx ∀ φ, ψ ∈ S(Rn).

It follows that we can extend F to a map on tempered distributions

(1.77)
F : S ′(Rn) −→ S ′(Rn)

Fu(φ) = u((2π)nGφ) ∀ φ ∈ S(Rn)

Then we conclude

2.20 Corollary 1.1. The Fourier transform extends by continuity to an isomor-
phism

(1.78) F : S ′(Rn)←→ S ′(Rn)

with inverse G, satisfying the identities (
2.13
1.66).

Although I have not discussed Lebesgue integrability I assume familiarity with
the basic Hilbert space

L2(Rn) =
{
u : Rn −→ C; f is measurable and

∫

Rn

|f(x)|2dx <∞
}
/ ∼,

f ∼ g ⇐⇒ f = g almost everywhere.

This also injects by the same integration map (
1.2.2000.274
1.102) with S(Rn) as a dense subset

S(Rn) ↪→ L2(Rp) ↪→ S(Rn).

1.102 Proposition 1.3. The Fourier transform extends by continuity from the dense
subspace S(Rn) ⊂ L2(Rn), to an isomorphism

F : L2(Rn)←→ L2(Rn)

satisfying ‖Fu‖L2 = (2π)
1
2 n‖u‖L2.

Proof. Given the density of S(Rn) in L2(Rn), this is also a consequence of
(
1.103
1.76), since setting φ = Fu, for u ∈ S(Rn), gives Parseval’s formula

∫
Fu(ζ)Fv(ζ) = (2π)n

∫
u(x)v(x)dx.

Setting v = u gives norm equality (which is Plancherel’s formula).
An outline of the proof of the density statement is given in the problems below.

�
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1.8. Differential operatorsS.Differential.operators

The simplest examples of the Fourier transform of distributions are immediate
consequences of the definition and (

2.13
1.66). Thus

(1.79) F(δ) = 1

as already noted and hence, from (
2.13
1.66),

(1.80) F(Dαδ(x)) = ξα ∀ α ∈ Nn
0 .

Now, recall that the space of distributions with support the point 0 is just:

2.21 (1.81)
{
u ∈ S ′(Rn); sup(u) ⊂ {0}

}
=
{
u =

∑

finite

cαD
αδ
}
.

Thus we conclude that the Fourier transform gives an isomorphism

2.22 (1.82) F :
{
u ∈ S ′(Rn); supp(u) ⊂ {0}

}
←→ C[ξ] = {polynomials in ξ}.

Another way of looking at this same isomorphism is to consider partial differ-
ential operators with constant coefficients:

2.23 (1.83)
P (D) : S(Rn) −→ S(Rn)

P (D) =
∑

cαD
α.

The identity becomes

2.24 (1.84) F(P (D)φ)(ξ) = P (ξ)F(φ)(ξ) ∀ φ ∈ S(Rn)

and indeed the same formula holds for all φ ∈ S ′(Rn). Using the simpler notation
û(ξ) = Fu(ξ) this can be written

2.25 (1.85) ̂P (D)u(ξ) = P (ξ)û(ξ), P (ξ) =
∑

cαξ
α.

The polynomial P is called the (full) characteristic polynomial of P (D); of course
it determines P (D) uniquely.

It is important for us to extend this formula to differential operators with
variable coefficients. Using (

2.7
1.59) and the inverse Fourier transform we get

2.26 (1.86) P (D)u(x) = (2π)−n

∫∫
ei(x−y)·ξP (ξ)u(y)dydξ

where again this is an iterated integral. In particular the inversion formula is just
the case P (ξ) = 1. Consider the space

(1.87) C∞∞(Rn) =
{
u : Rn −→ C; sup

x
|Dαu(x)| <∞ ∀ α

}

the space of C∞ function with all derivatives bounded on Rn. Of course

(1.88) S(Rn) ⊂ C∞∞(Rn)

but C∞∞(Rn) is much bigger, in particular 1 ∈ C∞∞(Rn). Now by Leibniz’ formula

(1.89) Dα(uv) =
∑

β≤α

(
α

β

)
Dβu ·Dα−βv

it follows that S(Rn) is a module over C∞∞(Rn). That is,

(1.90) u ∈ C∞∞(Rn), φ ∈ S(Rn) =⇒ uφ ∈ S(Rn).
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From this it follows that if

(1.91) P (x,D) =
∑

|α|≤m

pα(x)Dα, pα ∈ C∞∞(Rn)

then P (x,D) : S(Rn) −→ S(Rn). The formula (
2.26
1.86) extends to

2.27 (1.92) P (x,D)φ = (2π)−n

∫
ei(x−y)·ξP (x, ξ)φ(y)dydξ

where again this is an iterated integral. Here

(1.93) P (x, ξ) =
∑

|α|≤m

pα(x)ξα

is the (full) characteristic polynomial of P.

1.9. Radial compactificationSect.radial.compactification

For later purposes, and general propaganda, consider the quadratic radial com-
pactification of Rn. The smooth map

1.104 (1.94) QRC : Rn 3 x 7−→ x

(1 + |x|2) 1
2

∈ Rn

is 1-1 and maps onto the interior of the unit ball, Bn = {|x| ≤ 1}. Consider the
subspace

1.105 (1.95) Ċ∞(Bn) = {u ∈ S(Rn); supp(u) ⊂ Bn}.
This is just the set of smooth functions on Rn which vanish outside the unit ball.
Then the composite (‘pull-back’) map

1.106 (1.96) QRC∗ : Ċ∞(Bn) 3 u 7−→ u ◦QRC ∈ S(Rn)

is a topological isomorphism. A proof is indicated in the problems below.
The dual space of Ċ∞(Bn) is generally called the space of ‘extendible distri-

butions’ on Bn – because they are all given by restricting elements of S ′(Rn) to

Ċ∞(Bn). Thus QRC also identifies the tempered distributions on Rn with the ex-
tendible distributions on Bn. We shall see below that various spaces of functions on
Rn take interesting forms when pulled back to Bn. I often find it useful to ‘bring
infinity in’ in this way.

Why is this the ‘quadratic’ radial compactification, and not just the radial com-
pactification? There is a good reason which is discussed in the problems below. The
actual radial compactification is a closely related map which identifies Euclidean
space, Rn, with the interior of the upper half of the n-sphere in Rn+1 :

1.2.2000.275 (1.97) RC : Rn 3 x 7−→
(

1

(1 + |x|2) 1
2

,
x

(1 + |x|2) 1
2

)

∈ Sn,1 = {X = (X0, X
′) ∈ Rn+1;X0 ≥ 0, X2

0 + |X ′|2 = 1}

Since the half-sphere is diffeomorphic to the ball (as compact manifolds with bound-
ary) these two maps can be compared – they are not the same. However it is true

that RC also identifies S(Rn) with Ċ∞(Sn,1).
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1.10. ProblemsS.Problems.1

P1.1 Problem 1.1. Suppose φ : Rn −→ C is a function such that for each point
x̄ ∈ Rn and each k ∈ N0 there exists a constant εk > 0 and a polynomial pk(x; x̄)
(in x) for which

(1.98) |φ(x) − pk(x; x̄)| ≤ 1

εk
|x− x̄|k+1 ∀ |x− x̄| ≤ εk.

Does it follow that φ is infinitely differentiable – either prove this or give a counter-
example.

P1.2 Problem 1.2. Show that the function u(x) = exp(x) cos[ex] ‘is’ a tempered
distribution. Part of the question is making a precise statement as to what this
means!

P1.3 Problem 1.3. Write out a careful (but not necessarily long) proof of the ‘easy’
direction of the Schwartz kernel theorem, that any K ∈ S ′(Rn+m) defines a con-
tinuous linear operator

(1.99) OK : S(Rm) −→ S ′(Rn)

[with respect to the weak topology on S ′(Rn) and the metric topology on S(Rm)]
by

(1.100) OKφ(ψ) = K(ψ � φ).

[Hint: Work out what the continuity estimate on the kernel, K, means when it is
paired with an exterior product ψ � φ.]

31.1.2000.260 Problem 1.4. Show that d in (
1.7
1.6) is a metric on S(Rn). [Hint: If ‖ · ‖ is a

norm on a vector space show that

‖u+ v‖
1 + ‖u+ v‖ ≤

‖u‖
1 + ‖u‖ +

‖v‖
1 + ‖v‖ .]

31.1.2000.261 Problem 1.5. Show that a sequence φn in S(Rn) is Cauchy, resp. converges
to φ, with respect to the metric d in Problem

31.1.2000.260
1.4 if and only if φn is Cauchy, resp.

converges to φ, with respect to each of the norms ‖ · ‖k.
31.1.2000.262 Problem 1.6. Show that a linear map F : S(Rn) −→ S(Rp) is continuous

with respect to the metric topology given in Problem
31.1.2000.260
1.4 if and only if for each k

there exists N(k) ∈ N a constant Ck such that

‖Fφ‖k ≤ Ck‖φ‖N(k) ∀ φ ∈ S(Rn).

Give similar equivalent conditions for continuity of a linear map f : S(Rn) −→ C
and for a bilinear map S(Rn)× S(Rp) −→ C.

31.1.2000.265 Problem 1.7. Check the continuity of (
31.1.2000.264
1.12).

P1.4 Problem 1.8. Prove Proposition
1.17
1.2. [Hint: It is only necessary to show that

if u ∈ S ′(Rn) is fixed then for any of the open sets in (1.1), B, (with all the εj > 0)
there is an element φ ∈ S(Rn) such that u−Tφ ∈ B. First show that if φ′1, . . . φ

′
p is

a basis for Φ then the set

(1.101) B′ = {v ∈ S ′(Rn); |〈v, φ′j〉| < δj

is contained in B if the δj > 0 are chosen small enough. Taking the basis to be
orthonormal, show that u− ψ ∈ B′ can be arranged for some ψ ∈ Φ.]
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1.2.2000.278 Problem 1.9. Compute the Fourier transform of exp(−|x|2) ∈ S(Rn). [Hint:
The Fourier integral is a product of 1-dimensional integrals so it suffices to assume
x ∈ R. Then ∫

e−iξxe−x2

dx = e−ξ2/4

∫
e−(x+ i

2 ξ)2dx.

Interpret the integral as a contour integral and shift to the new contour where
x+ i

2 ξ is real.]

P1.5 Problem 1.10. Show that (
1.13
1.23) makes sense for φ ∈ L2(Rn) (the space of

(equivalence classes of) Lebesgue square-integrable functions and that the resulting
map L2(Rn) −→ S ′(Rn) is an injection.

P1.6 Problem 1.11. Suppose u ∈ L2(Rn) and that

D1D2 · · ·Dnu ∈ (1 + |x|)−n−1L2(Rn),

where the derivatives are defined using Problem
P1.5
1.10. Using repeated integration,

show that u is necessarily a bounded continuous function. Conclude further that
for u ∈ S ′(Rn)

1.2.2000.274 (1.102)
Dαu ∈ (1 + |x|)−n−1L2(Rn) ∀ |α| ≤ k + n

=⇒ Dαu is bounded and continuous for |α| ≤ k.
[This is a weak form of the Sobolev embedding theorem.]

P2.1 Problem 1.12. The support of a (tempered) distribution can be defined in
terms of the support of a test function. For φ ∈ S(Rn) the support, supp(φ), is the
closure of the set of points at which it takes a non-zero value. For u ∈ S ′(Rn) we
define

(1.103) supp(u) = O{, O =
⋃
{O′ ⊂ Rn open; supp(φ) ⊂ O′ =⇒ u(φ) = 0} .

Show that the definitions for S(Rn) and S ′(Rn) are consistent with the inclusion
S(Rn) ⊂ S ′(Rn). Prove that supp(δ) = {0}.

P2.2 Problem 1.13. For simplicity in R, i.e. with n = 1, prove Schwartz theorem
concerning distributions with support the origin. Show that with respect to the
norm ‖ · ‖k the space

(1.104) {φ ∈ S(R);φ(x) = 0 in |x| < ε, ε = ε(φ) > 0}
is dense in

(1.105)
{
φ ∈ S(R);φ(x) = xk+1ψ(x), ψ ∈ S(R)

}
.

Use this to show that

(1.106) u ∈ S ′(R), supp(u) ⊂ {0} =⇒ u =
∑

`, finite

c`D
`
xδ(x).

P2.3 Problem 1.14. Show that if P is a differential operator with coefficients in
C∞∞(Rn) then P is local in the sense that

(1.107) supp(Pu) ⊂ supp(u) ∀ u ∈ S ′(Rn).

The converse of this, for an operator P : S(Rn) −→ S(Rn) where (for simplicity)
we assume

(1.108) supp(Pu) ⊂ K ⊂ Rn
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for a fixed compact set K, is Peetre’s theorem. How would you try to prove this?
(No full proof required.)

P2.4 Problem 1.15. (Schwartz representation theorem) Show that, for any p ∈ R
the map

2.28 (1.109) Rp : S(Rn) 3 φ 7−→ (1 + |x|2)−p/2F−1[(1 + |ξ|2)−p/2Fφ] ∈ S(Rn)

is an isomorphism and, using Problem
P1.6
1.11 or otherwise,

(1.110) p ≥ n+ 1 + k =⇒ ‖Rpφ‖k ≤ Ck‖φ‖L2 , ∀ φ ∈ S(Rn).

Let Rt
p : S ′(Rn) −→ S ′(Rn) be the dual map (defined by T t

pu(φ) = u(Rpφ)). Show

that Rt
p is an isomorphism and that if u ∈ S ′(Rn) satisfies

(1.111) |u(φ)| ≤ C‖φ‖k, ∀ φ ∈ S(Rn)

then Rt
pu ∈ L2(Rn), if p ≥ n+1+ k, in the sense that it is in the image of the map

in Problem
P1.5
1.10. Using Problem

P1.6
1.11 show that Rn+1(R

t
n+1+ku) is bounded and

continuous and hence that

2.29 (1.112) u =
∑

|α|+|β|≤2n+2+k

xβDαuα,β

for some bounded continuous functions uα,β.

P2.5 Problem 1.16. (Schwartz kernel theorem.) Show that any continuous linear
operator

T : S(Rm
y ) −→ S ′(Rn

x)

extends to a continuous linear operator

T : (1 + |y|2)−k/2Hk(Rm
y ) −→ (1 + |x|2)−q/2Hq(Rn

x)

for some k and q. Deduce that the operator

T̃ = (1 + |Dx|2)(−n−1−q)/2(1 + |x|2)q/2 ◦ T ◦ (1 + |y|2)k/2(1 + |D|2)−k/2 :

L2(Rm) −→ C∞(Rn)

is continuous with values in the bounded continuous functions on Rn. Deduce that
T̃ has Schwartz kernel in C∞(Rn;L2(Rm)) ⊂ S ′(Rn+m) and hence that T itself has
a tempered Schwartz kernel.

1.2.2000.301 Problem 1.17. Radial compactification and symbols.

PolyDouble Problem 1.18. Series of problems discussing double polyhomogeneous sym-
bols.



CHAPTER 2

Pseudodifferential operators on Euclidean spaceC.Euclidean

Formula (
2.27
1.92) for the action of a differential operator (with coefficients in

C∞∞(Rn)) on S(Rn) can be written

3.1 (2.1)

P (x,D)u = (2π)−n

∫
ei(x−y)·ξP (x, ξ)u(y)dydξ

= (2π)−n

∫
eix·ξP (x, ξ)û(ξ)dξ

where û(ξ) = Fu(ξ) is the Fourier transform of u. We shall generalize this formula
by generalizing P (x, ξ) from a polynomial in ξ to a symbol, which is to say a smooth
function satisfying certain uniformity conditions at infinity. In fact we shall also
allow the symbol, or rather the amplitude, in the integral (

3.1
2.1) to depend in addition

on the ‘incoming’ variables, y :

3.2 (2.2) A(x,D)u = (2π)−n

∫
ei(x−y)·ξa(x, y, ξ)u(y)dydξ, u ∈ S(Rn).

Of course it is not clear that this integral is well-defined.
To interpret (

3.2
2.2) we shall first look into the definition and properties of sym-

bols. Then we show how this integral can be interpreted as an oscillatory integral
and that it thereby defines an operator on S(Rn).We then investigate the properties
of these pseudodifferential operators at some length.

2.1. SymbolsS.Symbols

A polynomial, p, in ξ, of degree at most m, satisfies a bound

3.3 (2.3) |p(ξ)| ≤ C(1 + |ξ|)m ∀ ξ ∈ Rn.

Since successive derivatives, Dα
ξ p(ξ), are polynomials of degree m − |α|, for any

multiindex α, we get the family of estimates

3.4 (2.4) |Dα
ξ p(ξ)| ≤ Cα(1 + |ξ|)m−|α| ∀ ξ ∈ Rn, α ∈ Nn

0 .

Of course if |α| > m then Dα
ξ p ≡ 0, so we can even take the constant Cα to be

independent of α. If we consider the characteristic polynomial P (x, ξ) of a differ-
ential operator of order m with coefficients in C∞∞(Rn) (i.e. all derivatives of the
coefficients are bounded) (

3.4
2.4) is replaced by

3.5 (2.5)
∣∣Dα

xD
β
ξ P (x, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|β| ∀ (x, ξ) ∈ Rn × Rn, α, β ∈ Nn
0 .

There is no particular reason to have the same number of x variables as of ξ vari-
ables, so in general we define:

27
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3.6 Definition 2.1. The space Sm
∞(Rp;Rn) of symbols of order m consists of those

functions a ∈ C∞(Rp × Rn) satisfying all the estimates

3.7 (2.6)
∣∣Dα

zD
β
ξ a(z, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|β| on Rp × Rn ∀ α ∈ Np
0, β ∈ Nn

0 .

For later reference we even define Sm
∞(Ω;Rn) when Ω ⊂ Rp and Ω ⊂ clos(int(Ω))

as consisting of those a ∈ C∞(int(Ω)×Rn) satisfying (
3.7
2.6) for (z, ξ) ∈ int(Ω)×Rn.

The estimates (
3.7
2.6) can be rewritten

3.8 (2.7)
∥∥a
∥∥

N,m
= sup

z∈int(Ω)
ξ∈R

n

max
|α|+|β|≤N

(1 + |ξ|)−m+|β|
∣∣Dα

zD
β
ξ a(z, ξ)

∣∣ <∞.

With these norms Sm
∞(Ω;Rn) is a Fréchet space, rather similar in structure to

C∞∞(Rn). Thus the topology is given by the metric

3.9 (2.8) d(a, b) =
∑

N≥0

2−N ‖a− b‖N,m

1 + ‖a− b‖N,m
, a, b ∈ Sm

∞(Ω;Rn).

The subscript ‘∞’ here is not standard notation. It refers to the assumption of
uniform boundedness of the derivatives of the ‘coefficients’. More standard notation
would be just Sm(Ω×Rn), especially for Ω = Rp, but I think this is too confusing.

A more significant issue is: Why this class precisely? As we shall see below,
there are other choices which are not only possible but even profitable to make.
However, the present one has several virtues. It is large enough to cover most
of the straightforward things we want to do (at least initially) and small enough
to ‘work’ easily. It leads to what I shall refer to as the ‘traditional’ algebra of
pseudodifferential operators.

Now to some basic properties. First notice that

(2.9) (1 + |ξ|)m ≤ C(1 + |ξ|)m′ ∀ ξ ∈ Rn ⇐⇒ m ≤ m′.

Thus we have an inclusion

3.10 (2.10) Sm
∞(Ω;Rn) ↪→ Sm′

∞ (Ω;Rn) ∀ m′ ≥ m.
Moreover this inclusion is continuous, since from (

3.8
2.7), ‖a‖N,m′ ≤ ‖a‖N,m if a ∈

Sm(Ω;Rn) and m′ ≥ m. Since these spaces increase with m we think of them as a
filtration of the big space

3.11 (2.11) S∞
∞(Ω;Rn) =

⋃

m

Sm
∞(Ω;Rn).

Notice that the two ‘∞s’ here are quite different. The subscript refers to the fact
that the ‘coefficients’ are bounded and stands for L∞ whereas the superscript ∞
stands really for R. The residual space of this filtration is

3.12 (2.12) S−∞
∞ (Ω;Rn) =

⋂

m

Sm
∞(Ω;Rn).

In fact the inclusion (
3.10
2.10) is never dense if m′ > m. Instead we have the following

rather technical, but nevertheless very useful, result.

3.13 Lemma 2.1. For any m ∈ R and any a ∈ Sm
∞(Ω;Rn) there is a sequence in

S−∞
∞ (Ω;Rn) which is bounded in Sm

∞(Ω;Rn) and converges to a in the topology

of Sm′

∞ (Ω;Rn) for any m′ > m; in particular S−∞
∞ (Ω;Rn) is dense in the space

Sm
∞(Ω;Rn) in the topology of Sm′

∞ (Ω;Rn) for m′ > m.
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The reason one cannot take m′ = m here is essentially the same reason that un-
derlies the fact that S(Rn) is not dense in C∞∞(Rn). Namely any uniform limit
obtained from a converging Schwartz sequence must vanish at infinity. In particu-
lar the constant function 1 ∈ S0

∞(Rp;Rn) cannot be in the closure in this space of
S−∞
∞ (Rp;Rn) if n > 0.

Proof. Choose φ ∈ C∞c (Rn) with 0 ≤ φ(ξ) ≤ 1, φ(ξ) = 1 if |ξ| < 1, φ(ξ) = 0 if
|ξ| > 2 and consider the sequence

(2.13) ak(z, ξ) = φ(ξ/k)a(z, ξ), a ∈ Sm
∞(Ω;Rn).

We shall show that ak ∈ S−∞
∞ (Ω,Rn) is a bounded sequence in Sm

∞(Ω;Rn) and that

ak −→ a in Sm′

∞ (Ω;Rn) for any m′ > m. Certainly for each N

(2.14) |ak(z, ξ)| ≤ CN,k(1 + |ξ|)−N

since φ has compact support. Leibniz’ formula gives

1.2.2000.353 (2.15) Dα
zD

β
ξ ak(z, ξ) =

∑

β′≤β

(
β′

β

)
k−|β′|(Dβ′

φ)(ξ/k)Dα
zD

β−β′

ξ a(z, ξ).

On the support of φ(ξ/k), |ξ| ≤ k so, using the symbol estimates on a, it follows
that ak is bounded in Sm

∞(Ω;Rn). We easily conclude that

(2.16)
∣∣Dα

zD
β
ξ ak(z, ξ)

∣∣ ≤ CN,α,β,k(1 + |ξ|)−N ∀ α, β,N, k.
Thus ak ∈ S−∞

∞ (Ω;Rn).
So consider the difference

3.14 (2.17) (a− ak)(z, ξ) = (1− φ)(ξ/k) a(z, ξ).

Now, |(1 − φ)(ξ/k)| = 0 in |ξ| ≤ k so we only need estimate the difference in
|ξ| ≥ k where this factor is bounded by 1. In this region 1 + |ξ| ≥ 1 + k so, since
−m′ +m < 0,

(2.18) (1 + |ξ|)−m′ ∣∣(a− ak)(z, ξ)
∣∣ ≤

(1 + k)−m′+m sup
z,ξ
|(1 + |ξ|)−m|a(z, ξ)| ≤ (1 + k)−m′+m‖a‖0,m −→ 0.

This is convergence with respect to the first symbol norm.
Next consider the ξ derivatives of (

3.14
2.17). Using Leibniz’ formula

Dβ
ξ (a− ak) =

∑

γ≤β

(
β

γ

)
Dβ−γ

ξ (1− φ)(
ξ

k
) ·Dγ

ξ a(z, ξ)

= (1− φ)(
ξ

k
) ·Dβ

ξ a(z, ξ)−
∑

γ<β

(
β

γ

)(
Dβ−γφ

)
(
ξ

k
) · k−|β−γ|Dγ

ξ a(z, ξ).

In the first term, Dβ
ξ a(z, ξ) is a symbol of order m− |β|, so by the same argument

as above

(2.19) sup
ξ

(1 + |ξ|)−m′+|β|(1− φ)(
ξ

k
)Dβ

ξ a(x, ξ) −→ 0

as k −→∞ if m′ > m. In all the other terms, (Dβ−γφ)(ζ) has compact support, in
fact 1 ≤ |ζ| ≤ 2 on the support. Thus for each term we get a bound

(2.20) sup
k≤|ξ|≤2k

(1 + |ξ|)−m′+|β| · k−|β−γ|C · (1 + |ξ|)m−|γ| ≤ Ck−m′+m.
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The variables z play the rôle of parameters so we have in fact shown that

(2.21) sup
z∈Ω
ξ∈R

n

(1 + |ξ|)−m′+|β|
∣∣Dα

zD
β
ξ (a− ak)

∣∣ −→ 0 as k −→∞.

This means ak −→ a in each of the symbol norms, and hence in the topology of
Sm′

∞ (Rp;Rn) as desired. �

In fact this proof suggests a couple of other ‘obvious’ results. Namely

3.17 (2.22) Sm
∞(Ω;Rn) · Sm′

∞ (Ω;Rn) ⊂ Sm+m′

∞ (Ω;Rn).

This can be proved directly using Leibniz’ formula:

sup
ξ

(1 + |ξ|)−m−m′+|β|
∣∣Dα

zD
β
ξ (a(z, ξ) · b(z, ξ))

∣∣

≤
∑

µ≤α
γ≤β

(
α

µ

)(
β

γ

)
sup

ξ
(1 + |ξ|)−m+|γ|

∣∣Dµ
zD

γ
ξ a(z, ξ)

∣∣

× sup
ξ

(1 + |ξ|)−m′+|β−γ|
∣∣Dα−µ

z Dβ−γ
ξ b(z, ξ)

∣∣ <∞.

We also note the action of differentiation:

3.18 (2.23)
Dα

z : Sm
∞(Ω;Rn) −→ Sm

∞(Ω;Rn) and

Dβ
ξ : Sm

∞(Ω;Rn) −→ Sm−|β|
∞ (Ω;Rn).

In fact, while we are thinking about these things we might as well show the impor-
tant consequence of ellipticity. A symbol a ∈ Sm

∞(Ω;Rn) is said to be (globally)
elliptic if

3.19 (2.24) |a(z, ξ)| ≥ ε(1 + |ξ|)m − C(1 + |ξ|)m−1, ε > 0

or equivalently1

3.20 (2.25) |a(z, ξ)| ≥ ε(1 + |ξ|)m in |ξ| ≥ Cε, ε > 0.

3.21 Lemma 2.2. If a ∈ Sm
∞(Ω;Rn) is elliptic there exists b ∈ S−m

∞ (Ω;Rn) such that

3.22 (2.26) a · b− 1 ∈ S−∞
∞ (Ω;Rn).

Proof. Using (
3.20
2.25) choose φ as in the proof of Lemma

3.13
2.1 and set

3.23 (2.27) b(z, ξ) =

{
1−φ(ξ/2C)

a(z,ξ) |ξ| ≥ C
0 |ξ| ≤ C.

Then b is C∞ since b = 0 in C ≤ |ξ| ≤ C + δ for some δ > 0. The symbol estimates
follow by noting that, in |ξ| ≥ C,

1.2.2000.277 (2.28) Dα
zD

β
ξ b = a−1−|α|−|β| ·Gαβ

where Gαβ is a symbol of order (|α|+ |β|)m−|β|. This may be proved by induction.
Indeed, it is true when α = β = 0. Assuming (

1.2.2000.277
2.28) for some α and β, differentiation

of (
1.2.2000.277
2.28) gives

Dzj
Dα

zD
β
ξ b = Dzj

a−1−|α|−|β| ·Gαβ = a−2−|α|−|β|G′,

G′ = (−1− |α| − |β|)(Dzj
a)Gαβ + aDzj

Gαβ .

1Note it is required that ε be chosen to be independent of z here, so this is a notion of uniform
ellipticity.
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By the inductive hypothesis, G′ is a symbol of order (|α|+1+ |β|)m−|β|. A similar
argument applies to derivatives with respect to the ξ variables. �

2.2. Pseudodifferential operatorsS.Pseudodifferential.operators

Now we proceed to discuss the formula (
3.2
2.2) where we shall assume that, for

some w,m ∈ R,

3.24 (2.29)
a(x, y, ξ) = (1 + |x− y|2)w/2ã(x, y, ξ)

ã ∈ Sm
∞(R2n

(x,y);R
n
ξ ).

The extra ‘weight’ factor (which allows polynomial growth in the direction of x−y)
turns out, somewhat enigmatically, to both make no difference and be very useful!
Notice2 that if a ∈ C∞(R2n × Rn) then a ∈ (1 + |x − y|2)w/2Sm(R2n;Rn) if and
only if

3.32 (2.30) |Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ(1 + |x− y|)w(1 + |ξ|)m−|γ| ∀ α, β, γ ∈ Nn

0 .

If m < −n then, for each u ∈ S(Rn) the integral in (
3.2
2.2) is absolutely convergent,

locally uniformly in x, since

(2.31)
|a(x, y, ξ)u(y)| ≤ C(1 + |x− y|)w(1 + |ξ|)m(1 + |y|)−N

≤ C(1 + |x|)w(1 + |ξ|)m(1 + |y|)m, m < −n.

Here we have used the following simple consequence of the triangle inequality

(1 + |x− y|) ≤ (1 + |x|)(1 + |y|)

from which it follows that

19.2.1998.102 (2.32) (1 + |x− y|)w ≤
{

(1 + |x|)w(1 + |y|)w if w > 0

(1 + |x|)w(1 + |y|)−w if w ≤ 0.

Thus we conclude that, provided m < −n,

3.33 (2.33) A : S(Rn) −→ (1 + |x|2)w/2C0
∞(Rn).

To show that, for general m, A exists as an operator, we prove that its Schwartz
kernel exists.

3.25 Proposition 2.1. The map, defined for m < −n as a convergent integral,
3.26 (2.34)

(1 + |x− y|2)w/2Sm
∞(R2n;Rn) 3 a 7−→ I(a) =

(2π)−n

∫
ei(x−y)·ξa(x, y, ξ)dξ ∈ (1 + |x|2 + |y|2)w/2C0

∞(R2n)

extends by continuity to

1.2.2000.302 (2.35) I : (1 + |x− y|2)w/2Sm
∞(R2n;Rn) −→ S ′(R2n)

for each w, m ∈ R in the topology of Sm′

∞ (R2n;Rn) for any m′ > m.

2See Problem
1.2.2000.276
2.5.
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Proof. Since we already have the density of S−∞
∞ (R2n;Rn) in Sm

∞(R2n;Rn)

in the toplogy of Sm′

∞ (R2n;Rn) for any m′ > m, we only need to show the conti-
nuity of the map (

3.26
2.34) on this residual subspace with respect to the topology of

Sm′

∞ (R2n;Rn) for any m′, which we may as well write as m. What we shall show
is that, for each w,m ∈ R, there are integers N, k ∈ N such that, in terms of the
norms in (

3.8
2.7) and (

1.7
1.6)

3.27 (2.36)
∣∣I(a)(φ)

∣∣ ≤ C‖ã‖N,m‖φ‖k ∀ φ ∈ S(R2n),

a = (1 + |x− y|2)w/2ã, ã ∈ S−∞
∞ (R2n;Rn).

To see this we just use integration by parts.
Set φ̃(x, y) = (1 + |x− y|2)w/2φ(x, y). Observe that

(1 + ξ ·Dx)ei(x−y)·ξ = (1 + |ξ|2)ei(x−y)·ξ

(1− ξ ·Dy)ei(x−y)·ξ = (1 + |ξ|2)ei(x−y)·ξ.

Thus we can write, for ã ∈ S−∞
∞ , with a = (1 + |x− y|2)w/2ã and for any q ∈ N

I(a)(φ) =

∫∫
(2π)−n

∫
ei(x−y)·ξ(1 + |ξ|2)−2q

(1− ξ ·Dx)q(1 + ξ ·Dy)q
[
ã(x, y, ξ)φ̃(x, y)

]
dξdxdy

=
∑

|γ|≤2q

∫∫ ( ∫
ei(x−y)·ξa(q)

γ (x, y, ξ)dξ
)
Dγ

(x,y)φ̃(x, y)dxdy.

3.28 (2.37)

Here the a
(q)
γ arise by expanding the powers of the operator

(1− ξ ·Dx)q(1 + ξ ·Dx)q =
∑

|µ|,|ν|≤q

Cµ,νξ
µ+νDµ

xD
ν
y

and applying Leibniz’ formula. Thus a
(q)
γ arises from terms in which 2q−|γ| deriva-

tives act on ã so it is of the form

aγ = (1 + |ξ|2)−2q
∑

|µ|≤|γ|,|γ|≤2q

Cµ,γξ
γDµ

(x,y)ã

=⇒ ‖aγ‖N,m ≤ Cm,q,N‖ã‖N+2q,m−2q ∀ m,N, q.

So (for given m) if we take −2q + m < −n, e.g. q > max( n+m
2 , 0) and use the

integrability of (1 + |x|+ |y|)−2n−1 on R2n, then

(2.38)
∣∣I(a)(φ)

∣∣ ≤ C‖ã‖2q,m‖φ̃‖2q+2n+1 ≤ C‖ã‖2q,m‖φ‖2q+w+2n+1.

This is the estimate (
3.27
2.36), which proves the desired continuity. �

In showing the existence of the Schwartz’ kernel in this proof we do not really
need to integrate by parts in both x and y; either separately will do the trick.
We can use this observation to show that these pseudodifferential operator act on
S(Rn).

3.29 Lemma 2.3. If a ∈ (1 + |x − y|2)w/2Sm
∞(R2n;Rn) then the operator A, with

Schwartz kernel I(a), is a continuous linear map

3.30 (2.39) A : S(Rn) −→ S(Rn).
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We shall denote by Ψm
∞(Rn) the linear space of operators (

3.30
2.39), corresponding

to (1 + |x − y|2)−w/2a ∈ Sm
∞(R2n;Rn) for some w. I call them pseudodifferential

operators ‘of traditional type’ – or type ‘1,0’, the meaning of which is explained in
Problem

1.2.2000.279
2.16 below.

Proof. Proceeding as in (
3.28
2.37) but only integrating by parts in y we deduce

that, for q large depending on m,

Au(ψ) =
∑

γ≤2q

(2π)−n

∫∫ ∫
ei(x−y)·ξaγ(x, y, ξ)Dγ

yu(y)dξψ(x)dydx,

aγ ∈ (1 + |x− y|2)w/2Sm−q(R2n;Rn) if a ∈ (1 + |x− y|2)w/2Sm(R2n;Rn).

The integration by parts is justified by continuity from S−∞
∞ (R2n;Rn). Taking −q+

m < −n− |w|, this shows that Au is given by the convergent integral

1.2.2000.282 (2.40) Au(x) =
∑

γ≤2q

(2π)−n

∫∫
ei(x−y)·ξaγ(x, y, ξ)Dγ

yu(y)dξdy,

A : S(Rn) −→ (1 + |x|2) |w|
2 C0

∞(Rn)

which is really just (
3.33
2.33) again. Here C0

∞(Rn) is the Banach space of bounded
continuous functions on Rn, with the supremum norm. The important point is
that the weight depends on w but not on m. Notice that

Dxj
Au(x) = (2π)−n

∑

|γ|≤2q

∫∫
ei(x−y)·ξ

(
ξj +Dxj

)
aγ ·Dγ

yu(y)dydξ

and

xjAu(x) = (2π)n
∑

|γ|≤2q

∫∫
ei(x−y)·ξ

(
−Dξj

+ yj

)
aγ ·Dγ

yu(y)dydξ.

Proceeding inductively (
3.30
2.39) follows from (

3.33
2.33) or (

1.2.2000.282
2.40) since we conclude that

xαDβ
xAu ∈ (1 + |x|2) |w|

2 C0
∞(Rn), ∀ α, β ∈ Nn

0

and this implies that Au ∈ S(Rn). �

2.3. CompositionS.Composition

There are two extreme cases of I(a), namely where a is independent of either
x or of y. Below we shall prove:

3.31 Theorem 2.1 (Reduction). Each A ∈ Ψm
∞(Rn) can be written uniquely as

I(a′) where a′ ∈ Sm
∞(Rn

x ;Rn
ξ ).

This is the main step in proving the fundamental result of this Chapter, which is
that two pseudodifferential operators can be composed to give a pseudodifferential
operator and that the orders are additive. Thus our aim is to demonstrate the
fundamental

4.1 Theorem 2.2. [Composition] The space Ψ∞
∞(Rn) is an order-filtered ∗-algebra

on S(Rn).



34 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

We have already shown that each A ∈ Ψ∞
∞(Rn) defines a continuous linear map

(
3.30
2.39). We now want to show that

A ∈ Ψm
∞(Rn) =⇒ A∗ ∈ Ψm

∞(Rn)4.35 (2.41)

A ∈ Ψm
∞(Rn), B ∈ Ψm′

∞ (Rn) =⇒ A ◦B ∈ Ψm+m′

∞ (Rn),4.3 (2.42)

since this is what is meant by an order-filtered (the orders add on composition)
∗-algebra (meaning (

4.35
2.41) holds). In fact we will pick up some more information

along the way.

2.4. ReductionS.Reduction

We proceed to prove Theorem
3.31
2.1, which we can restate as:

4.4 Proposition 2.2. The range of (
3.26
2.34) (for any w) is the same as the range

of I restricted to the image of the inclusion map

Sm
∞(Rn;Rn) 3 a 7−→ a(x, ξ) ∈ Sm

∞(R2n
(x,y);R

n).

Proof. Suppose a ∈
(
1 + |x− y|2

)w/2
S−∞
∞ (R2n;Rn) for some w, then

4.5 (2.43) I
(
(xj − yj)a

)
= I
(
−Dξj

a
)
j = 1, . . . , n.

Indeed this is just the result of inserting the identity

Dξj
ei(x−y)·ξ = (xj − yj)e

i(x−y)·ξ

into (
3.26
2.34) and integrating by parts. Since both sides of (

4.5
2.43) are continuous on(

1 + |x − y|2
)w/2

S∞
∞(R2n;Rn) the identity holds in general. Notice that if a is of

order m then Dξj
a is of order m−1, so (

4.5
2.43) shows that even though the operator

with amplitude (xj − yj)a(x, y, ξ) appears to have order m, it actually has order
m− 1.

To exploit (
4.5
2.43) consider the Taylor series (with Legendre’s remainder) for

a(x, y, ξ) around x = y :

4.6 (2.44) a(x, y, ξ) =
∑

|α|≤N−1

(−i)|α|

α!
(x− y)α

(
Dα

y a
)
(x, x, ξ)

+
∑

|α|=N

(−i)|α|

α!
(x− y)α ·RN,α(x, y, ξ).

Here,

4.7 (2.45) RN,α(x, y, ξ) =

1∫

0

(1− t)N−1
(
Dα

y a
)
(x, (1− t)x+ ty, ξ)dt.

Now,

(2.46) (x− y)α
(
Dα

y a
)
(x, y, ξ) ∈

(
1 + |x− y|2

) (w+|α|)
2 Sm

∞(R2n;Rn).

Applying (
4.5
2.43) repeatedly we see that if A is the operator with kernel I(a) then

4.8 (2.47) A =

N−1∑

j=0

Aj +RN , Aj ∈ Ψm−j
∞ (Rn), RN ∈ Ψm−N

∞ (Rn)
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where the Aj have kernels

4.9 (2.48) I
(∑

|α|=j

i|α|

α!

(
Dα

yD
α
ξ a
)
(x, x, ξ)

)
.

To proceed further we need somehow to sum this series. Of course we cannot really
do this, but we can come close!

2.5. Asymptotic summationS.Asymptotic.summation

Suppose aj ∈ Sm−j
∞ (Rp;Rn). The fact that the orders are decreasing means

that those symbols are getting very small, for |ξ| large. The infinite series

(2.49)
∑

j

aj(z, ξ)

need not converge. However we shall say that it converges asymptotically, or since
it is a series we say it is ‘asymptotically summable,’ if there exists a ∈ Sm

∞(Rp;Rn)
such that,

4.10 (2.50) for every N, a−
N−1∑

j=0

aj ∈ Sm−N
∞ (Rp;Rn).

We write this relation as

4.11 (2.51) a ∼
∞∑

j=0

aj .

4.12 Proposition 2.3. Any series aj ∈ Sm−j
∞ (Rp;Rn) is asymptotically summable,

in the sense of (
4.10
2.50), and the asymptotic sum is well defined up to an additive

term in S−∞
∞ (Rp;Rn).

Proof. The uniqueness part is easy. Suppose a and a′ both satisfy (
4.10
2.50).

Taking the difference

4.13 (2.52) a− a′ =
(
a−

N−1∑

j=0

aj

)
−
(
a′ −

N−1∑

j=0

aj) ∈ Sm−N
∞ (Rp;Rn).

Since S−∞
∞ (Rp;Rn) is just the intersection of the S−N

∞ (Rp;Rn) over N it follows
that a− a′ ∈ S−∞

∞ (Rp;Rn), proving the uniqueness.
So to the existence of an asymptotic sum. To construct this (by Borel’s

method3) we cut off each term ‘near infinity in ξ’. Thus fix φ ∈ C∞(Rn) with
φ(ξ) = 0 in |ξ| ≤ 1, φ(ξ) = 1 in |ξ| ≥ 2, 0 ≤ φ(ξ) ≤ 1. Consider a decreasing
sequence

4.14 (2.53) ε0 > ε1 > · · · > εj ↓ 0.

We shall set

4.15 (2.54) a(z, ξ) =
∞∑

j=0

φ(εjξ)aj(z, ξ).

Since φ(εjξ) = 0 in |ξ| < 1/εj → ∞ as j → ∞, only finitely many of these terms
are non-zero in any ball |ξ| ≤ R. Thus a(z, ξ) is a well-defined C∞ function. Of
course we need to consider the seminorms, in Sm

∞(Rp;Rn), of each term.

3Émile Borel
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The first of these is

4.16 (2.55) sup
z

sup
ξ

(1 + |ξ|)−m
∣∣φ(εjξ)

∣∣ ∣∣aj(z, ξ)
∣∣.

Now |ξ| ≤ 1
εj

on the support of φ(εjξ)aj(z, ξ) and since aj is a symbol of order

m− j this allows us to estimate (
4.16
2.55) by

sup
z

sup
|ξ|≤ 1

εj

(1 + |ξ|)−j ·
[(

1 + |ξ|
)−m+j∣∣aj(z, ξ)

∣∣]

≤
(
1 +

1

εj

)−j · Cj ≤ εjj · Cj

where the Cj ’s are fixed constants, independent of εj .
Let us look at the higher symbol estimates. As usual we can apply Leibniz’

formula:

sup
z

sup
ξ

(1 + |ξ|)−m+|β|
∣∣Dα

zD
β
ξ φ(εjξ)aj(z, ξ)

∣∣

≤
∑

µ≤β

sup
z

sup
ξ

(1 + |ξ|)|β|−|µ|−jε
|β|−|µ|
j

∣∣(Dβ−µφ
)
(εjξ)

∣∣

×(1 + |ξ|)−m+j+|µ|
∣∣Dα

zD
µ
ξ aj(z, ξ)

∣∣.
The term with µ = β we estimate as before and the others, with µ 6= β are supported
in 1

εj
≤ |ξ| ≤ 2

εj
. Then we find that for all j

4.17 (2.56) ‖φ(εjξ)aj(z, ξ)‖N,m ≤ CN,jε
j
j

where CN,j is independent of εj .
So we see that for each given N we can arrange that, for instance,

‖φ(εjξ)aj(z, ξ)‖N,m ≤ CN
1

j2

by choosing the εj to satify

CN,jε
j
j ≤

1

j2
∀ j ≥ j(N).

Notice the crucial point here, we can arrange that for each N the sequence of norms
in (

4.17
2.56) is dominated by CNj

−2 by fixing εj < εj,N for large j. Thus we can arrange
convergence of all the sums

∑

j

‖φ(εjξ)aj(z, ξ)‖N,m

by diagonalization, for example setting εj = 1
2εj,j . Thus by choosing εj ↓ 0 rapidly

enough we ensure that the series (
4.15
2.54) converges. In fact the same argument allows

us to ensure that for every N

4.18 (2.57)
∑

j≥N

φ(εjξ)aj(z, ξ) converges in Sm−N
∞ (Rp;Rn).

This certainly gives (
4.10
2.50) with a defined by (

4.15
2.54). �
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2.6. Residual termsS.Residual.terms

Now we can apply Proposition
4.12
2.3 to the series in (

4.9
2.48), that is we can find

b ∈ Sm
∞(Rn

x ;Rn
ξ ) satisfying

4.19 (2.58) b(x, ξ) ∼
∑

α

i|α|

α!

(
Dα

y a
)
(x, x, ξ).

Let B = I(b) be the operator defined by this amplitude (which is independent of
y). Now (

4.8
2.47) says that

A−B =

N−1∑

j=0

Aj +RN −B

and from (
4.10
2.50) applied to (

4.19
2.58)

B =

N−1∑

j=0

Aj +R′
N , R

′
N ∈ Ψm−N

∞ (Rn)

Thus

4.20 (2.59) A−B ∈ Ψ−∞
∞ (Rn) =

⋂

N

ΨN
∞(Rn).

Notice that, at this stage, we do not know that A − B has kernel I(c) with
c ∈ S−∞

∞ (R2n,Rn), just that it has kernel I(cN ) with cN ∈ SN
∞(R2n;Rn) for each

N.
However:

4.21 Proposition 2.4. An operator A : S(Rn) −→ S ′(Rn) is an element of the
space Ψ−∞

∞ (Rn) if and only if its Schwartz kernel is C∞ and satisfies the estimates

4.22 (2.60)
∣∣Dα

xD
β
yK(x, y)

∣∣ ≤ CN,α,β(1 + |x− y|)−N ∀ α, β,N.

Proof. Suppose first that A ∈ Ψ−∞
∞ (Rn), which means that A ∈ ΨN

∞(Rn) for
every N. The Schwartz kernel, KA, of A is therefore given by (

3.26
2.34) with the am-

plitude aN ∈ SN
∞(R2n;Rn). For N << −n− 1− p the integral converges absolutely

and we can integrate by parts to show that

(x − y)αDβ
xD

γ
yKA(x, y)

= (2π)−N

∫
ei(x−y)·ξ(−Dξ)

α(Dx + iξ)β(Dy − iξ)γaN (x, y, ξ)dξ

which converges absolutely, and uniformly in x, y, provided |β|+ |γ|+N−|α| < −n.
Thus

sup
∣∣(x− y)αDβ

xD
γ
yK
∣∣ <∞ ∀ α, β, γ

which is another way of writing (
4.22
2.60) i.e.

sup
(
1 + |x− y|2

)N ∣∣Dβ
xD

γ
yK
∣∣ <∞ ∀ β, γ,N.

Conversely suppose that (
4.22
2.60) holds. Define

4.23 (2.61) g(x, z) = K(x, x− z).
The estimates (

4.22
2.60) become

4.24 (2.62) sup
∣∣Dα

xz
γDβ

z g(x, z)
∣∣ <∞ ∀ α, β, γ.
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That is, g is rapidly decreasing with all its derivatives in z. Taking the Fourier
transform,

4.25 (2.63) b(x, ξ) =

∫
e−iz·ξg(x, z)dz

the estimate (
4.24
2.62) translates to

4.26 (2.64)
sup
x,ξ

∣∣Dα
x ξ

βDγ
ξ b(x, ξ)

∣∣ <∞ ∀ α, β, γ

⇐⇒ b ∈ S−∞
∞ (Rn

x ;Rn
ξ ).

Now the inverse Fourier transform in (
4.25
2.63), combined with (

4.23
2.61) gives

4.27 (2.65) K(x, y) = g(x, x− y) = (2π)−n

∫
ei(x−y)·ξb(x, ξ)dξ

i.e. K = I(b). This certainly proves the proposition and actually gives the stronger
result.

4.127 (2.66) A ∈ Ψ−∞
∞ (Rn)⇐⇒ A = I(c), c ∈ S−∞

∞ (Rn
x ;Rn

ξ ).

�

This also finishes the proof of Proposition
4.4
2.2 since in (

4.19
2.58), (

4.20
2.59) we have

shown that

4.28 (2.67) A = B +R, B = I(b), R ∈ Ψ−∞
∞ (Rn)

so in fact

4.29 (2.68) A = I(e), e ∈ Sm
∞(Rn

x ;Rn
ξ ), e ∼

∑

α

i|α|

α!

(
Dα

yD
α
ξ a
)
(x, x, ξ).

�

2.7. Proof of Composition TheoremS.Proof.of.Composition.Theorem

First consider the adjoint formula. If

A : S(Rn) −→ S(Rn)

the adjoint is the operator

A∗ : S ′(Rn) −→ S ′(Rn)

defined by duality:

4.30 (2.69) A∗u(φ̄) = u(Aφ) ∀ φ ∈ S(Rn).

Certainly A∗u ∈ S ′(Rn) if u ∈ S ′(Rn) since

4.31 (2.70) A∗u(ψ) = u(Aψ) and S(Rn) 3 ψ 7−→ Aψ̄ ∈ S(Rn)

is clearly continuous. In terms of Schwartz kernels,

4.32 (2.71)

Aφ(x) =

∫
KA(x, y)φ(y) dy, φ ∈ S(Rn)

A∗u(x) =

∫
KA∗(x, y)u(y) dy, u ∈ S(Rn).
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We then see that

4.33 (2.72)

∫
KA∗(x, y)u(y)φ(x)dydx =

∫
KA(x, y)φ(y)dyu(x)dx

=⇒ KA∗(x, y) = KA(y, x)

where we are using the uniqueness of Schwartz’ kernels.
This proves (

4.35
2.41) since

4.34 (2.73)

KA(y, x) =
[ 1

(2π)n

∫
ei(y−x)·ξa(y, x, ξ)dξ

]

=
1

(2π)n

∫
ei(x−y)·ξā(y, x, ξ)dξ

i.e. A∗ = I(ā(y, x, ξ)). Thus one advantage of allowing general operators (
3.26
2.34) is

that closure under the passage to adjoint is immediate.
For the composition formula we need to apply Proposition

4.4
2.2 twice. First to

A ∈ Ψm
∞(Rn), to write it with symbol a(x, ξ)

Aφ(x) = (2π)−n

∫
ei(x−y)·ξa(x, ξ)φ(y)dydξ

= (2π)−n

∫
eix·ξa(x, ξ)φ̂(ξ)dξ.

Then we also apply Proposition
4.4
2.2 to B∗,

B∗u(x) = (2π)−n

∫
eix·ξ b̄(x, ξ)û(ξ)dξ.

Integrating this against a test function φ ∈ S(Rn) gives

21.2.1998.112 (2.74)

〈Bφ, u〉 = 〈φ,B∗u〉 = (2π)−n

∫ ∫
e−ix·ξφ(x)b(x, ξ)û(ξ)dξdx

=⇒ B̂φ(ξ) =

∫
e−iy·ξb(y, ξ)φ(y)dy.

Inserting this into the formula for Aφ shows that

=⇒ AB(u) = (2π)−n

∫
ei(x−y)·ξa(x, ξ)b(y, ξ)u(y)dydξ.

Since a(x, ξ)b(y, ξ) ∈ Sm+m′

∞

(
R2n

(x,y);R
n
ξ ) this shows that AB ∈ Ψm+m′

∞ (Rn) as

claimed.

2.8. Quantization and symbolsS.Quantization.and.symbols

So, we have now shown that there is an ‘oscillatory integral’ interpretation of

5.1 (2.75) K(x, y) = (2π)−n

∫
ei(x−y)·ξa(x, y, ξ)dξ = I(a)

which defines, for any w ∈ R, a continuous linear map

I : (1 + |x− y|2)w
2 S∞

∞(R2n;Rn) −→ S ′(R2n)

the range of which is the space of pseudodifferential operators on Rn;

5.2 (2.76)
A ∈ Ψm

∞(Rn)⇐⇒ A : S(Rn) −→ S ′(Rn) and

∃ w s.t. KA(x, y) = I(a), a ∈
(
1 + |x− y|2

)w
2 Sm

∞

(
R2n;Rn

)
.
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Furthermore, we have shown in Proposition
4.4
2.2 that the special case, w = 0 and

∂ya ≡ 0, gives an isomorphism

5.3 (2.77) Ψm
∞(Rn)

σL−→←−
qL

Sm
∞(Rn;Rn).

The map here, qL = I on symbols independent of y, is the left quantization map and
its inverse σL is the left full symbol map. Next we consider some more consequences
of this reduction theorem.

As well as the left quantization map leading to the isomorphism (
5.3
2.77) there is

a right quantization map, similarly derived from (
5.1
2.75):

5.4 (2.78) qR(a) = (2π)−n

∫
ei(x−y)·ξa(y, ξ)dξ, a ∈ Sm

∞ (Rn;Rn) .

In fact using the adjoint operator, ∗, on operators and writing as well ∗ for complex
conjugation of symbols shows that

5.5 (2.79) qR = ∗ · qL · ∗
is also an isomorphism, with inverse σR

5.6 (2.80) Ψm
∞(Rn)

σR−→←−
qR

Sm
∞ (Rn;Rn) .

These are the two ‘extreme’ quantization procedures, see Problem
P5.1
4.1 for another

(more centrist) approach. Using the proof of the reduction theorem we find:

5.7 Lemma 2.4. For any a ∈ Sm
∞ (Rn;Rn) ,

5.8 (2.81) σL (qR(a)) (x, ξ) ∼
∑

α

i|α|

α!
Dα

xD
α
ξ a(x, ξ) ∼ ei<Dx,Dξ>a.

For the moment the last asymptotic equality is just to help in remembering the
formula, which is the same as given by the formal Taylor series expansion at the
origin of the exponential.

Proof. This follows from the general formula (
4.29
2.68). �

2.9. Principal symbolS.Principal.symbol

One important thing to note from (
5.8
2.81) is that

(2.82) Dα
xD

α
ξ a(x, ξ) ∈ Sm−|α|

∞ (Rn;Rn)

so that for any pseudodifferential operator

(2.83) A ∈ Ψm
∞(Rn) =⇒ σL(A) − σR(A) ∈ Sm−1

∞ (Rn;Rn) .

For this reason we consider the general quotient spaces

(2.84) Sm−[1]
∞ (Rp;Rn) = Sm

∞ (Rp;Rn)
/
Sm−1
∞ (Rp;Rn)

and, for a ∈ Sm
∞(Rp;Rn), write [a] for its image, i.e. equivalence class, in the

quotient space S
m−[1]
∞ (Rp;Rn) . The ‘principal symbol map’

5.9 (2.85)
σm : Ψm

∞(Rn) −→ Sm−[1]
∞ (Rn;Rn)

is defined by σm(A) = [σL(A)] = [σR(A)].

As distinct from σL or σR, σm depends on m, i.e. one needs to know that the order
is at most m before it is defined.
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The isomorphism (
5.3
2.77) is replaced by a weaker (but very useful) exact se-

quence.

5.10 Lemma 2.5. For every m ∈ R
0 ↪→ Ψm−1

∞ (Rn) ↪→ Ψm
∞(Rn)

σm−→ Sm−[1]
∞ (Rn;Rn) −→ 0

is a short exact sequence (the ‘principal symbol sequence’ or simply the ‘symbol
sequence’).

Proof. This is just the statement that the range of each map is the null space
of the next i.e. that σm is surjective, which follows from (

5.3
2.77), and that the null

space of σm is just Ψm−1
∞ (Rn) and this is again (

5.3
2.77) and the definition of σm. �

The fundamental result proved above is that

5.11 (2.86) Ψm
∞(Rn) ·Ψm′

∞ (Rn) ⊂ Ψm+m′

∞ (Rn).

In fact we showed that if A = qL(a), a ∈ Sm
∞ (Rn;Rn) and B = qR(b), b ∈

Sm′

∞ (Rn;Rn) then the composite operator has Schwartz kernel

KA·B(x, y) = I (a(x, ξ)b(y, ξ))

Using the formula (
4.29
2.68) again we see that

5.12 (2.87) σL(A · B) ∼
∑

α

i|α|

α!
Dα

ξ

[
a(x, ξ)Dα

x b(x, ξ)
]
.

Of course b = σR(B) so we really want to rewrite (
5.12
2.87) in terms of σL(B).

5.13 Lemma 2.6. If A ∈ Ψm
∞(Rn) and B ∈ Ψm′

∞ (Rn) then A ◦B ∈ Ψm+m′

∞ (Rn) and

σm+m′(A ◦B) = σm(A) · σm′(B),5.14 (2.88)

σL(A ◦B) ∼
∑

α

i|α|

α!
Dα

ξ σL(A) ·Dα
xσL(B).5.15 (2.89)

Proof. The simple formula (
5.14
2.88) is already immediate from (

5.12
2.87) since all

terms with |α| ≥ 1 are of order m+m′−|α| ≤ m+m′− 1. To get the ‘full’ formula
(
5.15
2.89) we can insert into (

5.12
2.87) the inverse of (

5.8
2.81), namely

σR(x, ξ) ∼
∑

α

(−i)|α|

α!
Dα

ξ D
α
xσL(x, ξ) ∼ e−i<Dx,Dξ>σL(x, ξ).

This gives the double sum (still asymptotically convergent)

σL(A ◦B) ∼
∑

β

∑

α

i|α|

α!
Dα

ξ

[
σL(A)Dα

x

i|β|

β!
Dβ

xD
β
ξ σL(B)

]
.

Setting γ = α+ β this becomes

σL(A ◦B) ∼
∑

γ

i|γ|

γ!

∑

0≤α≤γ

γ!(−1)|γ−α|

α!(γ − α)!
Dα

ξ

[
σL(A)×Dγ−α

ξ Dγ
xσL(B)

]
.

Then Leibniz’ formula shows that this sum over α can be rewritten as

σL(A ◦B) ∼
∑

γ

i|γ|

γ!
Dγ

ξ σL(A) ·Dγ
xσL(B)

∼ ei<Dy ,Dξ>σL(A)(x, ξ)σL(B)(y, η)
∣∣
y=x,η=ξ

.
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This is just (
5.15
2.89). �

The simplicity of (
5.14
2.88) over (

5.15
2.89) is achieved at the expense of enormous loss

of information. Still, many problems can be solved using (
5.14
2.88) which we can think

of as saying that the principal symbol maps give a homomorphism, for instance

from the filtered algebra Ψ0
∞(Rn) to the commutative algebra S

0−[1]
∞ (Rn;Rn) .

2.10. EllipticityS.Ellipticity

We say that an element of Ψm
∞(Rn) is elliptic if it is invertible modulo an error

in Ψ−∞
∞ (Rn) with the approximate inverse of order −m i.e.

5.16 (2.90)
A ∈ Ψm

∞(Rn) is elliptic

⇐⇒ ∃ B ∈ Ψ−m
∞ (Rn) s.t. A ◦B − Id ∈ Ψ−∞

∞ (Rn).

Thus ellipticity, here by definition, is invertibility in Ψm
∞(Rn)

/
Ψ−∞

∞ (Rn), so the

inverse lies in Ψ−m
∞ (Rn)

/
Ψ−∞

∞ (Rn). The point about ellipticity is that it is a phe-
nomenon of the principal symbol.

5.17 Theorem 2.3. The following conditions on A ∈ Ψm
∞(Rn) are equivalent

A is elliptic5.18 (2.91)

∃ [b] ∈ S−m−[1]
∞ (Rn;Rn) s.t. σm(A) · [b] ≡ 1 in S0−[1]

∞ (Rn;Rn)5.19 (2.92)

∃ b ∈ S−m
∞ (Rn;Rn) s.t. σL(A) · b− 1 ∈ S−∞

∞ (Rn;Rn)5.20 (2.93)

∃ ε > 0 s.t.
∣∣σL(A)(x, ξ)

∣∣ ≥ ε(1 + |ξ|)m in |ξ| > 1

ε
.5.21 (2.94)

Proof. We shall show

5.22 (2.95) (
5.18
2.91) =⇒ (

5.19
2.92) =⇒ (

5.20
2.93)⇐⇒ (

5.21
2.94) =⇒ (

5.18
2.91).

In fact Lemma
3.21
2.2 shows the equivalence of (

5.20
2.93) and (

5.21
2.94). Since we know that

σ0(Id) = 1 applying the identity (
5.14
2.88) to the definition of ellipticity in (

5.16
2.90) gives

5.44 (2.96) σm(A) · σ−m(B) ≡ 1 in S0−[1]
∞ (Rn,Rn),

i.e. that (
5.18
2.91) =⇒ (

5.19
2.92).

Now assuming (
5.44
2.96) (i.e. (

5.19
2.92)), and recalling that σm(A) = [σL(A)] we find

that a representative b1 of the class [b] must satisfy

5.23 (2.97) σL(A) · b1 = 1 + e1, e1 ∈ S−1
∞ (Rn;Rn),

this being the meaning of the equality of residue classes. Now for the remainder,
e1 ∈ S−1

∞ (Rn;Rn), the Neumann series

(2.98) f ∼
∑

j≥1

(−1)jej
1

is asymptotically convergent, so f ∈ S−1
∞ (Rn;Rn) exists, and

5.24 (2.99) (1 + f) · (1 + e1) = 1 + e∞, e∞ ∈ S−∞
∞ (Rn;Rn).

Then multiplying (
5.23
2.97) by (1 + f) gives

5.25 (2.100) σL(A) · {b1(1 + f)} = 1 + e∞

which proves (
5.20
2.93), since b = b1(1 + f) ∈ S−m

∞ (Rn;Rn). Of course

(2.101) sup(1 + |ξ|)N |e∞| <∞ ∀ N
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so

(2.102) ∃ C s.t. |e∞(x, ξ)| < 1

2
in |ξ| > C.

From (
5.25
2.100) this means

5.26 (2.103)
∣∣σL(A)(x, ξ)

∣∣ ·
∣∣b(x, ξ)

∣∣ ≥ 1

2
, |ξ| > C.

Since |b(x, ξ)| ≤ C(1 + |ξ|)−m (being a symbol of order −m), (
5.26
2.103) implies

5.27 (2.104) inf
|ξ|≥C

∣∣σL(A)(x, ξ)
∣∣(1 + |ξ|)−m ≥ C > 0.

which shows that (
5.20
2.93) implies (

5.21
2.94).

Conversely, as already remarked, (
5.21
2.94) implies (

5.20
2.93).

Now suppose (
5.20
2.93) holds. Set B1 = qL(b) then from (

5.14
2.88) again

(2.105) σ0(A ◦B1) = [qm(A)] · [b] ≡ 1.

That is,

5.29 (2.106) A ◦B1 − Id = E1 ∈ Ψ−1
∞ (Rn).

Consider the Neumann series of operators

(2.107)
∑

j≥1

(−1)jEj
1 .

The corresponding series of (left-reduced) symbols is asymptotically summable so
we can choose F ∈ Ψ−1

∞ (Rn) with

5.45 (2.108) σL(F ) ∼
∑

j≥1

(−1)jσL(Ej
1).

Then

5.30 (2.109) (Id +E1)(Id +F ) = Id +E∞, E∞ ∈ Ψ−∞
∞ (Rn).

Thus B = B1(Id +F ) ∈ Ψ−m
∞ (Rn) satisfies (

5.16
2.90) and it follows that A is elliptic.

�

In the definition of ellipticity in (
5.16
2.90) we have taken B to be a ‘right paramet-

rix’, i.e. a right inverse modulo Ψ−∞
∞ (Rn). We can just as well take it to be a left

parametrix.

5.31 Lemma 2.7. A ∈ Ψm
∞(Rn) is elliptic if and only if there exists B′ ∈ Ψ−m

∞ (Rn)
such that

5.32 (2.110) B′ ◦A = Id +E′, E′ ∈ Ψ−∞
∞ (Rn)

and then if B satisfies (
5.16
2.90), B −B′ ∈ Ψ−∞

∞ (Rn).

Proof. Certainly (
5.32
2.110) implies σ−m(B′) ·σm(A) ≡ 1, and the multiplication

here is commutative so (
5.19
2.92) holds and A is elliptic. Conversely if A is elliptic we

get in place of (
5.29
2.106)

B1 ◦A− Id = E′
1 ∈ Ψ−1

∞ (Rn).

Then defining F ′ as in (
5.45
2.108) with E′

1 in place of E1 we get (Id +F ′)(Id +E′
1) =

Id +E′
∞ and then B′ = (Id +F ′) ◦ B1 satisfies (

5.32
2.110). Thus ‘left’ ellipticity as in

(
5.32
2.110) is equivalent to right ellipticity. Applying B to (

5.32
2.110) gives

5.33 (2.111) B′ ◦ (Id +E) = B′ ◦ (A ◦B) = (Id +E′) ◦B
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which shows that B −B′ ∈ Ψ−∞
∞ (Rn). �

Thus a left parametrix of an elliptic element of Ψm
∞(Rn) is always a right, hence

two-sided, parametrix and such a parametrix is unique up to an additive term in
Ψ−∞

∞ (Rn).

2.11. Elliptic regularityS.Elliptic.regularity

One of the main reasons that the ‘residual’ terms are residual is that they are
smoothing operators.

5.42 Lemma 2.8. If E ∈ Ψ−∞
∞ (Rn) then

5.43 (2.112) E : S ′(Rn) −→ S ′(Rn) ∩ C∞(Rn).

Proof. This follows from Proposition
4.21
2.4 since we can regard the kernel as a

C∞ function of x taking values in S(Rn
y ). �

Directly from the existence of parametrices for elliptic operators we can deduce
the regularity of solutions to elliptic (pseudodifferential) equations.

20.2.1998.103 Proposition 2.5. If A ∈ Ψm
∞(Rn) is elliptic and u ∈ S ′(Rn) satifies Au = 0

then u ∈ C∞(Rn).

Proof. Let B ∈ Ψ−m
∞ (Rn) be a parametrix for A. Then B ◦ A = Id +E,

E ∈ Ψ−∞
∞ (Rn). Thus,

5.41 (2.113) u = (BA−E)u = −Eu
and the conclusion follows from Lemma

5.42
2.8. �

2.12. The LaplacianS.The.Laplacian

Suppose that gij(x) are the components of an ‘∞-metric’ on Rn, i.e.

5.34 (2.114)

gij(x) ∈ C∞∞(Rn), i, j = 1, . . . , n

∣∣
n∑

i,j=1

gij(x)ξiξj
∣∣ ≥ ε|ξ|2 ∀ x ∈ Rn, ξ ∈ Rn, ε > 0.

The Laplacian of the metric is the second order differential operator

5.35 (2.115) ∆g =

n∑

i,j=1

1√
g
Dxi

gij√gDxj

where

g(x) = det gij(x), gij(x) = (gij(x))
−1
.

The Laplacian is determined by the integration by parts formula

5.37 (2.116)

∫

Rn

∑

i,j

gij(x)Dxi
φ ·Dxj

ψdg =

∫
∆gφ · ψdg ∀ φ, ψ ∈ S(Rn)

where

5.38 (2.117) dg =
√
gdx.
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Our assumption in (
5.34
2.114) shows that ∆ = ∆g ∈ Diff2

∞(Rn) ⊂ Ψ2
∞(Rn) is in

fact elliptic, since

5.39 (2.118) σ2(∆) =
∑

i,j=1

gijξiξj .

Thus ∆ has a two-sided parametrix B ∈ Ψ−2
∞ (Rn)

5.40 (2.119) ∆ ◦B ≡ B ◦∆ ≡ Id mod Ψ−∞
∞ (Rn).

In particular we see from Proposition
20.2.1998.103
2.5 that ∆u = 0, u ∈ S ′(Rn) implies u ∈

C∞(Rn).

2.13. L2 boundednessS.L2.boundedness

So far we have thought of pseudodifferential operators, the elements of Ψm
∞(Rn)

for some m, as defining continuous linear operators on S(Rn) and, by duality, on
S ′(Rn). Now that we have proved the composition formula we can use it to prove
other ‘finite order’ regularity results. The basic one of these is L2 boundedness:

6.1 Proposition 2.6. [Boundedness] If A ∈ Ψ0
∞(Rn) then, by continuity from

S(Rn), A defines a bounded linear operator

6.2 (2.120) A : L2(Rn) −→ L2(Rn).

Our proof will be in two stages, the first part is by direct estimation. Namely,
Schur’s lemma4 gives a useful criterion for an integral operator to be bounded on
L2.

5.50 Lemma 2.9 (Schur). If K(x, y) is locally integrable on R2n and is such that

5.51 (2.121) sup
x∈Rn

∫

Rn

|K(x, y)|dy, sup
y∈Rn

∫

Rn

|K(x, y)|dx <∞

then the operator K : φ 7−→
∫

Rn K(x, y)φ(y)dy is bounded on L2(Rn).

Proof. Since S(Rn) is dense in L2(Rn) (see Problem
1.2.2000.280
2.18) we only need to

show the existence of a constant, C, such that

6.4 (2.122)

∫ ∣∣Kφ(x)
∣∣2dx ≤ C

∫
|φ|2 ∀ φ ∈ S(Rn).

Writing out the integral on the left

6.5 (2.123)

∫ ∣∣
∫
K(x, y)φ(y)dy

∣∣2dx

=

∫∫∫
K(x, y)K(x, z)φ(y)φ(z) dydzdx

is certainly absolutely convergent and∫ ∣∣Kφ(x)
∣∣2dx

≤
(∫∫∫ ∣∣K(x, y)K(x, z)

∣∣φ(y)
∣∣2dydxdz

) 1
2

×
(∫∫∫ ∣∣K(x, y)K(x, z)

∣∣φ(z)
∣∣2dzdxdy

) 1
2

.

4Schur
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These two factors are the same. Since
∫ ∣∣K(x, y)||K(x, z)| dx dz ≤ sup

x∈Rn

∫ ∣∣K(x, z)
∣∣dz · sup

y∈Rn

∫ ∣∣K(x, y
∣∣dx

(
6.4
2.122) follows. Thus (

5.51
2.121) gives (

6.4
2.122). �

This standard lemma immediately implies the L2 boundedness of the ‘residual
terms.’ Thus, if K ∈ Ψ−∞

∞ (Rn) then its kernel satisfies (
4.22
2.60). This in particular

implies
∣∣K(x, y)

∣∣ ≤ C (1 + |x− y|)−n−1

and hence that K satisfies (
5.51
2.121). Thus

5.52 (2.124) each K ∈ Ψ−∞
∞ (Rn) is bounded on L2(Rn).

2.14. Square rootS.Square.root

To prove the general result, (
6.2
2.120), we shall use the clever idea, due to Hör-

mander, of using the (approximate) square root of an operator. We shall say that

an element [a] ∈ Sm−[1]
∞ (Rn;Rn) is positive if there is some 0 < a ∈ Sm(Rn;Rn) in

the equivalence class.

6.6 Proposition 2.7. Suppose A ∈ Ψm
∞(Rn), m > 0, is self-adjoint, A = A∗, and

elliptic with a positive principal symbol, then there exists B ∈ Ψ
m/2
∞ (Rn), B = B∗,

such that

6.7 (2.125) A = B2 +G, G ∈ Ψ−∞
∞ (Rn).

Proof. This is a good exercise in the use of the symbol calculus. Let a ∈
Sm
∞(Rn;Rn), a > 0, be a positive representative of the principal symbol of A. Now

(See Problem
1.2.2000.281
2.19 for an outline of the proof)

6.8 (2.126) b0 = a
1
2 ∈ Sm/2

∞ (Rn;Rn).

Let B0 ∈ Ψ
m/2
∞ (Rn) have principal symbol b0. We can assume that B0 = B∗

0 , since
if not we just replace B0 by 1

2 (B0 + B∗
0) which has the same principal symbol.

The symbol calculus shows that B2
0 ∈ Ψm

∞(Rn) and

σm(B2
0) =

(
σm/2(B0)

)2
= b20 = a0 mod Sm−1

∞ .

Thus

6.9 (2.127) A−B2
0 = E1 ∈ Ψm−1

∞ (Rn).

Then we proceed inductively. Suppose we have chosen Bj ∈ Ψ
m/2−j
∞ (Rn), with

B∗
j = Bj , for j ≤ N such that

6.10 (2.128) A−




N∑

j=0

Bj




2

= EN+1 ∈ Ψm−N−1
∞ (Rn).
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Of course we have done this for N = 0. Then see the effect of adding BN+1 ∈
Ψ

m/2−N−1
∞ (Rn) :

6.11 (2.129) A−




N+1∑

j=0

Bj




2

= EN+1 −




N∑

j=0

Bj


BN+1

−BN+1




N∑

j=0

Bj


−B2

N+1.

On the right side all terms are of order m−N − 2, except for

6.12 (2.130) EN+1 −B0BN+1 −BN+1B0 ∈ Ψm−N−1
∞ (Rn).

The principal symbol, of order m−N − 1, of this is just

6.13 (2.131) σm−N−1(EN+1)− 2 b0 · σm
2
−N−1(BN+1).

Thus if we choose

σm/2−N−1(BN+1) =
1

2

1

b0
· σm−N−1(EN+1)

and replace BN+1 by 1
2 (BN+1 +B∗

N+1), we get the inductive hypothesis for N + 1.

Thus we have arranged (
6.10
2.128) for every N. Now define B = 1

2 (B′ + (B′)∗) where

6.14 (2.132) σL(B′) ∼
∞∑

j=0

σL(Bj).

Since all the Bj are self-adjoint B also satisfies (
6.14
2.132) and from (

6.10
2.128)

(2.133) A−B2 = A−




N∑

j=0

Bj +B(N+1)




2

∈ Ψm−N−1
∞ (Rn)

for everyN, since B(N+1) = B−
N∑

j=0

Bj ∈ Ψ
m/2−N−1
∞ (Rn). Thus A−B2 ∈ Ψ−∞

∞ (Rn)

and we have proved (
6.7
2.125), and so Proposition

6.6
2.7. �

2.15. Proof of BoundednessS.Proof.of.Boundedness

Here is Hörmander’s argument. We want to show that

6.15 (2.134) ‖Aφ‖ ≤ C‖φ‖ ∀ φ ∈ S(Rn)

where A ∈ Ψ0
∞(Rn). The square of the left side can be written

∫
Aφ ·Aφdx =

∫
φ · (A∗Aφ)dx.

So it suffices to show that

6.16 (2.135) 〈φ,A∗Aφ〉 ≤ C‖φ‖2.
Now A∗A ∈ Ψ0

∞(Rn) with σ0(A
∗A) = σ0(A)σ0(A) ∈ R. If C > 0 is a large constant,

C > sup
x,ξ

∣∣σL(A∗A)(x, ξ)
∣∣
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then C−A∗A has a positive representative of its principal symbol. We can therefore
apply Proposition

6.6
2.7 to it:

6.17 (2.136) C −A∗A = B∗B +G, G ∈ Ψ−∞
∞ (Rn).

This gives

6.18 (2.137)
〈φ,A∗Aφ〉 =C〈φ, φ〉 − 〈φ,B∗Bφ〉 − 〈φ,Gφ〉

=C‖φ‖2 − ‖Bφ‖2 − 〈φ,Gφ〉.
The second term on the right is negative and, since G ∈ Ψ−∞

∞ (Rn), we can use the
residual case discussed above to conclude that

∣∣〈φ,Gφ〉
∣∣ ≤ C ′‖φ‖2 =⇒ ‖Aφ‖2 ≤ C‖φ‖2 + C ′‖φ‖2,

so (
6.2
2.120) holds and Proposition

6.1
2.6 is proved.

2.16. Sobolev boundednessS.Sobolev.boundedness

Using the basic boundedness result, Proposition
6.1
2.6, and the calculus of pseu-

dodifferential operators we can prove more general results on the action of pseudo-
differential operators on Sobolev spaces.

Recall that for any positive integer, k,

6.19 (2.138) Hk(Rn) =
{
u ∈ L2(Rn); Dαu ∈ L2(Rn) ∀ |α| ≤ k

}
.

Using the Fourier transform we find

6.20 (2.139) u ∈ Hk(Rn) =⇒ ξαû(ξ) ∈ L2(Rn) ∀ |α| ≤ k.
Now these finitely many conditions can be written as just the one condition

6.21 (2.140)
(
1 + |ξ|2

)k/2
û(ξ) ∈ L2(Rn).

Notice that a(ξ) = (1 + |ξ|2)k/2 = 〈ξ〉k ∈ Sk
∞(Rn). Here we use the notation

6.22 (2.141) 〈ξ〉 =
(
1 + |ξ|2

) 1
2

for a smooth (symbol) of the size of 1 + |ξ|, thus (
6.21
2.140) just says

6.23 (2.142) u ∈ Hk(Rn)⇐⇒ 〈D〉ku ∈ L2(Rn).

For negative integers

6.24 (2.143) Hk(Rn) =
{
u ∈ S ′(Rn);u =

∑

|β|≤−k

Dβuβ , uβ ∈ L2(Rn)
}
, −k ∈ N.

The same sort of discussion applies, showing that

6.25 (2.144) u ∈ Hk(Rn)⇐⇒ 〈D〉ku ∈ L2(Rn).

In view of this we define the Sobolev space Hm(Rn), for any real order, by

6.26 (2.145) u ∈ Hm, (Rn)⇐⇒ 〈D〉mu ∈ L2(Rn).

It is a Hilbert space with

6.27 (2.146) ‖u||2m = ‖〈D〉mu‖2L2 =

∫
(1 + |ξ|2)m|û(ξ)|2dξ.

Clearly we have

6.28 (2.147) Hm(Rn) ⊇ Hm′

(Rn) if m′ ≥ m.
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Notice that it is rather unfortunate that these spaces get smaller as m gets bigger,
as opposed to the spaces Ψm

∞(Rn) which get bigger with m. Anyway that’s life and
we have to think of

6.29 (2.148)




H∞(Rn) =

⋂
m
Hm(Rn) as the residual space

H−∞(Rn) =
⋃
m
Hm(Rn) as the big space.

It is important to note that

6.30 (2.149) S(Rn)  H∞(Rn)  H−∞(Rn)  S ′(Rn).

In particular we do not capture all the tempered distributions in H−∞(Rn). We
therefore consider weighted versions of these Sobolev spaces:

6.31 (2.150) 〈x〉qHm(Rn) =
{
u ∈ S ′(Rn); 〈x〉−qu ∈ Hm(Rn)

}
.

6.32 Theorem 2.4. For each q,m,M ∈ R each A ∈ ΨM
∞(Rn) defines a continuous

linear map

6.33 (2.151) A : 〈x〉qHm(Rn) −→ 〈x〉qHm−M (Rn).

Proof. Let us start off with q = 0, so we want to show that

6.34 (2.152) A : Hm(Rn) −→ Hm−M (Rn), A ∈ ΨM
∞(Rn)

Now from (
6.26
2.145) we see that

6.35 (2.153) u ∈ Hm(Rn)⇐⇒ 〈D〉mu ∈ L2(Rn)

⇐⇒ 〈D〉m−M 〈D〉Mu ∈ L2(Rn)⇐⇒ 〈D〉Mu ∈ Hm−M (Rn) ∀ m,M.

That is,

6.36 (2.154) 〈D〉M : Hm(Rn)←→ Hm−M (Rn) ∀ m,M.

To prove (
6.34
2.152) it suffices to show that

6.37 (2.155) B = 〈D〉−M+m ·A · 〈D〉−m : L2(Rn) −→ L2(Rn)

since then A = 〈D〉−m+M ·B · 〈D〉m maps Hm(Rn) to Hm−M (Rn) :

6.38 (2.156) Hm(Rn)

〈D〉m

��

A
// Hm−M (Rn)

〈D〉m−M

��

L2(Rn)
B

// L2(Rn).

Since B ∈ Ψ0
∞(Rn), by the composition theorem, we already know (

6.37
2.155).

Thus we have proved (
6.34
2.152). To prove the general case, (

6.33
2.151), we proceed

in the same spirit. Thus 〈x〉q is an isomorphism from Hm(Rn) to 〈x〉qHm(Rn), by
definition. So to get (

6.33
2.151) we need to show that

6.39 (2.157) Q = 〈x〉−q · A · 〈x〉q : Hm(Rn) −→ Hm−M (Rn),

i.e. satisfies (
6.34
2.152). Consider the Schwartz kernel of Q. Writing A in left-reduced

form, with symbol a,

6.40 (2.158) KQ(x, y) = (2π)−n

∫
ei(x−y)·ξ〈x〉−qa(x, ξ)dξ · 〈y〉q .
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Now if we check that

6.41 (2.159) 〈x〉−q〈y〉qa(x, ξ) ∈
(
1 + |x− y|2

) |q|
2 SM

∞

(
R2n;Rn

)

then we know that Q ∈ ΨM
∞(Rn) and we get (

6.39
2.157) from (

6.34
2.152). Thus we want

to show that

6.42 (2.160) 〈x− y〉−|q| 〈y〉q
〈x〉q a(x, ξ) ∈ S

M
∞ (R2n;Rn)

assuming of course that a(x, ξ) ∈ SM
∞ (Rn;Rn). By interchanging the variables x

and y if necessary we can assume that q < 0. Consider separately the two regions

6.43 (2.161)

{
(x, y); |x− y| < 1

4
(|x|+ |y|)

}
= Ω1

{
(x, y); |x− y| > 1

8
(|x|+ |y|)

}
= Ω2.

In Ω1, x is “close” to y, in the sense that

(2.162) |x| ≤ |x− y|+ |y| ≤ 1

4
(|x|+ |y|) + |y| =⇒ |x| ≤ 4

3
· 5
4
|y| ≤ 2|y|.

Thus

6.44 (2.163) 〈x− y〉−q · 〈x〉
−q

〈y〉−q
≤ C in Ω1.

On the other hand in Ω2,

(2.164) |x|+ |y| < 8|x− y| =⇒ |x| < 8|x− y|
so again

6.45 (2.165) 〈x− y〉−q 〈x〉−q

〈y〉−q
≤ C.

In fact we easily conclude that

6.46 (2.166) 〈x− y〉−q 〈y〉q
〈x〉q ∈ C

∞
∞(Rn) ∀ q,

since differentiation by x or y makes all terms “smaller”. This proves (
6.42
2.160), hence

(
6.41
2.159) and (

6.39
2.157) and therefore (

6.33
2.151), i.e. the theorem is proved. �

2.17. ConsequencesS.Consequences

We can capture any tempered distribution in a weighted Sobolev space; this is
really Schwartz’ representation theorem which says that any u ∈ S ′(Rn) is of the
form

(2.167) u =
∑

finite

xαDβ
xuαβ, uαβ bounded and continuous.

Clearly C0
∞(Rn) ⊂ 〈x〉1+nL2(Rn). Thus as a special case of Theorem

6.32
2.4,

Dβ
x : 〈x〉1+nL2(Rn) −→ 〈x〉1+nH−|β|(Rn)

so

6.47 Lemma 2.10.

(2.168) S ′(Rn) =
⋃

M

〈x〉MH−M (Rn).
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The elliptic regularity result we found before can now be refined:

6.48 Proposition 2.8. If A ∈ Ψm
∞(Rn) is elliptic then

6.49 (2.169)
Au ∈ 〈x〉pHq(Rn), u ∈ 〈x〉p′

Hq′

(Rn)

=⇒ u ∈ 〈x〉p′′

Hq′′

(Rn), p′′ = max(p, p′), q′′ = max(q +m, q′).

Proof. The existence of a left parametrix for A, B ∈ Ψ−m
∞ (Rn),

B ·A = Id +G, G ∈ Ψ−∞
∞ (Rn)

means that

6.50 (2.170) u = B(Au) +Gu ∈ 〈x〉pHq+m(Rn) + 〈x〉p′

H∞(Rn) ⊂ 〈x〉p′′

Hq+m(Rn).

�

2.18. PolyhomogeneityS.Polyhomogeneity

So far we have been considering operators A ∈ Ψm
∞(Rn) which correspond,

via (
3.2
2.2), to amplitudes satisfying the symbol estimates (

3.7
2.6), i.e., in Sm

∞(R2n;Rn).
As already remarked, there are many variants of these estimates and corresponding
spaces of pseudodifferential operators. Some weakening of the estimates is discussed
in the problems below, starting with Problem

1.2.2000.279
2.16. Here we consider a restriction

of the spaces, in that we define

eq:P.1 (2.171) Sm
ph(R

p;R) ⊂ Sm
∞(Rp;Rn) .

The definition of the subspace (
eq:P.1
2.171) is straightforward. First we note that if

a ∈ C∞(Rp;Rn) is homogeneous of degree m ∈ R in |ξ| ≥ 1, then

eq:P.2 (2.172) a(z, tξ) = tma(z, ξ), |t|, |ξ| ≥ 1.

If it also satisfies the uniform regularity estimates

eq:P.3 (2.173) sup
z∈Rn, |ξ|≤2

|Dα
zD

β
ξ a(z, ξ)| <∞ ∀ α, β ,

then in fact

eq:P.4 (2.174) a ∈ Sm
∞(Rp;Rn) .

Indeed, (
eq:P.3
2.173) is exactly the restriction of the symbol estimates to z ∈ Rp, |ξ| ≤ 2.

On the other hand, in |ξ| ≥ 1, a(z, ξ) is homogeneous so

|Dα
zD

β
ξ a(z, ξ)| = |ξ|m−|β||Dα

zD
β
ξ a(z, ξ̂)| , ξ̂ =

ξ

|ξ|
from which the symbol estimates follow.

Definition 2.2. For any m ∈ R, the subspace of (one-step)5 polyhomogeneous
symbols is defined as a subset (

eq:P.1
2.171) by the requirement that a ∈ Sm

ph(R
p;Rn) if

and only if there exist elements am−j(z, ξ) ∈ Sm
∞(Rp;Rn) which are homogeneous

of degree m− j in |ξ| ≥ 1, for j ∈ N0, such that

eq:P.5 (2.175) a ∼
∑

j

am−j .

5For a somewhat more general class of polyhomogeneous symbols, see problem
prob:MM
2.8.



52 2. PSEUDODIFFERENTIAL OPERATORS ON EUCLIDEAN SPACE

Clearly

eq:P.6 (2.176) Sm
ph(Rp;Rn) · Sm′

ph (Rp;Rn) ⊂ Sm+m′

ph (Rp;Rn),

since the asymptotic expansion of the product is given by the formal product of the
asymtotic expansion. In fact there is equality here, because

eq:P.7 (2.177) (1 + |ξ|2)m/2 ∈ Sm
ph(R

p;Rn)

and multiplication by (1 + |ξ|2)m/2 is an isomorphism of the space S0
ph(R

p;Rn)

onto Sm
ph(Rp;Rn). Furthermore differentiation with respect to zj or ξl preserves

asymptotic homogeneity so

Dxj
: Sm

ph(Rp;Rn) −→ Sm
ph(Rp;Rn)

Dξl
: Sm

ph(Rp;Rn) −→ Sm−1
ph (Rp;Rn)

∀j = 1, . . . , n.

It is therefore no surprise that the polyhomogeneous operators form a subalgebra.

Proposition 2.9. The spaces Ψm
ph(R

n) ⊂ Ψm
∞(Rn) defined by the condition

that the kernel of A ∈ Ψm
ph(R

n) should be of the form I(a) for some

eq:P.9 (2.178) a ∈ (1 + |x− y|2)w/2Sm
ph(R

2n;Rn) ,

form an order-filtered ∗-algebra.
Proof. Since the definition shows that

Ψm
ph(Rn) ⊂ Ψm

∞(Rn)

we know already that

Ψm
ph(R

n) ·Ψm′

ph (Rn) ⊂ Ψm+m′

∞ (Rn) .

To see that products are polyhomogeneous it suffices to use (
eq:P.6
2.176) and (

eq:P.8
2.178)

which together show that the asymptotic formulæ describing the left symbols of
A ∈ Ψm

ph(R
n) and B ∈ Ψm′

ph (Rm), e.g.

σL(A) ∼
∑

α

i|α|

α!
Dα

ξ D
α
y a(x, y, ξ)|y=x

imply that σL(A) ∈ Sm
ph(Rn;Rn), σL(B) ∈ Sm

ph(Rn;Rn). Then the asymptotic for-

mula for the product shows that σL(A ·B) ∈ Sm+m′

ph (Rn;Rn).

The proof of ∗-invariance is similarly elementary, since if A = I(a) then A∗ =

I(b) with b(x, y, z) = a(y, x, ξ) ∈ Sm
ph(R

2n;Rn). �

This subalgebra is usually denoted simply Ψm(Rn) and its elements are often
said to be ‘classical’ pseudodifferential operators. As a small exercise in the use of
the principal symbol map we shall show that

eq:P.10 (2.179)
A ∈ Ψm

ph(R
n), A elliptic =⇒ ∃ a parametrix

B ∈ Ψ−m
ph (Rn), A · B − Id, B ·A− Id ∈ Ψ−∞

∞ (Rn) .

In fact we already know that B ∈ Ψ−m
∞ (Rn) exists with these properties, and even

that it is unique modulo Ψ−∞
∞ (Rn). To show that B ∈ Ψ−m

ph (Rn) we can use the
principal symbol map.
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For elements A ∈ Ψm
ph(R

n) the principal symbol σm(A) ∈ Sm−[1]
∞ (Rn;Rn) has

a preferred class of representatives, namely the leading term in the expansion of
σL(A)

σm(A) = σ(ξ)am(x, ξ) mod Sm−1
ph (Rn;Rn)

where σ|ξ| = 1 in |ξ| ≥ 1, σ|ξ| = 0 in |ξ| ≤ 1/2. It is even natural to identify the
principal symbol with am(x, ξ) as a homogeneous function. Then we can see that

eq:P.11 (2.180) A ∈ Ψm
∞(Rn), σm(A) homogeneous of degree m

⇐⇒ Ψm
ph(R

n) + Ψm−1
∞ (Rn) .

Indeed, we just subtract from A an element A1 ∈ Ψm
ph(R

n) with σm(A1) = σm(A),

then σm(A−A1) = 0 so A−A1 ∈ Ψm−1
∞ (Rn).

So, returning to the proof of (
eq:P.10
2.179) note straight away that

σ−m(B) = σm(A)−1

has a homogeneous representative, namely am(x, ξ)−1. Thus we have shown that
for j = 1

eq:P.12 (2.181) B ∈ Ψ−m
ph (Rn) + Ψ−m−j

∞ (Rn) .

We take (
eq:P.12
2.181) as an inductive hypthesis for general j. Writing this decomposition

B = B′ +Bj it follows from the identity (
eq:P.10
2.179) that

A · B = A · B′ +ABj = Id mod Ψ−∞
∞ (Rn)

so

A ·Bj = Id−AB′ ∈ Ψ0
ph(R

n) ∩Ψ−j
∞ (Rn) = Ψ−j

ph (Rn).

Now applying B on the left, or using the principal symbol map, it follows that
Bj ∈ Ψ−m−j

ph (Rn) + Ψ−m−j−1
∞ (Rn) which gives the inductive hypothesis (

eq:P.12
2.181) for

j + 1.
It is usually the case that a construction in Ψ∗

∞(Rn), applied to an element of
Ψ∗

ph(R
n) will yield an element of Ψ∗

ph(R
n) and when this is the case it can generally

be confirmed by an inductive argument like that used above to check (
eq:P.10
2.179).

As a subspace6

Sm
ph(R

p;Rn) ⊂ Sm
∞(Rp;Rn)

is not closed. Indeed, since it contains S−∞
∞ (Rp;Rn), its closure contains all of

Sm′

∞ (Rp;Rn) for m′ < m. In fact it is a dense subspace.7 To capture its properties
we can strengthen the topology Sm

ph(R
p;Rn) inherits from Sm

∞(Rp;Rn).

Then, as well as the symbol norms ‖ · ‖N,m in (
3.8
2.7) we can add norms on the

terms in the expansions in (
eq:P.5
2.175)

eq:P.14 (2.182) ‖Dα
xD

β
ξ am−j(x, ξ)‖L∞(G), G = Rp × {1 ≤ |ξ| ≤ 2} .

Then we can further add the symbol norms ensuring (
eq:P.5
2.175), i.e.,

eq:P.15 (2.183) ‖a−
k∑

j=0

am−j‖m−k−1,N ∀ k,N .

6Polyhomogeneous symbols may seem to be quite sophisticated objects but they are really
smooth functions on manifolds with boundary; see Problems

prob:MM
2.8–

prob:NN
2.7.

7See Problem
prob:DD
2.9.
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Together these give a countable number of norms on Sm
ph(Rp;Rn). With respect to

the metric topology defined as in (
3.9
2.8) the spaces Sm

ph(Rp;Rn) are then complete.8.

Later when we wish to topologize Ψm
ph(R

n), or rather related algebras, it is this
type of topology we will use. Namely we identify

eq:P.16 (2.184) σL : Ψm
ph(R

n)←→ Sm
ph(R

n;Rn) .

2.19. Linear invarianceS.Linear.invariance

It is rather straightforward to see that the algebra Ψ∞
∞(Rn) is invariant under

affine transformations of Rn. In particular if Tax = x+a, for a ∈ Rn, is translation
by a and

T ∗
a f(x) = f(x+ a), T ∗

a : S(Rn) −→ S(Rn)

is the isomorphism on functions then a new operator is defined by

T ∗
aAaf = AT ∗

a f and A ∈ Ψm
∞(Rn) =⇒ Aa ∈ Ψm

∞(Rn).

In fact the left-reduced symbols satisfy

σL(Aa)(x, ξ) = σL(A)(x + a, ξ), Aa = T ∗
−aAT

∗
a .

Similarly if T ∈ GL(n) is an invertible linear transformation of Rn then

21.2.1998.104 (2.185) AT f = T ∗A(T ∗)−1f, A ∈ Ψm
∞(Rn) =⇒ AT ∈ Ψm

∞(Rn)

and σL(AT )(x, ξ) = σL(A)(Tx, (T t)−1ξ)| det(T )|
where T t is the transpose of T (so Tx · ξ = x · T tξ) and det(T ) the determinant.

This invariance means that we can define the spaces Ψm
∞(V ) and Ψm

ph(V ) for

any vector space V (or even affine space) as operators on S(V ). We are much more
interested in full coordinate invariance which is discussed in Chapter

C.Microlocalization
4.

2.20. ProblemsS.Chapter.2.Problems

P3.1 Problem 2.1. Show, in detail, that for each m ∈ R
(2.186) (1 + |ξ|2) 1

2 m ∈ Sm
∞(Rp;Rn)

for any p. Use this to show that

Sm
∞(Rp;Rn) · Sm′

∞ (Rp;Rn) = Sm+m′

∞ (Rp;Rn).

P3.2 Problem 2.2. Consider w = 0 and n = 2 in the definition of symbols and
show that if a ∈ S1

∞(R2) is elliptic then for r > 0 sufficiently large the integral

2π∫

0

1

2π

1

a(reiθ)

d

dθ
a(reiθ)dθ =

1

2π

∫ 2π

0

d

dθ
log a(reiθ)dθ,

exists and is an integer independent of r, where z = ξ1 + iξ2 is the complex variable
in R2 = C. Conclude that there is an elliptic symbol, a on R2, such that there does
not exist b, a symbol with

(2.187) b 6= 0 on R2 and a(ξ) = b(ξ) for |ξ| > r

for any r.

8See Problem
prob:CC
2.10.
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22.2.1998.139 Problem 2.3. Show that a symbol a ∈ Sm
∞(Rp

z;R
n
ξ ) which satisfies an estimate

22.2.1998.140 (2.188) |a(z, ξ)| ≤ C(1 + |ξ|)m′

, m′ < m

is necessarily in the space Sm′+ε
∞ (Rp

z;R
n
ξ ) for all ε > 0.

22.2.1998.142 Problem 2.4. Show that if φ ∈ C∞c (Rp
z ×Rn) and ψ ∈ C∞c (Rn) with ψ(ξ) = 1

in |ξ| < 1 then

22.2.1998.143 (2.189) cφ(z, ξ) = φ(z,
ξ

|ξ| )(1− ψ)(ξ) ∈ S0(Rp
z;R

n
ξ ).

If a ∈ Sm
∞(Rp

z ;R
n
ξ ) define the cone support of a in terms of its complement

22.2.1998.144 (2.190) cone supp(a){ = {(z̄, ξ̄) ∈ Rp
z × (Rn

ξ \ {0}); ∃
φ ∈ C∞c (Rp

z;R
n), φ(z̄, ξ̄) 6= 0, such that cφa ∈ S−∞

∞ (Rp;Rn)}.

Show that if a ∈ Sm
∞(Rp

z ;R
n
ξ ) and b ∈ Sm′

∞ (Rp
z;R

n
ξ ) then

27.1.2003.30 (2.191) cone supp(ab) ⊂ cone supp(a) ∩ cone supp(b).

If a ∈ Sm
∞(Rp

z ;R
n
ξ ) and cone supp(a)∅ does it follow that a ∈ S−∞

∞ (Rp
z ;R

n
ξ )?

1.2.2000.276 Problem 2.5. Prove that (
3.32
2.30) is a characterization of functions a ∈ (1 +

|x − y|2)w/2Sm(R2n;Rn). [Hint: Use Liebniz’ formula to show instead that the
equivalent estimates

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ(1 + |x− y|2)w/2(1 + |ξ|)m−|γ| ∀ α, β, γ ∈ Nn

0

characterize this space.]

P3.3 Problem 2.6. Show that A ∈ Ψ−∞
∞ (Rn) if and only if its Schwartz kernel is

C∞ and satisfies all the estimates

(2.192) |Dα
xD

β
ya(x, y)| < Cα,β,N (1 + |x− y|)−N

for multiindices α, β ∈ Nn
0 and N ∈ N0.

prob:NN Problem 2.7. Polyhomogeneous symbols as smooth functions.

prob:MM Problem 2.8. General polyhomogeneous symbols and operators.

prob:DD Problem 2.9. Density of polyhomogeneous symbols in L∞ symbols of the
same order.

prob:CC Problem 2.10. Completeness of the spaces of polyhomogeneous symbols.

prob:FF Problem 2.11. Fourier transform??

Problem 2.12. Show that the kernel of any element of Ψ∞
∞(Rn) is C∞ away

from the diagonal. Hint: Prove that (x− y)αK(x, y) becomes increasingly smooth
as |α| increases.

21.2.1998.117 Problem 2.13. Show that for any m ≥ 0 the unit ball in Hm(Rn) ⊂ L2(Rn)
is not precompact, i.e. there is a sequence fj ∈ Hm(Rn) which has ‖fj‖m ≤ 1 and
has no subsequence convergent in L2(Rn).
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21.2.1998.118 Problem 2.14. Show that for any R > 0 there exists N > 0 such that the
Hilbert subspace of HN (Rn)

21.2.1998.119 (2.193) {u ∈ HN(Rn);u(x) = 0 in |x| > R}
is compactly included in L2(Rn), i.e. the intersection of the unit ball in HN (Rn)
with the subspace (

21.2.1998.119
2.193) is precompact in L2(Rn). Hint: This is true for any

N > 0, taking N >> 0 will allow you to use the Sobolev embedding theorem and
Arzela-Ascoli.

21.2.1998.120 Problem 2.15. Using Problem
21.2.1998.118
2.14 (or otherwise) show that for any ε > 0

(1 + |x|)εHε(Rn) ↪→ L2(Rn)

is a compact inclusion, i.e. any infinite sequence fn such that (1+|x|2)−ε is bounded
in Hε(Rn) has a subsequence convergent in L2(Rn). Hint: Choose φ ∈ C∞c (Rn)
with φ(x) = 1 in |x| < 1 and, for each k, consider the sequence φ(x/k)fj . Show
that the Fourier transform converts this into a sequence which is bounded in (1 +

|ξ|2)− 1
2 εHN (Rn

ξ ) for anyN. Deduce that it has a convergent subsequence in L2(Rn).

By diagonalization (and using the rest of the assumption) show that fj itself has a
convergent subsequence.

1.2.2000.279 Problem 2.16. About ρ and δ.

Problem 2.17. Prove the formula (
21.2.1998.104
2.185) for the left-reduced symbol of the

operator AT obtained from the pseudodifferential operator A by linear change of
variables. How does the right-reduced symbol transform?

1.2.2000.280 Problem 2.18. Density of S(Rn) in L2(Rn).

1.2.2000.281 Problem 2.19. Square-root of a positive elliptic symbol is a symbol.

21.2.1998.108 Problem 2.20. Write out a proof to Proposition
21.2.1998.107
3.2. Hint (just to do it el-

egantly, it is straightforward enough): Write A in right-reduced form as in (
21.2.1998.112
2.74)

and apply it to û; this gives a formula for Âu.

21.2.1998.110 Problem 2.21. Show that any continuous linear operator

S ′(Rn) −→ S(Rn)

has Schwartz kernel in S(R2n).



CHAPTER 3

Isotropic and scattering calculiC.IandS.calculi

In this chapter many of the general constructions with pseudodifferential op-
erators are carried out in the context of two global calculi on Rn. Partly this is
done for the obvious reason, that these calculi and results have interesting appli-
cations, and partly it is preparatory to the discussion of the geometric algebras of
pseudodifferential operators on a compact manifold without boundary and for the
scattering algebra on a compact manifold with boundary. Thus, while this chapter
is somewhat interstitial, it is designed to clarify the later discussions by separating
the generalities of the construction from the particulars of the calculus involved. It
should be noted that in this chapter it is generally the polyhomogeneous calculus
which is under discussion unless it is explicitly stated to the contrary.

3.1. Isotropic operatorsS.Sect.isotropic.calculus

As noted in the discussion in Chapter
C.Euclidean
2, there are other sensible choices of the

class of amplitudes which can be admitted in the definition of a space of pseudo-
differential operators than the basic case of Sm

∞(R2n;Rn) discussed there. One of
the smallest such choices is the class which is completely symmetric in the vari-
ables x and ξ and consists of the symbols on R2n. Thus, a ∈ Sm

∞(R2n
x,ξ) satisfies the

estimates

1.2.2000.304 (3.1) |Dα
xD

β
ξ a(x, ξ)| ≤ Cα,β(1 + |x|+ |ξ|)m−|α|−|β|

for all multiindices α and β. If m ≤ 0 this is in the space Sm
∞(Rn

x ;Rn
ξ ); if m > 0 it

is not, however,

1.2.2000.303 Lemma 3.1. For any p and n

8.2.1998.98 (3.2) Sm
∞(Rp+n) ⊂





⋂
0≥r≥m

(1 + |x|2)rSm−r(Rp
x;Rn

ξ ) m ≤ 0

(1 + |x|2)m/2Sm(Rp
x;Rn

ξ ), m > 0.

Proof. This follows from (
1.2.2000.304
3.1) and the inequalities

1 + |x| + |ξ| ≤ (1 + |x|)(1 + |ξ|),
1 + |x|+ |ξ| ≥ (1 + |x|)t(1 + |ξ|)1−t, 0 ≤ t ≤ 1.

�

In view of these estimates the following definition makes sense.

1.2.2000.313 Definition 3.1. For any m ∈ R we define

1.2.2000.314 (3.3) Ψm
iso(R

n) ⊂ Ψm
∞−iso(R

n) ⊂ 〈x〉m+Ψm
∞(Rn)

57
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as the subspaces determined by

1.2.2000.315 (3.4)
A ∈ Ψm

iso(R
n)⇐⇒ σL(A) ∈ Sm

ph(R2n)

A ∈ Ψm
∞−iso(R

n)⇐⇒ σL(A) ∈ Sm
∞(R2n).

As in the discussion of the traditional algebra in Chapter
C.Euclidean
2 we show the ∗-

invariance and composition properties of these spaces of operators by proving an
appropriate ‘reduction’ theorem. Note however that there is a small difficulty here.
Namely it might be supposed that it is enough to analyse I(a) for a ∈ Sm

∞(R3n).
This however is not the case. Indeed the definition above is in terms of left-reduced
symbols. If a ∈ Sm

∞(R2n) is regarded as a function on R3n which is independent of
one of the variables then it is in general not an element of Sm

∞(R3n). For this reason
we consider some more ‘hybrid’ estimates.

Consider a subdivision of R3n into two closed regions:

1.2.2000.316 (3.5)
R1(ε) = {(x, y, ξ) ∈ R3n; |x− y| ≤ ε(1 + |x|2 + |y|2 + |ξ|2) 1

2 }
R2(ε) = {(x, y, ξ) ∈ R3n; |x− y| ≥ ε(1 + |x|2 + |y|2 + |ξ|2) 1

2 }.

If a ∈ C∞(R3n) consider the estimates

1.2.2000.317 (3.6) |Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ

{
〈(x, y, ξ)〉m−|α|−|β|−|γ| in R1(

1
8 )

〈(x, y)〉m+〈ξ〉m−|γ| in R2(
1
8 ).

The choice ε = 1
8 here is rather arbitrary. However if ε is decreased, but kept

positive the same estimates continue to hold for the new subdivision, since the
estimates in R1 are stronger than those in R2 (which is increasing at the expense
of R1 as ε decreases). Notice too that these estimates do in fact imply that a ∈
〈(x, y)〉m+Sm

∞(R2n;Rn).

1.2.2000.318 Proposition 3.1. If a ∈ C∞(R3n) satisfies the estimates (
1.2.2000.317
3.6) then A =

I(a) ∈ Ψm
∞−iso(R

n) and (
4.19
2.58) holds for σL(A).

Proof. We separate a into two pieces. Choose χ ∈ C∞c (R) with 0 ≤ χ ≤ 1,
with support in [− 1

8 ,
1
8 ] and with χ ≡ 1 on [− 1

9 ,
1
9 ]. Then consider the cutoff function

on R3n

1.2.2000.319 (3.7) ψ(x, y, ξ) = χ

( |x− y|2
1 + |x|2 + |y|2 + |ξ|2

)
.

Clearly, ψ has support in R1(
1
8 ) and ψ ∈ S0

∞(R3n). It follows then that a′ = ψa ∈
Sm

iso(R
3n). On the other hand, a′′ = (1 − ψ)a has support in R2(

1
9 ). In this region

|x − y|, 〈(x, y)〉 and 〈(x, y, ξ)〉 are bounded by constant multiples of each other.
Thus a′′ satisfies the estimates

1.2.2000.320 (3.8) |Dα
xD

β
yD

γ
ξ a

′′(x, y, ξ)| ≤ Cα,β,γ |x− y|m+〈ξ〉m−|γ|

≤ C ′
α,β,γ〈(x, y, ξ)〉m+〈ξ〉m−|γ|, supp(a′′) ⊂ R2(

1

9
).

First we check that I(a′′) ∈ S(R2n). On R2(
1
9 ) it is certainly the case that

|x− y| ≥ 1
9 〈(x, y)〉 and by integration by parts

|x− y|2pDα
xD

β
y I(a

′′) = I(|Dξ|2pDα
xD

β
ya

′′).
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For all sufficiently large p it follows from (
1.2.2000.320
3.8) that this is the product of 〈(x, y)〉m+

and a bounded continuous function. Thus, I(a′′) ∈ S(R2n) is the kernel of an
operator in Ψ−∞

iso (Rn).
So it remains only to show that A′ = I(a′) ∈ Ψm

∞−iso(R
n). Certainly this is

an element of 〈x〉m+Ψm
∞(Rn). The left-reduced symbol of A′ has an asymptotic

expansion, as ξ →∞, given by the usual formula, namely (
4.19
2.58). Each of the terms

in this expansion

aL(A′) ∼
∑

α

i|α|

α!
Dα

yD
α
ξ a(x, x, ξ)

is in the space S
m−2|α|
∞ (R2n). Thus we can actually choose an asymptotic sum in

the stronger sense that

b′ ∈ Sm
∞(R2n), bN = b′ −

∑

|α|<N

i|α|

α!
Dα

xD
α
ξ a(x, ξ) ∈ Sm−2N

∞ (R2n) ∀ N.

Consider the remainder term in (
4.8
2.47), given by (

4.6
2.44) and (

4.7
2.45). Integrating by

parts in ξ to remove the factors of (x − y)α the remainder, RN , can be written as
a pseudodifferential operator with amplitude

rN (x, y, ξ) =
∑

|α|=N

i|α|

α!

∫ 1

0

dt(1− t)N (Dα
ξ D

α
y a)((1− t)x+ ty, ξ).

This satisfies the estimates (
1.2.2000.317
3.6) with m replaced by m − 2N. Indeed from the

symbol estimates on a′ the integrand satisfies the bounds

|Dβ
xD

γ
yD

δ
ξD

α
ξ D

α
y a

′((1− t)x+ ty, ξ)|
≤ C(1 + |(x+ t(x− y)|+ |ξ|)m−2N−|β|−|γ|−|δ|.

In R1(
1
8 ), |x − y| ≤ 1

8 〈(x, y, ξ)〉 so |x + t(x − y)| + |ξ| ≥ 1
2 〈(x, y, ξ)〉 and these

estimates imply the full symbol estimates there. On R2 we immediately get the
weaker estimates in (

1.2.2000.319
3.7).

Thus, for largeN, the remainder term gives an operator in 〈x〉m
2 −NΨ

m
2 −N
iso (Rn).

The difference between A′ and the operator B′ ∈ Ψm
∞−iso(R

n), which is RN plus an

operator in Ψm−2N
∞−iso (Rn) for anyN is therefore in Ψ−∞

iso (Rn). Thus A ∈ Ψm
∞−iso(R

n).
�

This is a perfectly adequate replacement in this context for our previous reduc-
tion theorem, so now we can show the basic result.

8.2.1998.99 Theorem 3.1. The spaces Ψm
∞−iso(R

n) (resp. Ψm
iso(R

n)) of isotropic (resp.
polyhomogeneous isotropic) pseudodifferential operators on Rn, defined by (

1.2.2000.315
3.4)

form an order-filtered ∗-algebra with residual space Ψ−∞
iso (Rn) = S(R2n) (resp. the

same) as spaces of kernels.

Proof. The condition that a continuous linear operator A on S(Rn) be an
element of Ψm

∞−iso(R
n) is that it be an element of (1 + |x|2)m/2Ψm

∞(Rn) if m ≥ 0

or Ψm
∞(Rn) if m < 0 with left-reduced symbol an element of Sm

∞(R2n
x,ξ) :

8.2.1998.101 (3.9) ql : Sm
∞(R2n)←→ Ψm

∞−iso(R
n).

Thus A∗ has right-reduced symbol in Sm
∞(R2n). This satisfies the estimates (

1.2.2000.317
3.6) as

a function of x, y and ξ. Thus Propostion
1.2.2000.318
3.1 shows that A∗ ∈ Ψm

∞−iso(R
n), since
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its left-reduced symbol is in Sm
∞(R2n). This shows the ∗-invariance. Moreover it

also follows that any B ∈ Ψm′

∞−iso(R
n) has right-reduced symbol in Sm′

∞ (R2n). Thus

if A ∈ Ψm
∞−iso(R

n) and B ∈ Ψm′

iso(R
n) then using this result to right-reduce B we

see that the composite opertor has kernel I(aL(x, ξ)bR(y, ξ)) where aL ∈ Sm
∞(R2n)

and bR ∈ Sm′

∞ (R2n). Now it again follows that this product satisifes the estimates
(
1.2.2000.317
3.6) of order m + m′. Hence, again applying Proposition

1.2.2000.318
3.1, we conclude that

A ◦B ∈ Ψm+m′

∞−iso(R
n). This proves the theorem for Ψ∗

∞−iso(R
n).

The proof for the polyhomogeneous space Ψm
iso(R

n) follows immediately, since
the symbol expansions all preserve polyhomogeneity. �

One further property of the isotropic calculus that distinguishes it strongly
from the traditional calculus is that it is invariant under Fourier transformation.

21.2.1998.107 Proposition 3.2. If A ∈ Ψm
∞−iso(R

n) (resp. Ψm
iso(R

n)) then Â ∈ Ψm
∞−iso(R

n)

(resp. Ψm
iso(R

n)) where
̂̂
Au = Aû with û being the Fourier transform of u ∈ S(Rn).

The proof of this is outlined in Problem
21.2.1998.108
2.20.

3.2. Scattering operatorsS.Scattering.operators

There is another calculus of pseudodifferential operators which is ‘smaller’ than
the traditional calculus. It arises by taking amplitudes in (

3.2
2.2) which treat the

base and fibre variables symmetrically, but not ‘simultaneously.’ Thus consider the
spaces

21.2.1998.113 (3.10) Sl,m
∞ (Rp

z,R
n
ξ ) =

{
a ∈ C∞(Rp+n);

sup
Rp+n

(1 + |z|)−l+|α|(1 + |ξ|)−m+|β||Dα
zD

β
ξ a(z, ξ)| <∞, ∀ α, β

}
.

Observe that

21.2.1998.115 (3.11) Sl,m
∞ (Rp

z;R
n
ξ ) ⊂ (1 + |z|2)l/2Sm

∞(Rp
z ;R

n
ξ ).

We can then define

21.2.1998.114 (3.12) A ∈ Ψl,m
∞−sc(R

n)⇐⇒ A = (1 + |x|2)l/2B,

B ∈ Ψm
∞(Rn) and σL(B) ∈ S0,m

∞ (Rn
x ,R

n
ξ ).

It follows directly from this definition and the properties of the ‘traditional’ oper-
ators that the left symbol map is an isomorphism

1.2.2000.300 (3.13) σL : Ψl,m
∞−sc(R

n) −→ Sl,m
∞ (Rn

x ,R
n
ξ ).

To prove that this is an algebra, we need first the analogue of the asymptotic
completeness, Proposition

4.12
2.3, for symbols in S∗,∗

∞ (Rp;Rn).

1.2.2000.292 Lemma 3.2. If aj ∈ Sl−j,m−j
∞ (Rp,Rn) for j ∈ N0 then there exists

1.2.2000.293 (3.14) a ∈ S l,m(Rp,Rn) s.t. a−
N∑

j=0

aj ∈ Sl−N,m−N
∞ (Rp,Rn) ∀ N ∈ N0.

Even though there is some potential for confusion we write a ∼∑
j

aj for a symbol

a satisfying (
1.2.2000.293
3.14).
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Proof. We use the same strategy as in the proof of Proposition
4.12
2.3 with the

major difference that there are essentially two different symbolic variables. Thus
with the same notation as in (

4.15
2.54) we set

1.2.2000.294 (3.15) a =
∑

j

φ(εjz)φ(εjξ)aj(z, ξ)

and we proceed to check that if the εj ↓ 0 fast enough as j → ∞ then the series
converges in Sl,m

∞ (Rp,Rn) and the limit satisfies (
1.2.2000.293
3.14).

The first of the seminorms, for convergence, is

Aj = sup
z

sup
ξ

(1 + |z|)−l(1 + |ξ|)−mφ(εjz)φ(εjξ)|aj(z, ξ)|.

On the support of this function either |z| ≥ 1/εj or |ξ| ≥ 1/ε. Thus

Aj ≤ sup
z

sup
ξ

(1 + |z|)−l+j(1 + |ξ|)−m+j |aj(z, ξ)|

× sup
z

sup
ξ

(1 + |z|)−j(1 + |ξ|)−jφ(εjz)φ(εjξ)

≤ εjj sup
z

sup
ξ

(1 + |z|)−l+j(1 + |ξ|)−m+j |aj(z, ξ)|

The last term on the right is a seminorm on Sl−j,m−j
∞ (Rp,Rn) so convergence follows

by choosing the εj eventually smaller than a certain sequence of positive numbers.
The same argument follows, as in the discussion leading to (

4.17
2.56), for convergence

of the series for the derivatives and also for the stronger convergence leading to
(
1.2.2000.293
3.14). Since overall this is a countable collection of conditions, all can be arranged

by diagonalization and the result follows. �

With this result on asymptotic completeness the proof of Theorem
8.2.1998.99
3.1 can be

followed closely to yield the analogous result on products. In fact we can also define
polyhomogeneous operators. This requires a little work if we try to do it directly.
However see (

1.2.2000.275
1.97) and Problem

1.2.2000.301
1.17 which encourages us to identify

1.2.2000.297 (3.16)
RC∗

p×RC∗
n : S0,0

ph (Rp,Rn)←→ C∞(Sp,1 × Sn,1),

Sl,m
ph (Rp,Rn) = (1 + |z|2)l/2(1 + |ξ|2)m/2S0,0

ph (Rp,Rn), l,m ∈ R.
These definitions are discussed as problems starting at Problem

PolyDouble
1.18. Thus we

simply define

1.2.2000.299 (3.17) Ψl,m
sc (Rn) =

{
A ∈ Ψl,m

∞−sc;σL(A) ∈ Sl,m
ph (Rn,Rn)

}
.

1.2.2000.295 Theorem 3.2. The spaces Ψl,m
∞−sc(R

n) (resp. Ψl,m
sc (Rn)) of scattering (resp.

polyhomogeneous scattering) pseudodifferential operators on Rn, form an order-
bifiltered ∗-algebra

1.2.2000.296 (3.18) Ψl,m
∞−sc(R

n) ◦Ψl′,m′

∞−sc(R
n) ⊂ Ψl+l′,m+m′

∞−sc (Rn)

with residual spaces

1.2.2000.355 (3.19)
⋂

l,m

Ψl,m
∞−sc(R

n) =
⋂

l,m

Ψl,m
sc (Rn)Ψ−∞

iso (Rn) = S(R2n).
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3.3. The residual algebra isotropic algebraS.Residual.isotropic

The residual isotropic (and scattering) algebra has two important properties
not shared by the residual algebra Ψ−∞

∞ (Rn), of which it is a subalgebra (and in
fact in which it is an ideal). The first is that as operators on L2(Rn) the residual
isotropic operators are compact.

1.2.2000.309 Proposition 3.3. Elements of Ψ−∞
iso (Rn) are characterized amongst continous

operators on S(Rn) by the fact that they extend by continuity to define continuous
linear maps

1.2.2000.356 (3.20) A : S ′(Rn) −→ S(Rn).

In particular the image of a bounded subset of L2(Rn) under an element of Ψ−∞
iso (Rn)

is contained in a compact subset.

Proof. The kernels of elements of Ψ−∞
iso (Rn) are in S(R2n) so the mapping

property (
1.2.2000.356
3.20) follows.

The norm sup|α|≤1 |〈x〉n+1Dαu(x)| is continuous on S(Rn). Thus if S ⊂ L2(Rn)

is bounded and A ∈ Ψ−∞
iso (Rn) the continuity of A : L2(Rn) −→ S(Rn) implies that

A(S) is bounded with respect to this norm. The theorem of Arzela-Ascoli shows
that any sequence in A(S) has a strongly convergent subsequence in 〈x〉nC0

∞(Rn)
and such a sequence converges in L2(Rn). ThusA(S) has compact closure in L2(Rn).

�

The second important property of the residual algebra is that it is ‘bi-ideal’ or
a ‘corner’ in the bounded operators on L2(Rn). Note that it is not an ideal.

1.2.2000.310 Lemma 3.3. If A1, A2 ∈ Ψ−∞
iso (Rn) and B is a bounded operator on L2(Rn)

then A1BA2 ∈ Ψ−∞
iso (Rn).

Proof. The kernel of the composite C = A1BA2 can be written as a distri-
butional pairing

1.2.2000.321 (3.21)

C(x, y) =

∫

R2n

B(x′, y′)A1(x, x
′)A2(y

′, y)dx′dy′ = (B,A1(x, ·)A2(·, y)) ∈ S(R2n).

Thus the result follows from the continuity of the exterior product, S(R2n) ×
S(R2n) −→ S(R4n). �

In fact the same conclusion, with essentially the same proof, holds for any
continuous linear operator B from S(Rn) to S ′(Rn).

3.4. The residual isotropic ringS.Isotropic.ring

Recall that a bounded operator is said to have finite rank if its range is finite
dimensional. If we consider a bounded operator B on L2(Rn) which is of finite rank
then we may choose an orthonormal basis fj , j = 1, . . . , N of the range BL2(Rn).
The functionals u 7−→ 〈Bu, fj〉 are continuous and so define non-vanishing elements
gj ∈ L2(Rn). It follows that the Schwartz kernel of B is

1.2.2000.311 (3.22) B =

N∑

j=1

fj(x)gj(y).
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If B ∈ Ψ−∞
iso (Rn) then the range must lie in S(Rn) and similarly for the range of

the adjoint, so the functions fj and gj are also in S(Rn). Clearly the finite rank
elements of Ψ−∞

iso (Rn) form an ideal in Ψ∞
∞−iso(R

n).

1.2.2000.312 Proposition 3.4. If A ∈ Ψ−∞
iso (Rn) then Id +A has, as an operator on L2(Rn),

finite dimensional null space and closed range which is the orthocomplement of the
null space of Id +A∗. There is an element B ∈ Ψ−∞

iso (Rn) such that

1.2.2000.322 (3.23) (Id +A)(Id +B) = Id−Π1, (Id +B)(Id +A) = Id−Π0

where Π0, Π1 ∈ Ψ−∞
iso (Rn) are the orthogonal projections onto the null spaces of

Id +A and Id +A∗ and furthermore, there is an element A′ ∈ Ψ−∞
iso (Rn) of rank

equal to the dimension of the null space such that Id +A + sA′ is an invertible
operator on L2(Rn) for all s 6= 0.

Proof. Most of these properties are a direct consequence of the fact that A
is compact as an operator on L2(Rn); nevertheless we give brief proofs.

We have shown, in Proposition
1.2.2000.309
3.3 that each A ∈ Ψ−∞

iso (Rn) is compact. It
follows that

1.2.2000.327 (3.24) N0 = Nul(Id +A) ⊂ L2(Rn)

has compact unit ball. Indeed the unit ball, B = {uNul(Id +A)} satisfies B =
A(B), since u = −Au on B. Thus B is closed and precompact. Any Hilbert space
with a compact unit ball is finite dimensional, so Nul(Id +A) is finite dimensional.

Now, let R1 = Ran(Id +A) be the range of Id +A; we wish to show that this is a
closed subspace of L2(Rn). Let fk → f be a sequence in R1, converging in L2(Rn).
For each k there exists a unique uk ∈ L2(Rn) with uk ⊥ N0 and (Id +A)uk = fk.We
wish to show that uk → u. First we show that ‖uk‖ is bounded. If not, then along
a subsequent vj = uk(j), ‖vj‖ → ∞. Set wj = vj/‖vj‖. Using the compactness
of A, wj = −Awj + fk(j)/‖vj‖ must have a convergent subsequence, wj → w.
Then (Id +A)w = 0 but w ⊥ N0 and ‖w‖ = 1 which are contradictory. Thus the
sequence uk is bounded in L2(Rn). Then again uk = −Auk + fk has a convergent
subsequence with limit u which is a solution of (Id +A)u = f ; hence R1 is closed.
The orthocomplement of the range of a bounded operator is always the null space
of its adjoint, so R1 has a finite-dimensional complement N1 = Nul(Id +A∗). The
same argument applies to Id +A∗ so gives the orthogonal decompositions

1.2.2000.328 (3.25)
L2(Rn) = N0 ⊕R0, N0 = Nul(Id +A), R0 = Ran(Id +A∗)

L2(Rn) = N1 ⊕R1, N1 = Nul(Id +A∗), R1 = Ran(Id +A).

Thus we have shown that Id +A induces a continuous bijection Ã : R0 −→ R1.
From the closed graph theorem the inverse is a bounded operator B̃ : R1 −→ R0.
In this case continuity also follows from the argument above.1 Thus B̃ is the
generalized inverse of Id +A in the sense that B = B̃ − Id satisfies (

1.2.2000.322
3.23). It only

remains to show that B ∈ Ψ−∞
iso (Rn). This follows from (

1.2.2000.322
3.23), the identities in

which show that

1.2.2000.329 (3.26) B = −A−AB −Π1, −B = A+BA+ Π0

=⇒ B = −A+A2 +ABA −Π1 +AΠ0.

1We need to show that ‖B̃f‖ is bounded when f ∈ R1 and ‖f‖ = 1. This is just the
boundedness of u ∈ R0 when f = (Id +A)u is bounded in R1.
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All terms here are in Ψ−∞
iso (Rn); for ABA this follows from Proposition

1.2.2000.310
3.3.

It remains to show the existence of the finite rank perturbation A′. This is
equivalent to the vanishing of the index, that is

1.2.2000.323 (3.27) Ind(Id +A) = dim Nul(Id +A)− dim Nul(Id +A∗) = 0.

Indeed, let fj and gj , j = 1, . . . , N, be respective bases of the two finite dimensional
spaces Nul(Id +A) and Nul(Id +A∗). Then

1.2.2000.324 (3.28) A′ =

N∑

j=1

gj(x)fj(y)

is an isomorphism of N0 onto N1 which vanishes on R0. Thus Id +A + sA′ is the
direct sum of Id+A as an operator from R0 to R1 and sA′ as an operator from N0

to N1, invertible when s 6= 0.
There is a very simple proof2 of the equality (

1.2.2000.323
3.27) if we use the trace func-

tional discussed in Section
S.Traces.residual
3.14 below; this however is logically suspect as we use

(although not crucially) approximation by finite rank operators in the discussion of
the trace and this in turn might appear to use the present result via the discussion
of ellipticity and the harmonic oscillator. Even though this is not really the case
we give a clearly independent, but less elegant proof.

Consider the one-parameter family of operators Id +tA, A ∈ Ψ−∞
iso (Rn). We

shall see that the index, the difference in dimension between Nul(Id +tA) and
Nul(Id +tA∗) is locally constant. To see this it is enough to consider a general
A near the point t = 1. Consider the pieces of A with respect to the decompositions
L2(Rn) = Ni ⊕Ri, i = 0, 1, of domain and range. Thus A is the sum of four terms
which we write as a 2× 2 matrix

A =

[
A00 A01

A10 A11

]
.

Since Id +A has only one term in such a decomposition, Ã in the lower right, the
solution of the equation (Id +tA)u = f can be written

1.2.2000.325 (3.29) (t− 1)A00u0 +(t− 1)A01u⊥ = f1, (t− 1)A10u0 +(A′ +(t− 1)A11)u⊥ = f⊥

Since Ã is invertible, for t − 1 small enough the second equation can be solved
uniquely for u⊥. Inserted into the first equation this gives

1.2.2000.326 (3.30) G(t)u0 = f1 +H(t)f⊥,

G(t) = (t− 1)A00 − (t− 1)2A01(A
′ + (t− 1)A11)

−1A10,

H(t) = −(t− 1)A01(A
′ + (t− 1)A11)

−1.

The null space is therefore isomorphic to the null space of G(t) and a complement to
the range is isomorphic to a complement to the range of G(t). Since G(t) is a finite
rank operator acting from N0 to N1 the difference of these dimension is constant
in t, namely equal to dimN0 − dimN1, near t = 1 where it is defined.

2Namely the trace of a finite rank projection, such as either Π0 or Π1, is its rank, hence
the dimension of the space onto which it projects. From the identity satisfied by the generalized
inverse we see that

Ind(Id +A) = Tr(Π0) − Tr(Π1) = Tr ((Id +B)(Id +A) − (Id +A)(Id +B)) = Tr([B, A]) = 0

from the basic property of the trace.
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This argument can be applied to tA so the index is actually constant in t ∈ [0, 1]
and since it certainly vanishes at t = 0 it vanishes for all t. In fact, as we shall note
below, Id +tA is invertible outside a discrete set of t ∈ C. �

1.2.2000.330 Corollary 3.1. If Id +A, A ∈ Ψ−∞
iso (Rn) is injective or surjective on L2(Rn),

in particular if it is invertible as a bounded operator, then it has an inverse in the
ring Id +Ψ−∞

iso (Rn).

1.2.2000.333 Corollary 3.2. If A ∈ Ψ−∞
iso (Rn) then as an operator on S(Rn) or S ′(Rn),

Id +A is Fredholm in the sense that its null space is finite dimensional and its range
is closed with a finite dimensional complement.

Proof. This follows from the existence of the generalized inverse of the form
Id +B, B ∈ Ψ−∞

iso (Rn). �

3.5. Exponential and logarithm

1.2.2000.350 Proposition 3.5. The exponential

1.2.2000.351 (3.31) exp(A) =
∑

j

1

j!
Aj : Ψ−∞

iso (Rn) −→ Id +Ψ−∞
iso (Rn)

is a globally defined, entire, function with range containing a neighbourhood of the
identity and with inverse on such a neighbourhood given by the analytic function

1.2.2000.352 (3.32) log(Id +A) =
∑

j

(−1)j

j
Aj , A ∈ Ψ−∞

iso (Rn), ‖A‖L2 < 1

3.6. Fredholm propertyS.Fredholm.property

An element A ∈ Ψm
∞−iso(R

n) is said to be elliptic (of order m in the isotropic

calculus) if its left-reduced symbol is elliptic in Sm
∞(R2n).

21.2.1998.106 Theorem 3.3. Each elliptic element A ∈ Ψm
∞−iso(R

n) has a two-sided para-

metrix B ∈ Ψ−m
∞−iso(R

n) in the sense that

1.2.2000.365 (3.33) A ◦B − Id, B ◦A− Id ∈ Ψ−∞
iso (Rn)

and it follows that any u ∈ S ′(Rn) satisfying Au ∈ S(Rn) is an element of S(Rn);
if A ∈ Ψm

iso(R
n) is elliptic then its parametrix is in Ψ−m

iso (Rn).

Proof. This is just the inductive argument used to prove Lemma
5.31
2.7. Never-

theless we repeat it here.
The existence of a right inverse for σk(A) means that the equation σk(A)c = d

always has a solution c ∈ Aj−k for given d ∈ Aj , namely c = bd. This in turn

means that given Cj ∈ Ψj
∞−iso(R

n) there always exists Bj ∈ Ψj−k
∞−iso(R

n) such

that ABj − Dj ∈ Ψj−1
∞−iso(R

n). Choosing B0 ∈ Ψ−k
∞−iso(R

n) to have σ−k(B0) = b

we can define C1 = Id−AB0 ∈ Ψ−1
∞−iso(R

n). Then, proceeding inductively we
may assume that Bj for j < l have been chosen such that A(B0 + · · · + Bl−1) −
Id = −Cl ∈ Ψ−l

∞−iso(R
n). Then using the solvability we may choose Bl so that

ABl − Cl = −Cl+1 ∈ Ψ−l−1
∞−iso(R

n) which completes the induction, since A(B0 +
· · · + Bl) − Id = ABl − Cl = −Cl+1. Finally by the asymptotic completeness we
may choose B ∼ B0 +B1 + . . . which is a right parametrix.

The argument showing the existence of a left parametrix for a left-elliptic op-
erator is completely analogous. �
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Combining the earlier symbolic discussion and these analytic results we can see
that elliptic operators in these calculi are Fredholm.

21.3.1998.169 Proposition 3.6. If A ∈ Ψm
∞−iso(R

n) (resp. A ∈ Ψl,m
∞−sc(R

n)) is elliptic then

it has a generalized inverse B ∈ Ψ−m
∞−iso(R

n) (resp. B ∈ Ψ−l,−m
∞−sc (Rn)) satisfying

21.3.1998.170 (3.34) AB − Id = Π1, BA− Id = Π0 ∈ Ψ−∞
iso (Rn)

where Π1 and Π0 are the finite rank orthogonal (in L2(Rn)) projections onto the
null spaces of A∗ and A.

Proof. In the case of an elliptic isotropic operator or order m we know that
it has a parametrix B′ ∈ Ψ−m

iso (Rn) modulo Ψ−∞
iso (Rn). Thus

AB′ = Id−ER, ER ∈ Ψ−∞
iso (Rn),

B′A = Id−EL, EL ∈ Ψ−∞
iso (Rn).

Using Proposition
1.2.2000.312
3.4 it follows that the null space of A is contained in the null space

of B′A = Id−EL, hence is finite dimensional. Similarly, the range of A contains
the range of AB′ = Id−ER so is closed with a finite codimensional complement.
Defining B as the linear map which vanishes on Nul(A∗), and inverts A on Ran(A)
with values in Ran(A∗) = Nul(A)⊥ gives (

21.3.1998.170
3.34). Furthermore these identities show

that B ∈ Ψ−m
∞−iso(R

n) since applying B′ gives

1.2.2000.331 (3.35) B −ELB = B′AB = B′ −B′Π1, B −BER = BAB′ = B′ −Π0B
′ =⇒

B = B′ −B′Π1 +ELB
′ +ELBER −ELΠ0B

′ ∈ Ψ−m
∞−iso(R

n).

The proof in the scattering case is essentially the same. �

1.2.2000.332 Corollary 3.3. If A ∈ Ψm
iso(R

n) is elliptic then its generalized inverse lies in
Ψ−m

iso (Rn) and similarly if A ∈ Ψl,m
sc (Rn) is elliptic then its generalized inverse lies

in Ψ−l,−m
sc (Rn).

3.7. The harmonic oscillatorS.Harmonic.oscillator

The harmonic oscillator is the differential operator on Rn

H =
n∑

j=1

(D2
j + x2

j ) = ∆ + |x|2 .

This is an elliptic element of Ψ2
iso(R

n). The main immediate interest is in the
spectral decomposition of H . The ellipticity of H − λ, λ ∈ C, shows that

eq:HO.1 (3.36) (H − λ)u = 0, u ∈ S ′(Rn) =⇒ u ∈ S(Rn) .

Since H is (formally) self-adjoint, i.e., H∗ = H , there are no non-trivial tempered
solutions of (H − λ)u = 0, λ 6∈ R. Indeed if (H − λ)u = 0,

eq:HO.2 (3.37) 0 = 〈Hu, u〉 − 〈u,Hu〉 = (λ − λ)〈u, u〉 =⇒ u = 0.

As we shall see below in more generality, the spectrum of H is a discrete subset of
R. In this case we can compute it explicitly.

The direct computation of eigenvalues and eigenfunctions is based on the prop-
erties of the creation and annihilation operators

eq:HO.3 (3.38) Cj = Dj + ixj , C∗
j = Aj = Dj − ixj , j = 1, . . . , n.
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These satisfy the elementary identities

eq:HO.4 (3.39)

[Aj , Ak] = [Cj , Ck ] = 0, [Aj , Ck] = 2δjk, j, k = 1, . . . , n

H =

n∑

j=1

CjAj + n, [Cj , H ] = −2Cj , [Aj , H ] = 2Aj .

Now, if λ is an eigenvalue, Hu = λu, then

eq:HO.5 (3.40)
H(Cju) = Cj(Hu+ 2u) = (λ+ 2)Cju,

H(Aju) = Aj(Hu− 2u) = (λ− 2)Aju.

prop:HO.6 Proposition 3.7. The eigenvalues of H are

eq:HO.7 (3.41) σ(H) = {n, n+ 2, n+ 4, . . .}.
Proof. We already know that eigenvalues must be real and from the decom-

position of H in (
eq:HO.5
3.40) it follows that, for u ∈ S(Rn),

eq:HO.9 (3.42) 〈Hu, u〉 =
∑

j

‖Aju‖2 + n‖u‖2 .

Thus if λ ∈ σ(H) is an eigenvalue then λ ≥ n.
By direct computation we see that n is an eigenvalue with a 1-dimensional

eigenspace. Indeed, from (
eq:HO.9
3.42), Hu = nu iff Aju = 0 for j = 1, . . . , n. In each

variable separately

Aju(xj) = 0⇔ u(xj) = c1 exp

(
−
x2

j

2

)
.

Thus the only tempered solutions of Aju = 0, i = 1, . . . , n are the constant multiples
of

eq:HO.10 (3.43) u0 = exp

(
−|x|

2

2

)
,

which is often called the ground state.
Now, if λ is an eigenvalue with eigenfunction u ∈ S(Rn) it follows from (

eq:HO.5
3.40)

that λ− 2 is an eigenvalue with eigenfunction Aju. Since all the Aju cannot vanish
unless u is the ground state, it follows that the eigenvalues are contained in the
set in (

eq:HO.7
3.41). We can use the same argument to show that if u is an eigenfunction

with eigenvalue λ then Cju is an eigenfunction with eigenvalue λ + 2. Moreover,
Cju ≡ 0 would imply u ≡ 0 since Cjv = 0 has no non-trivial tempered solutions,
the solution in each variable being exp(x2

j/2). �

Using the creation operators we can parameterize the eigenspaces quite explic-
itly.

prop:HO.11 Proposition 3.8. For each k ∈ N0 there is an isomorphism

eq:HO.12 (3.44) {Polynomials, homogeneous of degree k on Rn} 3 p

7−→ p(C) exp

(
−|x|

2

2

)
∈ Ek

where Ek is the eigenspace of H with eigenvalue n+ 2k.
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Proof. Notice that the Cj , j = 1, . . . , n are commuting operators, so p(C) is
well-defined. By iteration from (

eq:HO.5
3.40),

eq:HO.13 (3.45) HCαu0 = Cα(H + 2|α|)u0 = (n+ 2|α|)Cαu0 .

Thus (
eq:HO.12
3.44) is a linear map into the eigenspace as indicated.

To see that (
eq:HO.12
3.44) is an isomorphism consider the action of the annihilation

operators. Again from (
eq:HO.5
3.40)

eq:HO.14 (3.46) |β| = |α| =⇒ AβCαu0 =

{
0 β 6= α

2|α|α!u0 β = α.

This allows us to recover the coefficients of p from p(C)u0, so (
eq:HO.12
3.44) is injective.

Conversely if v ∈ Ek ⊂ S(Rn) is orthogonal to all the Cαu0 then

eq:HO.15 (3.47) 〈Aαv, u0〉 = 〈v, Cαu0〉 = 0 ∀ |α| = k .

From (
eq:HO.5
3.40), the Aαv are all eigenfunctions of H with eigenvalue n, so (

eq:HO.15
3.47) implies

that Aαv = 0 for all |α| = k. Proceeding inductively in k we see that Aα′

Ajv = 0
for all |α′| = k − 1 and Ajv ∈ Ek−1 implies Ajv = 0, j = 1, . . . , n. Since v ∈ Ek,
k > 0, this implies v = 0 so Proposition

prop:HO.11
3.8 is proved. �

Thus H has eigenspaces as described in (
eq:HO.12
3.44). The same argument shows that

for any integer p, positive or negative, the eigenvalues of Hp are precisely (n+2k)p

with the same eigenspaces Ek. For p < 0, Hp is a compact operator on L2(Rn);
this is obvious for large negative p. For example, if p ≤ −n− 1 then

eq:HO.16 (3.48) xβ
i D

α
j H ∈ Ψ0

iso(R
n), |α| ≤ n+ 1, |β| ≤ n+ 1

are all bounded on L2. If S ⊂ L2(Rn) is bounded this implies that H−n−1(S) is
bounded in 〈x〉n+1C1

∞(Rn), so compact in 〈x〉nC0
∞(Rn) and hence in L2(Rn). It is

a general fact that for compact self-adjoint operators, such as H−n−2, the eigen-
functions span L2(Rn). We give a brief proof of this for the sake of ‘completeness’.

lem:HO.17 Lemma 3.4. The eigenfunction of H, uα = π− n
4 (2|α|α!)−1/2Cαu0 form an or-

thonormal basis of L2(Rn).

Proof. Let V ⊂ L2(Rn) be the closed subspace consisting of the orthocom-
plements of all the uα’s. Certainly H−n−2 acts on it as a compact self-adjoint
operator. Since we have found all the eigenvalues of H, and hence of H−n−1, it has
no eigenvalue in V. We wish to conclude that V = {0}. Set

τ = ‖H−n−1‖V = sup{‖H−n−1ϕ‖;ϕ ∈ V, ‖ϕ‖ = 1} .
Then there is a weakly convergent sequence ϕj ⇀ ϕ, ‖ϕj‖ = 1, so ‖ϕ‖ ≤ 1, with
‖H−n−1ϕj‖ → τ. The compactness of H−n−2 allows a subsequence to be chosen
such that H−n−1ϕj → ψ in L2(Rn). So, by the continuity of H−n−1, H−n−1ϕ = ψ
and ‖H−n−1ϕ‖ = τ, ‖ϕ‖ = 1. If ϕ′ ∈ V, ϕ′ ⊥ ϕ, ‖ϕ′‖ = 1 then

τ2 ≥ ‖H−n−2

(
ϕ+ tϕ′

√
1 + t2

)
‖2 = τ2 + 2t〈H−2n−2ϕ, ϕ′〉+ 0(t2)

=⇒ 〈H−2n−2ϕ, ϕ′〉 = 0 =⇒ H−2n−2ϕ = τ2ϕ .

This contradicts the fact that H−2n−2 has no eigenvalues in V, so V = {0} and the
eigenbasis is complete. �
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Thus, if u ∈ L2(Rn) then

eq:HO.18 (3.49) u =
∑

α

cαuα, cα = 〈u, uα〉 .

lem:HO.19 Lemma 3.5. If u ∈ S(Rn) the convergence in (
eq:HO.18
3.49) is rapid, i.e., |Cα| ≤

CN (1 + |α|)−N for all N and the series converges in S(Rn).

Proof. Since u ∈ S(Rn) implies HNu ∈ L2(Rn) we see that

CN ≥ |〈HNu, uα〉| = |〈u,HNuα〉| = (n+ 2|α|)N |cα| ∀ α .
Furthermore, 2ixj = Cj −Aj and 2Dj = Cj +Aj so the polynomial derivatives of
the uα can be estimated (using the Sobolev embedding theorem) by polynomials
in α; this implies that the series converges in S(Rn). �

1.2.2000.407 Corollary 3.4. Finite rank elements are dense in Ψ−∞
iso (Rn) in the topology

of S(R2n).

Proof. Consider the approximation (
eq:HO.18
3.49) to the kernel A of an element of

Ψ−∞
iso (Rn) as an element of S(R2n). In this case the ground state is

U0 = exp

(
−|x|

2

2
− |y|

2

2

)
= exp

(
−|x|

2

2

)
exp

(
−|y|

2

2

)

and so has rank one as an operator. The higher eigenfunctions

CαU0 = Qα(x, y)U0

are products of U0 and a polynomial, so are also of finite rank. �

3.8. L2 boundedness and compactness

Recall that Ψ0
∞−iso(R

n) ⊂ Ψ0
∞(Rn) so, by Proposition

6.1
2.6, these operators are

bounded on L2(Rn). Using the same argument the bound on the L2 norm can be
related to the norm of the principal symbol and an N ×N matrix.

1.2.2000.357 Proposition 3.9. If A ∈ Ψ0
iso(R

n;CN ) has principal symbol

a = σL(A)
∣∣
S2n−1 ∈ C∞(S2n−1;M(N,C)

then

1.2.2000.358 (3.50) inf
E∈Ψ−∞

iso (Rn;CN )
‖A+E‖B(L2(Rn;CN ) ≤ sup

p∈S2n−1

‖a(p)‖.

Proof. It suffices to prove (
1.2.2000.358
3.50) for all single operators A ∈ Ψ0

iso(R
n). Indeed

if jv(z) = zv is the linear map from C to CN defined by v ∈ CN then

1.2.2000.363 (3.51) ‖A‖B(L2(R;CN )) = sup
{v,w∈CN ;‖v‖=‖w‖=1}

‖j∗wAjv‖B(L2(R)).

Since the symbol of j∗wAjv is just j∗wσ(A)jv , (
1.2.2000.358
3.50) follows from the corresponding

equality for a single operator:

1.2.2000.364 (3.52) inf
E∈Ψ−∞

iso (Rn)
‖A+E‖B(L2(Rn) ≤ sup

p∈S2n−1

|a(p)|, a = σL(A)
∣∣
S2n−1 .

The construction of the approximate square-root of C−A∗A in Proposition
6.6
2.7

only depends on the existence of a positive smooth square-root for C − |a|2, so can
be carried out for any

1.2.2000.359 (3.53) C > sup
p∈S2n−1

|a(p)|2.
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Thus we conclude that with such a value of C

‖Au‖2 ≤ C‖u‖2 + ‖〈Gu, u〉| ∀ u ∈ L2(Rn),

where G ∈ Ψ−∞
iso (Rn). Since G is an isotropic smoothing operator, for any δ > 0

there is a finite dimensional subspace W ⊂ S(Rn) such that

1.2.2000.360 (3.54) ‖〈Gu, u〉‖ ≤ δ‖u‖2 ∀ u ∈W⊥.

Thus if we replace A by A(Id−ΠW ) = A+E where E is a (finite rank) smoothing
operator we see that

‖(A+E)u‖2 ≤ (C + δ)‖Gu‖2 ∀ u ∈ L2(Rn) =⇒ ‖(A+E)‖ ≤ (C + δ)
1
2 .

This proves half of the desired estimate (
1.2.2000.363
3.51), namely

1.2.2000.362 (3.55) inf
E∈Ψ−∞

iso (Rn)
‖A+E‖B(L2(Rn) ≤ sup

p∈S2n−1

|a(p)|.

To prove the opposite inequality, leading to (
1.2.2000.362
3.55), it is enough to arrive at

a contradiction by supposing to the contrary that there is some A ∈ Ψ0
iso(R

n)
satisfying the strict inequality

‖A‖B(L2(Rn) < sup
p∈S2n−1

|a(p)|.

From this it follows that we may choose c > 0 such that c = |a(p)|2 for some p ∈
S2n−1 and yet A′ = A∗A−c has a bounded inverse, B. By making an arbitrariy small
perturbation of the full symbol of A′ we may assume that it vanishes identically
near p. By (

1.2.2000.362
3.55) we may choose G ∈ Ψ0

iso(R
n) with arbitrariy small L2 such that

Ã = A′ + B has left symbol rapidly vanishing near p. When the norm of the
perturbation is small enough, Ã will still be invertible, with inverse B̃ ∈ B(L2(Rn).
Now choose an element G ∈ Ψ0

iso(R
n) with left symbol supported sufficiently near

p, so that G ◦ Ã ∈ Ψ−∞
iso (Rn) but yet the principal symbol of G should not vanish

at p. Thus

G = G ◦ Ã ◦ B̃ : L2(Rn) −→ S(Rn),

G∗ = G = B̃∗ ◦ Ã∗ ◦G∗ : S ′(Rn) −→ L2(Rn).

It follows that G∗G : S ′(Rn) −→ S(Rn) is an isotropic smoothing operator. This
is the expected contradiction, since G, and hence G∗G, may be chosen to have
non-vanishing principal symbol at p. Thus we have proved (

1.2.2000.362
3.55) and hence the

Proposition. �

It is then easy to characterize the compact operators amongst the polyhomo-
geneous isotropic operators as those of negative.

1.2.2000.366 Lemma 3.6. If A ∈ Ψ0
iso(R

n;CN ) then, as an operator on L2(Rn;CN ), A is
compact if and only if it has negative order.

Proof. The necessity of vanishing of the principal symbol for a compact op-
erator follows from Proposition

1.2.2000.357
3.9 and the sufficiency follows from the density of

Ψ−∞
iso (Rn;CN ) in Ψ−1

iso (Rn;CN ) in the topology of Ψ
− 1

2

∞−iso(R
n;CN ) and hence in

the topology of bounded operators. Thus, such an operator is the norm limit of
compact operators so itself is compact. �

Also as a consequence of Proposition
1.2.2000.357
3.9 we can see the necessity of the as-

sumption of ellipticity in Proposition
21.3.1998.169
3.6.
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1.2.2000.367 Corollary 3.5. If A ∈ Ψ0
iso(R

n;CN ) then A is Fredholm as an operator on
L2(Rn;CN ) if and only if it is elliptic.

3.9. Sobolev spaces

The space of square-integrable functions plays a basic rôle in the theory of
distributions; one reason for this is that it is associated with the embedding of
S(Rn) in S ′(Rn). We know that pseudodifferential operators of order 0 are bounded
on L2(Rn). There is also a natural collection of Sobolev spaces associated to the
isotropic calculus, and another associated to the scattering calculus. The isotropic
Sobolev space of order m may be defined as the collection of distributions mapped
in L2(Rn) by any one elliptic operator of order −m. Correspondingly the scattering
Sobolev spaces have two orders.

Note that a differential operator P (x,Dx) on Rn is an isotropic pseudodif-
ferential operator if and only if its coefficients are polynomials. The fundamental
symmetry between coefficients and differentiation suggest that the isotropic Sobolev
spaces of non-negative integral order be defined by

1.2.2000.337 (3.56) Hk
iso(R

n) = {u ∈ L2(Rn);xαDβ
xu ∈ L2(Rn) if |α|+ |β| ≤ k}, k ∈ N.

The norms

1.2.2000.339 (3.57) ‖u‖2k,iso =
∑

|α|+|β|≤k

∫

Rn

|xαDβ
xu|2 dx

turn these into Hilbert spaces. For negative integral orders we identify the isotropic
Sobolev spaces with the duals of these spaces

1.2.2000.340 (3.58) Hk
iso(R

n) = (H−k
iso (Rn))′ ↪→ S ′(Rn), k ∈ −N.

The (continuous) injection into tempered distributions here arises from the density
of the image of the inclusion S(Rn) −→ Hk

iso(R
n).

1.2.2000.338 Lemma 3.7. For any k ∈ Z,

1.2.2000.341 (3.59) Hk
iso(R

n) =
{
u ∈ S ′(Rn);Au ∈ L2(Rn) ∀ A ∈ Ψ−k

iso

}

=
{
u ∈ S ′(Rn); ∃ A ∈ Ψ−k

iso elliptic and such that Au ∈ L2(Rn)
}

and S(Rn) ↪→ Hk
iso(R

n) is dense for each k ∈ Z.
Proof.

3 For k ∈ N, the functions xαξβ for |α| + |β| = k are ‘collectively
elliptic’ in the sense that

1.2.2000.344 (3.60) qk(x, ξ) =
∑

|α|+|β|=k

(xαξβ)2 ≥ c(|x|2 + |ξ|2)k, c > 0.

Thus Qk =
∑

|α|+|β|≤k

(DβxαxαDβ) ∈ Ψ2k
iso(R

n), which has principal reduced symbol

qk, has a left parameterix Ak ∈ Ψ−2k
iso (Rn). This gives the identity

1.2.2000.345 (3.61)
∑

|α|+|β|≤k

Rα,βx
αDβ = AkQk = Id +E, where

Rα,β = AkD
βxα ∈ Ψ

−2k+|α|+|β|
iso (Rn), E ∈ Ψ−∞

iso (Rn).

3This is an essentially microlocal proof.
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Thus if A ∈ Ψk
iso(R

n)

Au = −AEu+
∑

|α|+|β|≤k

ARα,βx
αDβu.

If u ∈ Hk
iso(R

n) then by definition xαDβu ∈ L2(Rn). By the boundedness of oper-
ators of order 0 on L2, all terms on the right are in L2(Rn) and we have shown the
inclusion of Hk

iso(R
n) in the first space space on the right in (

1.2.2000.341
3.59). The converse

is immediate, so this proves the first equality in (
1.2.2000.341
3.59) for k > 0. Certainly the

third space in (
1.2.2000.341
3.59) contains in the second. The existence of elliptic parametrix B

for the ellipic operator A proves the converse since any isotropic pseudodifferential
operator of order A′ of order k can be effectively factorized as

A′ = A′(BA+E) = B′A+E′, B′ ∈ Ψ0
∞−iso(R

n), E′ ∈ Ψ−∞
iso (Rn).

Thus, Au ∈ L2(Rn) implies that A′u ∈ L2(Rn).
It also follows from second identification that S(Rn) is dense in Hk

loc(R
n). Thus,

if Au ∈ L2(Rn) and we choose fn ∈ S(Rn) with fn → Au in L2(Rn) then, with B a
parametrix for A, u′n = Bfn → BAu = u+ Eu. Thus un = u′n −Eu ∈ S(Rn)→ u
in L2(Rn) and Aun → u in L2(Rn) proving the density.

The Riesz representation theorem shows that vS ′(Rn) is in the dual space,

H−k
iso (Rn), if and only if there exists v′ ∈ Hk

iso(R
n) such that

1.2.2000.343 (3.62) v(u) = 〈u, v′〉k,iso = 〈u,Q2kv
′〉L2 , ∀ u ∈ S(Rn) ↪→ Hk

iso(R
n)

with Q2k =
∑

|α|+|β|≤k

Dβx2αDβ .

This shows that Q2k is an isomorphism of Hk
iso(R

n) onto H−k
iso (Rn) as subspaces of

S ′(Rn). Notice that Q2k ∈ Ψ2k
iso(R

n) is elliptic, self-adjoint and invertible, since it
is strictly positive. This now gives the same identification (

1.2.2000.341
3.59) for k < 0.

The case k = 0 follows directly from the L2 boundedness of operators of order
0 so the proof is complete. �

In view of this identification we define the isotropic Sobolev spaces or any real
order the same way

1.2.2000.347 (3.63) Hs
iso(R

n) =
{
u ∈ S ′(Rn);Au ∈ L2(Rn) ∀ A ∈ Ψ−s

iso

}
, s ∈ R.

These are Hilbertable spaces, with the Hilbert norm being given by ‖Au‖L2(Rn for
any A ∈ Ψs

iso(R
n) which is elliptic and invertible.

1.2.2000.346 Proposition 3.10. Any element A ∈ Ψm
∞−iso(R

n), m ∈ R, defines a bounded
linear operator

1.2.2000.348 (3.64) A : Hs
iso(R

n) −→ Hs−m
iso (Rn), ∀ s ∈ R.

This operator is Fredholm if and only if A is elliptic. For any s ∈ R, S(Rn) ↪→
Hs

iso(R
n) is dense and H−s

iso (Rn) may be identified as the dual of Hs
iso(R

n) with
respect to the continuous extension of the L2 pairing.

Proof. A straightforward application of the calculus, with the exception of the
necessity of ellipticity for an isotropic pseudodifferential operator to be Fredholm.
This is discussed in the problems beginning at Problem

1.2.2000.349
3.10. �
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3.10. The residual groupsec:TG

By definition, G−∞
iso (Rn) is the set (if you want to be concrete you can think

of them as operators on L2(Rn)) of invertible elements of the ring Id +Ψ−∞
iso (Rn).

If we identify this topologically with Ψ−∞
iso (Rn) then, as follows from Corollary

1.2.2000.330
3.1,

G−∞
iso (Rn) is open. We will think of it as an infinite-dimensional manifold modeled,

of course, on the linear space Ψ−∞
iso (Rn) ' S(R2n). Since I have no desire to get too

deeply into the general theory of such Fréchet manifolds I will keep the discussion
as elementary as possible.

The dual space of S(Rp) is S ′(Rp). If we want to think of S(Rp) as a manifold
we need to consider smooth functions and forms on it. In the finite-dimensional
case, the exterior bundles are the antisymmetric parts of the tensor powers of the
dual. Since we are in infinite dimensions the tensor power needs to be completed
and the usual choice is the ‘projective’ tensor product. In our case this is something
quite simple namely the k-fold completed tensor power of S ′(Rp) is just S ′(Rkp).
Thus we set

TG.1 (3.65) ΛkS(Rp) = {u ∈ S ′(Rkp); for any permutation

e, u(xe(1), . . . xe(h)) = sgn(e)u(x1, . . . xk)} .
In view of this it is enough for us to consider smooth functions on open sets

F ⊂ S(Rp) with values in S ′(Rp) for general p. Thus

TG.2 (3.66) v : F −→ S ′(Rp), F ⊂ S(Rn) open

is continuously differentiable on F if there exists a continuous map

v′ : F −→ S ′(Rn+p) and each u ∈ F has a neighbourhood U

such that for each N ∃ M with

‖v(u+ u′)− v(u)− v′(u;u′)‖N ≤ C‖u′‖2M , ∀ u, u+ u′ ∈ U.
Then, as usual we define smoothness as infinite differentiability by iterating this
definition. The smoothness of v in this sense certainly implies that if f : X −→
S(Rn) is smooth then v ◦ F is smooth.

Thus we define the notion of a smooth form on F ⊂ S(Rn), an open set, as a
smooth map

TG.3 (3.67) α : F → ΛkS(Rp) ⊂ S ′(Rkp) .

In particular we know what smooth forms are on G−∞
iso (Rn).

The de Rham differential acts on forms as usual. If v : F → C is a function
then its differential at f ∈ F is dv : F −→ S ′(Rn) = Λ1S(Rn), just the derivative.
As in the finite-dimensional case d extends to forms by enforcing the condition that
dv = 0 for constant forms and the identity distribution over exterior products

TG.5 (3.68) d(α ∧ β) = (dα) ∧ β + (−1)deg αα ∧ dβ .

3.11. RepresentationsS.Representations

In §Sect.radial.compactification1.9 the compactification of Euclidean space to a ball, or half-sphere, is
described. We make the following definition, recalling that ρ ∈ C∞(Sn,+) is a
boundary defining function.
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28.2.1998.153 Definition 3.2. The space of of ‘Laurent functions’ on the half-sphere is

28.2.1998.154 (3.69) L(Sn,+) =
⋃

k∈N0

ρ−kC∞(Sn,+),

ρ−kC∞(Sn,+) = {u ∈ C∞(int(Sn,+)); ρku ∈ C∞(Sn,+).

More generally if m ∈ R we denote by ρmC∞(Sn,+) the space of functions which
can be written as products u = ρmv, with v ∈ C∞(Sn,+); again it can be identified
with a subspace of the space of C∞ functions on the open half-sphere.

28.2.1998.155 Proposition 3.11. The compactification map (
1.104
1.94) extends from (

1.106
1.96) to

give, for each m ∈ R, an identification of ρ−mC∞(Sn,+) and Sm
cl (R

n).

Thus, the fact that the ΨZ

iso,cl(R
n) form an order-filtered ∗-algebra means that

ρZC∞(S2n,+) has a non-commutative product defined on it, with C∞(S2n,+) a sub-
algebra, using the left symbol isomorphism, followed by compactification.

3.12. Symplectic invariance of the isotropic productS.Symplectic.invariance

The composition law for the isotropic calculus, and in particular for it smooth-
ing part, is derived from its identification as a subalgebra of the (weighted) spaces
of pseudodifferential operator on Rn. There is a much more invariant formulation
of the product which puts into evidence more of the invariance properties.

Let W be a real symplectic vector space. Thus, W is a vector space equipped
with a real, antisymmetic and non-degenerate bilinear form

23.3.1998.174 (3.70) ω : W ×W −→ R, ω(w1, w2) + ω(w2, w1) = 0 ∀ w1, w2 ∈W,
ω(w1, w) = 0 ∀ w ∈ W =⇒ w1 = 0.

A Lagrangian subspace of W is a vector space V ⊂ W such that ω vanishes when
restricted to V and such that 2 dimV = dimW.

23.3.1998.175 Lemma 3.8. Every symplectic vector space has a Lagrangian subspace and for
any choice of Lagrangian subspace U1 there is a second Lagrangian subspace U2

such that W = U1 ⊕ U2 is a Lagrangian decomposition.

Proof. First we show that there is a Lagrangian subspace. If dimW > 0 then
the antisymmetry of ω shows that any 1-dimensional vector subspace is isotropic,
that is ω vanishes when restricted to it. Let V be a maximal isotropic subspace,
that is an isotropic subspace of maximal dimension amongst isotropic subspaces.
Let U be a complement to V in W. Then

23.3.1998.176 (3.71) ω : V × U −→ R

is a non-degenerate pairing. Indeed u ∈ U and ω(v, u) = 0 for all v ∈ V then
V +R{u} is also isotropic, so u = 0 by the assumed maximality. Similarly if v ∈ V
and ω(v, u) = 0 for all u ∈ U then, recalling that ω vanishes on V, ω(v, w) = 0 for
all w ∈ W so v = 0. The pairing (

23.3.1998.176
3.71) therefore identifies U with V ′, the dual of

V. In particular dimw = 2 dimV.
Now, choose any Lagrangian subspace U1. We proceed to show that there is a

complementary Lagrangian subspace. Certainly there is a 1-dimensional subspace
which does not meet U1. Let V be an isotropic subspace which does not meet U1 and
is of maximal dimension amongst such subspaces. Suppose that dim V < dimU1.
Choose w ∈ W with w /∈ V ⊕ U1. Then V 3 v −→ ω(w, v) is a linear functional
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on U1. Since U1 can be completed to a complement, any such linear functional
can be written ω(u1, v) for some u1 ∈ U1. It follows that ω(w − u1, v) = 0 for all
v ∈ V. Thus V ⊕R{w−u1} a non-trivial isotropic extension of V, contradicting the
assumed maximality. Thus V = U2 is a complement of U1. �

Given such a Lagrangian decomposition of the symplectic vector space W, let
X1, . . .Xn be a basis for the dual of U1, and let Ξ1, . . . ,Ξn be the dual basis, of U1

itself. The pairing (
23.3.1998.176
3.71) with U = U1 and V = U2 identifies U2 = U ′

1 so the Ξi

can also be regarded as a basis of the dual of U2. Thus X1 . . . Xn,Ξ1, . . . ,Ξn gives
a basis of W ′ = U ′

1 ⊕ U ′
2. The symplectic form can then be written

23.3.1998.178 (3.72) ω(w1, w2) =

n∑

i=1

(Ξi(w1)Xi(w2)− Ξi(w2)Xi(w1)).

This is the Darboux form of ω. If the Xi, Ξi are thought of as linear functions
xi, ξi on W now considered as a manifold then these are Darboux coordinates in
which(

23.3.1998.178
3.72) becomes

23.3.1998.179 (3.73) ω =

n∑

i=1

dξi ∧ dxi.

The symplectic form ω defines a volume form on W, namely the n-fold wedge
product ωn. In Darboux coordinates this is just, up to sign, the Lebesgue form
dξdx.

23.3.1998.180 Proposition 3.12. On any symplectic vector space, W, the bilinear map on
S(W ),

23.3.1998.181 (3.74)

a#b(w) = (2π)−2n

∫

W 2

eiω(w1,w2)a(w + w1)b(w + w2)ω
n(w1)ω

2(w2), dimW = 2n

defines an associative product isomorphic to the composition of Ψ−∞
iso (U1) for any

Lagrangian decomposition W = U1 ⊕ U2.

23.3.1998.182 Corollary 3.6. Extended by continuity in the symbol space (
23.3.1998.181
3.74) defines a

filtered product on S∞(W ) which is isomorphic to the isotropic algebra on R2n and
is invariant under symplectic linear transformation of W.

Proof. Written in the form (
23.3.1998.181
3.74) the symplectic invariance is immediate.

That is, if F is a linear transformation of W which preserves the symplectic form,
ω(Fw1, Fw2) = ω(w1, w2) then

23.3.1998.183 (3.75) F ∗(a#b) = (F ∗a)#(F ∗b) ∀ a, b ∈ S(W ).

The same result holds for general symbols once the continuity is established.
Let us start from the Weyl quatization of the isotropic algebra. As usual

for computations we may assume that the amplitudes are of order −∞. Thus,
A ∈ Ψ−∞

iso (Rn) may be written

23.3.1998.184 (3.76) Au(x) =

∫
A(x, y)u(y) = (2π)−n

∫
ei(x−y)·ξa(

1

2
(x+ y), ξ)u(y)dydξ.
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Both the kernel A(x, y) and the amplitude a(x, ξ) are elements of S(R2n). The
relationship (

23.3.1998.184
3.76) and its inverse may be written

23.3.1998.185 (3.77)

A(s+
t

2
, s− t

2
) = (2π)−n

∫
eit·ξa(s, ξ)dξ,

a(x, ξ) =

∫
e−it·ξA(x +

t

2
, x− t

2
)dt.

If A has Weyl symbol a and B has Weyl symbol b let c be the Weyl symbol of
the composite A ◦B. Using (

23.3.1998.185
3.77) and (

23.3.1998.184
3.76)

c(s, ζ) =

∫
e−it·ζA(s+

t

2
, z)B(z, s− t

2
)dt

= (2π)−2n

∫ ∫ ∫
dt dz dξ dηeiΦa(

s

2
+
t

4
+
z

2
, ξ)a(

z

2
+
s

2
− t

4
, η)

where Φ = −t · ζ + (s+
t

2
− z) · ξ + (z − s+

t

2
) · η.

Changing variables of integration to X = z
2 + t

4 − s
2 , Y = z

2 − t
4 − s

2 , Ξ = ξ− ζ and
H = η − ζ this becomes

c(s, ζ) = (2π)−2n4n

∫ ∫ ∫
dY dX dΞ dH

e2i(X·H−Y ·Ξ)a(X + s,Ξ + ζ)a(Y + s,H + ζ).

This reduces to (
23.3.1998.181
3.74), written out in Darboux coordinates, after the change of

variable H ′ = 2H, Ξ′ = 2Ξ and ζ ′ = 2ζ. Thus the precise isomorphism with the
product in Weyl form is given by

23.3.1998.186 (3.78) A(x, y) = (2π)−n

∫
ei(x−y)·ξaω(

1

2
(x + y), 2ξ)u(y)dydξ

so that composition of kernels reduces to (
23.3.1998.181
3.74). �

Discuss metaplectic group here.

3.13. Complex orderS.Complex.order

The identification of polyhomogeneous symbols of order zero on R2n with the
smooth functions on the radial compactification allows us to define the isotropic
operators of a given complex order z ∈ C. Namely, we use the left quantization
map to identify

1.2.2000.334 (3.79) Ψz
iso(R

n) = ρ−zC∞(S2n,1) ⊂ Ψ<z
∞−iso(R

n).

Here, ρ ∈ C∞(S2n,1) is a boundary defining function. Any other boundary defining
function is of the form aρ with 0 < a ∈ C∞(S2n,1). It follows that the definition is
independent of the choice of ρ since az ∈ C∞(S2n,1) for any z ∈ Z.

In fact it is even more useful to consider holomorphic families. Thus if Ω ⊂ C
is an open set and h : Ω −→ C is holomorphic then we may consider holomorphic
families of order h as elements of

1.2.2000.335 (3.80) Ψ
h(z)
iso (R2n) =

{
A : Ω −→ Ψ∞

∞−iso(R
2n);

Ω 3 z 7−→ ρh(z)A(z) ∈ C∞(S2n,1) is holomorphic.
}
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Note that a map from Ω ⊂ C into C∞(S2n1,) is said to be holomorphic it is defines
an element of C∞(Ω × S2n,1) which satisies the Cauchy-Riemann equation in the
first variable.

1.2.2000.336 Proposition 3.13. If h and g are holomorphic functions on an open set Ω ⊂ C
and A(z), B(z) are holomorphic familes of isotropic operators of orders h(z) and
g(z) then the composite family A(z) ◦B(z) is holomorphic of order h(z) + g(z).

Proof. It suffices to consider an arbitrary open subset Ω′ ⊂ Ω with com-
pact closure inside Ω. Then h and g have bounded real parts, so A(z), B(z) ∈
ΨM

∞−iso(R
2n) for z ∈ Ω′ for some fixedM. It follows that the compositeA(z)◦B(z) ∈

Ψ2M
∞−iso(R

2n). The symbol is given by the usual formula. Furthermore
�

3.14. Traces on the residual algebraS.Traces.residual

The algebras we are studying are topological algebras, so it makes sense to
consider continuous linear functionals on them. The most important of these is the
trace. To remind you what it is we consider first its properties for matrix algebras.

Let M(N ;C) denote the algebra of N ×N complex matrices. We can simply
define

eq:1 (3.81) Tr : M(N ;C)→ C, Tr(A) =

N∑

i=1

Aii

as the sum of the diagonal entries. The fundamental property of this functional is
that

eq:2 (3.82) Tr([A,B]) = 0 ∀ A,B ∈M(N ;C) .

To check this it is only necessary to write down the definition of the composition
in the algebra. Thus

(AB)ij =

N∑

k=1

AikBkj .

It follows that

Tr(AB) =

N∑

i=1

(AB)ii =

N∑

i,k=1

AikBki

=

N∑

k=1

N∑

i=1

BkiAik =

N∑

k=1

(BA)kk = Tr(BA)

which is just (
eq:2
3.82).

Of course any multiple of Tr has the same property (
eq:2
3.82) but the normalization

condition

eq:3 (3.83) Tr(Id) = N

distinguishes it from its multiples. In fact (
eq:2
3.82) and (

eq:3
3.83) together distinguish

Tr ∈ M(N ;C)′ as a point in the N2 dimensional linear space which is the dual of
M(N ;C).

lem:trace Lemma 3.9. If F : M(N ;C) → C is a linear functional satisfying (
eq:2
3.82) and

B ∈M(N ;C) is any matrix such that F (B) 6= 0 then F (A) = F (B)
Tr(B) Tr(A).
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Proof. Consider the basis of M(N ;C) given by the elementary matrices Ejk ,
where Ejk has jk-th entry 1 and all others zero. Thus

EjkEpq = δkpEjq .

If j 6= k it follows that

EjjEjk = Ejk , EjkEjj = 0.

Thus

F ([Ejj , Ejk ]) = F (Ejk) = 0 if j 6= k.

On the other hand, for any i and j

EjiEij = Ejj , EijEji = Eii

so

F (Ejj ) = F (E11) ∀ j.
Since the Ejk are a basis,

F (A) = F (

N∑

j,k=1

AijEij)

=
N∑

j,l=1

AjjF (Eij)

= F (E11)

N∑

j=1

Ajj = F (E11) Tr(A).

This proves the lemma. �

For the isotropic smoothing algebra we have a similar result.

isotropic trace Proposition 3.14. If F : Ψ−∞
iso (Rn) ' S(R2n) −→ C is a continuous linear

functional satisfying

eq:4 (3.84) F ([A,B]) = 0 ∀ A,B ∈ Ψ−∞
iso (Rn)

then F ([A,B]) = 0 for all A ∈ Ψ−∞
iso (Rn) and B ∈ Ψ∞

iso(R
n) and F is a constant

multiple of the functional

eq:5 (3.85) Tr(A) =

∫

Rn

A(x, x) dx.

Proof. Recall that Ψ−∞
iso (Rn) ⊂ Ψ∞

iso(R
n) is an ideal so A ∈ Ψ−∞

iso (Rn) and

B ∈ Ψ∞
iso(R

n) implies that AB, BA ∈ Ψ−∞
iso (Rn) and it follows that the equality

F (AB) = F (BA), or F ([A,B]) = 0, is meaningful. To see that it holds we just
use the continuity of F. We know that if B ∈ Ψ∞

iso(R
n) then there is a sequence

Bn → B in the topology of Ψm
iso(R

n) for some m. Since this implies ABn → AB,
BnA→ BA in Ψ−∞

iso (Rn) we see that

F ([A,B]) = lim
n→∞

F ([A,Bn]) = 0 .

We use this identity to prove (
eq:5
3.85). Take B = xj or Dj , j = 1, . . . , n. Thus

for any A ∈ Ψ−∞
iso (Rn)

F ([A, xj ]) = F ([A,Dj ]) = 0 .
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Now consider F as a distribution acting on the kernel A ∈ S(R2n). Since the kernel
of [A, xj ] is A(x, y)(yj − xj) and the kernel of (A,Dj) is −(Dyj

+Dxj
)A(x, y) we

conclude that, as an element of S ′(R2n), F satisfies

(xj − yj)F (x, y) = 0, (Dxj
+Dyj

)F (x, y) = 0.

If we make the linear change of variables to pi = xi+yi

2 , qi = xi − yi and set

F̃ (p, q) = F (x, y) these conditions become

Dqi
F̃ = 0, piF̃ = 0, i = 1, . . . , N.

As we know from Lemmas
2.3
1.2 and

2.5
1.3, this implies that F̃ = cδ(p) so

F (x, y) = cδ(x− y)
as a distribution. Clearly δ(x− y) gives the functional Tr defined by (

eq:5
3.85), so the

proposition is proved. �

We still need to justify the use of the same notation, Tr, for these two func-
tionals. However, if L ⊂ S(Rn) is any finite dimensional subspace we may choose
an orthonal basis ϕi ∈ L, i = 1, . . . , l,∫

Rn

|ϕi(x)|2 dx = 0,

∫

Rn

ϕi(x)ϕj (x) dx = 0, i 6= j .

Then if aij is an l × l matrix,

A =
∑̀

i,j=1

aijϕi(x)ϕj (y) ∈ Ψ−∞
iso (Rn) .

From (
eq:5
3.85) we see that

Tr(A) =
∑

ij

aij Tr(ϕiϕ̄j)

=
∑

ij

aij

∫

Rn

ϕi(x)ϕj(x) dx

=
n∑

i=1

aii = Tr(a) .

Thus the two notions of trace coincide. In any case this already follows, up to a
constant, from the uniqueness in Lemma

lem:trace
3.9.

3.15. Fredholm determinant

For N ×N matrices, the linear space of which we denote M(N ;C), the deter-
minant is a multiplicative polynomial map

1.2.2000.404 (3.86) det : M(N ;C) −→ C, det(AB) = det(A) det(B), det(Id) = 1.

It is not quite determined by these conditions, since det(A)k also satisfies then. The
fundamental property of the determinant is that it defines the group of invertible
elements

1.2.2000.405 (3.87) GL(N,C) = {A ∈M(N ;C); det(A) 6= 0}.
A reminder of a direct definition is given in Problem

1.2.2000.406
3.7.

The Fredholm determinant is an extension of this definition to a function on
the ring Id +Ψ−∞

iso (Rn), or even further to Id +Ψ−2n−ε
∞−iso (Rn) for ε > 0. This can
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be done in several ways using the density of finite rank operators, as shown in
Corollary

1.2.2000.407
3.4. We proceed by generalizing the formula relating the determinant to

the trace. Thus, for any smooth curve with values in GL(N ;C) for any N,

1.2.2000.408 (3.88)
d

ds
det(As) = det(As) tr(A−1

s

As

ds
).

In particular if (
1.2.2000.404
3.86) is augmented by the normalization condition

iml.1 (3.89)
d

ds
det(Id +sA)

∣∣
s=0

= tr(A) ∀ A ∈M(N ;C)

then it is determined.
A branch of the logarithm can be introduced along any curve, smoothly in the

parameter, and then (
1.2.2000.408
3.88) can be rewritten

1.2.2000.409 (3.90) d log det(A) = tr(A−1dA).

Here GL(N ;C) is regarded as a subset of the linear space M(N ;C) and dA is
the canonical identification, at the point A, of the tangent space to M(N,C) with
M(N,C) itself. This just arises from the fact that M(N,C) is a linear space.
Thus dA( d

ds (A + sB)
∣∣
s=0

= B. This allows the expression on the right in (
1.2.2000.409
3.90)

to be interpreted as a smooth 1-form on the manifold GL(N ;C). Note that it is
independent of the local choice of logarithm.

To define the Fredholm determinant we shall extend the 1-form

iml.2 (3.91) α = Tr(A−1dA)

to the groupG−∞
iso (Rn) ↪→ Id +Ψ−∞

iso (Rn). Here dA has essentially the same meaning
as before, given that Id is fixed. Thus at any point A = Id +B ∈ Id +Ψ−∞

iso (Rn) it

is the identification of the tangent space with Ψ−∞
iso (Rn) using the linear structure:

dA(
d

ds
(Id +B + sE)

∣∣
s=0

) = E, E ∈ Ψ−∞
iso (Rn).

Since dA takes values in Ψ−∞
iso (Rn), the trace functional in (

iml.2
3.91) is well defined.

The 1-form α is closed. In the finite-dimensional case this follows from (
1.2.2000.409
3.90).

For (
iml.2
3.91) we can compute directly. Since d(dA) = 0, essentially by definition, and

iml.4 (3.92) dA−1 = −A−1dAA−1

we see that

iml.5 (3.93) dα = −Tr(A−1(dA)A−1(dA)) = 0.

Here we have used the trace identity, and the antisymmetry of the implicit wedge
product in (

iml.5
3.93), to conlcude that dα = 0. For a more detailed discussion of this

point see Problem
iml.6
3.8.

From the fact that dα = 0 we can be confident that there is, locally near any
point of G−∞

iso (Rn), a function f such that df = α; then we will define the Fredholm
determinant by detFr(A) = exp(f). To define detFr globally we need to see that this
is well defined.

iml.9 Lemma 3.10. For any smooth closed curve γ : S1 −→ G−∞
iso (Rn) the integral

iml.10 (3.94)

∫

γ

α =

∫

S1

γ∗α ∈ 2πiZ.

That is, α defines an integral cohomology class, [ α
2πi ] ∈ H1(G−∞

iso (Rn);Z).
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Proof. This is where we use the approximability by finite rank operators.
If πN is the orthogonal projection onto the span of the eigenspaces of the small-
est N eigenvalues of the harmonic oscillator then we know from Section

S.Harmonic.oscillator
3.7 that

πNEπN → E in Ψ−∞
iso (Rn) for any element. In fact it follows that for the smooth

curve that γ(s) = Id +E(s) and EN (s) = πNE(s)πN converges uniformly with all
s derivatives. Thus, for some N0 and all N > N0, Id +EN(s) is a smooth curve in
G−∞

iso (Rn) and hence γN (s) = IdN +EN (s) is a smooth curve in GL(N ;C). Clearly

iml.11 (3.95)

∫

γN

α −→
∫

γ

α as N →∞,

and for finite N it follows from the identity of the trace with the matrix trace (see
Section

S.Traces.residual
3.14) that

∫
N γ∗Nα is the variation of arg log det(γN ) around the curve. This

gives (
iml.10
3.94). �

Now, once we have (
iml.10
3.94) and the connectedness of G−∞

iso (Rn) we may define

iml.12 (3.96) detFr(A) = exp(

∫

γ

α), γ : [0, 1] −→ G−∞
iso (Rn), γ(0) = Id, γ(1) = A.

Indeed, Lemma
iml.9
3.10 shows that this is independent of the path chosen from the

identity to A. Notice that the connectedness of G−∞
iso (Rn) follows from the connect-

edness of the GL(N,C) and the density argument above.
The same arguments and results apply to G−2n−ε

∞−iso (Rn) using the fact that the

trace functional extends continuously to Ψ−2n−ε
∞−iso (Rn) for any ε > 0.

iml.13 Proposition 3.15. The Fredholm determinant, defined by (
iml.12
3.96) on G−∞

iso (Rn)

(or G−2n−ε
iso (Rn) for ε > 0) and to be zero on the complement in Id +Ψ−∞

iso (Rn) (or

Id +Ψ−2n−ε
iso (Rn)) is an entire function satisfying

iml.14 (3.97) detFr(AB) = detFr(A) detFr(B), A,B ∈ Id +Ψ−∞
iso (Rn)

(or Id +Ψ−2n−ε
iso (Rn)), detFr(Id) = 1.

Proof. We start with the multiplicative property of detFr on G−∞
iso (Rn). Thus

is γ1(s) is a smooth curve from Id to A1 and γ2(s) is a smooth curve from Id to A2

then γ(s) = γ1(s)γ2(s) is a smooth curve from Id to A1A2. Consider the differential
on this curve. Since

d(A1(s)A2(s))

ds
=
dA1(s)

ds
A2(s) +A1(s)

dA2(s)

ds

the 1-form becomes

iml.15 (3.98) γ∗(s)α(s) = Tr(A2(s)
−1 dA2(s)

ds
) + Tr(A2(s)

−1A1(s)
−1 dA2(s)

ds
A2(s)).

In the second term on the right we can use the trace identity, since Tr(GA) =
Tr(AG) if G ∈ ΨZ

iso(R
n) and A ∈ Ψ−∞

iso (Rn). Thus (
iml.15
3.98) becomes

γ∗(s)α(s) = γ∗1α+ γ∗2α.

Inserting this into the definition of detFr gives (
iml.14
3.97) when both factors are in

G−∞
iso (Rn). Of course if either factor is not invertible, then so is the product and

hence both detFr(AB) and at least one of detFr(A) and detFr(B) vanishes. Thus
(
iml.14
3.97) holds in general when detFr is extended to be zero on the non-invertible

elements.
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Thus it remains to establish the smoothness. That detFr(A) is smooth in any
real parameters in which A ∈ G−∞

iso (Rn) depends, or indeed is holomorphic in holo-
morphic parameters, follows from the definition since α clearly depends smoothly,
or holomorphically, on parameters. In fact the same follows if holomorphy is exam-
ined as a function of E, A = Id +E, for E ∈ Ψ−∞

iso (Rn). Thus it is only smoothness
across the non-invertibles that is at issue. To prove this we use the multiplicativity
just established.

If A = Id +E is not invertible, E ∈ Ψ−∞
iso (Rn) then it has a generalized inverse

Id +E′ as in Proposition
21.3.1998.169
3.6. Since A has index zero, we may actually replace E ′ by

E′+E′′, where E′′ is an invertible linear map from the orthocomplement of the range
of A to its null space. Then Id +E ′+E′′ ∈ G−∞

iso (Rn) and (Id +E′+E′′)A = Id−Π0.
To prove the smoothness of detFr on a neighbourhood of A it is enough to prove the
smoothness on a neighbourhood of Id−Π0 since Id +E′+E′′ maps a neighbourhood
of the first to a neighbourhood of the second and detFr is multiplicative. Thus
consider detFr on a set Id−Π0 + E where E is near 0 in Ψ−∞

iso (Rn), in particular
we may assume that Id +E ∈ G−∞

iso (Rn). Thus

detFr(Id +E −Π0) = det(Id +E) det(Id−Π0 + (GE − Id)Π0)

were GE = (Id +E)−1 depends holomorphically on E. Thus it suffices to prove the
smoothness of detFr(Id−Π0 +HΠ0) where H ∈ Ψ−∞

iso (Rn)
Consider the deformation Hs = Π0HΠ0+s(Id−Π0)HΠ0, s ∈ [0, 1]. If Id−Π0+

Hs is invertible for one value of s it is invertible for all, since its range is always
the range of Id−Π0 plus the range of Π0HΠ0. It follows that detFr(Id−Π0 +Hs)
is smooth in s; in fact it is constant. If the family is not invertible this follows
immediately and if it is invertible then

d detFr(Id−Π0 +Hs)

ds

= detFr(Id−Π0 +Hs) Tr
(
(Id−Π0 +Hs)

−1(Id−Pi0)HΠ0)
)

= 0

since the argument of the trace is finite rank and off-diagonal with respect to the
decomposition by Π0.

Thus finally it is enough to consider the smoothness of detFr(Id−Π0 +Π0HΠ0)
as a function of H ∈ Ψ−∞

iso (Rn). Since this is just det(Π0HΠ0), interpreted as a
finite rank map on the range of Π0 the result follows from the finite dimensional
case. �

iml.18 Lemma 3.11. If A ∈ GZ

iso(R
n) and B ∈ G−∞

iso (Rn) then ABA−1 ∈ G−∞
iso (Rn)

and

iml.19 (3.99) detFr(ABA
−1) = detFr(B).

Proof. If ABA−1 is not invertible then neither is B so both sides of (
iml.19
3.99)

vanish. Thus we may assume that B = Id +E is invertible and let Id +E(s) be a
smooth curve in G−∞

iso (Rn) connecting it to the identity. Consider the function

iml.20 (3.100) detFr(A(Id +E(s))A−1) = detFr(Id +AE(s)A−1).
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This is certainly smooth and non-vanishing and its logarithm has derivative

Tr(A(Id +E(s))−1A−1 d
(
A(Id +E(s)A−1

)

ds
)

= Tr(A(Id +E(s))−1E(s)

ds
A−1) = Tr((Id +E(s))−1E(s)

ds
).

This is also the derivative of the logarithm of detFr(Id +E(s)) so the result follows.
�

3.16. Fredholm alternativeS.Fredholm.alternative

Since we have shown that detFr : Id +Ψ−∞
iso (Rn) −→ C is an entire function,

we see that G−∞
iso (Rn) is the complement of a (singular) holomorphic hypersurface,

namely the surface {Id+E; detFr(Id +E) = 0}. This has the following consequence,
which is sometimes call the ‘Fredholm alternative’ and also part of ‘analytic Fred-
holm theory’.

iml.21 Lemma 3.12. If Ω ⊂ C is an open, connected set and A : Ω −→ Ψ−∞
iso (Rn) is a

holomorphic function then either Id +A(z) is invertible of all but a discrete subset
of Ω and (Id +A(z)) is meromorphic on Ω with all residues of finite rank, or else
it is invertible at no point of Ω.

Proof. Of course the point here is that detFr(Id +A(z)) is a holomorphic
function on Ω. Thus, either detFr(A(z)) = 0 is a discrete set, D ⊂ Ω or else
detFr(Id +A(z)) ≡ 0 on Ω; this uses the connectedness of Ω. Since this corresponds
exactly to the invertibility of Id +A(z) the main part of the lemma is proved. It
remains only to show that, in the former case, (Id +A(z))−1 is meromorphic. Thus
consider a point p ∈ D. Thus the claim is that near p

iml.22 (3.101) (Id +A(z))−1 = Id +E(z) +

N∑

j=1

z−jEj , Ej ∈ Ψ−∞
iso (Rn) of finite rank

and where E(z) is locally holomorphic with values in Ψ−∞
iso (Rn).

If N is sufficiently large and ΠN is the projection onto the first N eigenspaces
of the harmonic oscillator then B(z) = Id +E(z)−ΠNE(z)ΠN is invertible near p
with the inverse being of the form Id +F (z) with F (z) locally holomorphic. Now

(Id +F (z))(Id +E(z)) = Id +(Id +F (z))ΠNE(z)ΠN

= (Id−ΠN ) + ΠNM(z)ΠN + (Id−ΠN )M ′(z)ΠN .

It follows that this is invertible if and only if M(z) is invertible as a matrix on
the range of ΠN . Since it must be invertible near, but not at, p, its inverse is a
meromorphic matrix K(z). It follows that the inverse of the product above can be
written

iml.23 (3.102) Id−ΠN + ΠNK(z)ΠN − (Id−ΠN )M ′(z)ΠNK(z)ΠN .

This is meromorphic and has finite rank residues, so it follows that the same is true
of A(z)−1. �

This result for the smoothing operators, which really follows from the cor-
responding result for matrices, gives a similar result for a holomorphic family of
elliptic operators.
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iml.24 Proposition 3.16. Suppose Ω ⊂ C is open and connected, h(z) is holomorphic

on Ω and A(z) ∈ Ψ
h(z)
iso (Rn) is a holomorphic and elliptic family. Then if A(z) is

invertible at one point it is invertible for all but a discrete set and its inverse is

locally of the form B(z) +H(z) where B(z) ∈ Ψ
−h(z)
iso (Rn) is a locally holomorphic

family and H(z) is meromorphic with values in Ψ−∞
iso (Rn) and has all residues of

finite rank.

Proof. By the results of Section
S.Complex.order
3.13 we can choose, at least locally near any

point, a holomorphic parametrix B(z) for the family in Ψ
−h(z)
iso (Rn). Suppose p ∈ Ω

is a point at which A(z) is invertible. Then the parametrix differs from the inverse
by a smoothing operator, so modifying B(z) by a constant smoothing operator if
follows that B(z)A(z) = Id +E(z) is a holomorphic family in Id +Ψ−∞

iso (Rn) with
E(p) = 0. It follows from the Fredholm alternative that Id +E(z) is invertible with
holomorphic inverse near p. Thus, A(z) is invertible for z in an open set around p;
the set at which it is invertible is therefore open. Let Z ⊂ Ω be the closed set at
which A(z) is not invertible. If p is a boundary point of Z then it follows, using
the notation above for a parametrix of A(z) near p, that Id +E(z) is invertible near
p and hence p is an isolated point of non-invertibility. Thus all boundary points
of Z are isolated. A closed subset of an open connected set in Euclidean space is
either discrete or has a non-isolated boundary point, so this shows that the set of
non-invertibility it is discrete. The local structure of the inverse follows from this
discussion. �

3.17. Resolvent and spectrum

One direct application of analytic Fredholm theory is to the resolvent of an
elliptic operator of positive order. For simplicity we assume that A ∈ Ψm

iso(R
n;CN )

with m ∈ N, although the case of non-integral positive order is only slightly more
complicated.

iml.25 Proposition 3.17. If A ∈ Ψm
iso(R

n;CN ), m ∈ N, and there exists one point

λ′ ∈ C such that A− λ′ and A∗ − λ′ both have trivial null space, then

iml.26 (3.103) (A− λ)−1 ∈ Ψ−m
iso (Rn;CN )

is a meromorphic family with all residues finite rank smoothing operators; the span
of the ranges of the residues at any λ̃ is the linear space of generalized eigenvalues,
the solutions of

iml.27 (3.104) (A− λ̃)pu = 0 for some p ∈ N.

Proof. Since A is elliptic and of positive integral order, m, A− λ ∈ Ψm
iso(R

n)
is and entire elliptic family. By hypothesis, its inverse exists for some λ′ ∈ C. Thus,
by Proposition

iml.24
3.16 (A−λ)−1 ∈ Ψ−m

iso (Rn) is a meromorphic family in the complex
plane, with all residues finite rank smoothing operators.

Let λ̃ be a pole of A − λ. Since we can replace A by A − λ̃ we may suppose
without loss of generality that λ̃ = 0. Thus, for some k the product λk(A− λ)−1 is
holomorphic near λ = 0. Differentiating the identities

(A− λ)[λk(A− λ)−1] = λk Id = [λk(A− λ)−1](A− λ)
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up to k times gives the relations

iml.28 (3.105) A ◦Rk−j = Rk−j ◦A = Rk−j+1, j = 0, · · · , k − 1,

A ◦R0 = R0 ◦A = Id +R1, where

(A− λ)−1 = Rkλ
−k +Rk−1λ

−k+1 + · · ·+R0 + · · · , Rk+1 = 0.

Thus Ap ◦ Rk−p+1 = 0 = Rk−p+1 ◦ Ap for 0 < p ≤ k, which shows that all the
residues, Rj , 1 ≤ j ≤ k, have ranges in the generalized eigenfunctions. �

Notice also from (
iml.28
3.105) that the range of Rk−j+1 is contained in the range of

Rk−j for each j = 0, . . . , k − 1, and conversely for the null spaces

Ran(Rk) ⊂ Ran(Rk−1) ⊂ · · · ⊂ Ran(R1)

Nul(Rk) ⊃ Nul(Rk−1) ⊃ · · · ⊃ Nul(R1).

Thus,

iml.29 (3.106) u ∈ Ran(Rp), p ≥ 1⇐⇒ ∃ u1 ∈ Ran(R1) s.t. Ap−1u1 = u.

3.18. Residue traceS.Residue.trace

We have shown, in Proposition
isotropic trace
3.14, the existence of a unique trace functional

on the residual algebra Ψ−∞
iso (Rn). We now follow ideas originating with Seeley,

Seeley1
[11],

and developed by Guillemin
Guillemin2
[5],

Guillemin3
[6] and Wodzicki

Wodzicki1
[14],

Wodzicki7
[13] to investigate the traces

on the full algebra ΨZ
iso(R

n) of polyhomogeneous operators of integral order. We
will prove the existence of a trace but defer until later the proof of its uniqueness.

Observe that for A ∈ Ψ−∞
iso (Rn) the kernel can be written

A(x, y) = (2π)−n

∫
ei(x−y)ξaL(x, ξ) dξ

and hence the trace, from (
eq:5
3.85), becomes

Feb.17.2000.eq:1 (3.107) Tr(A) = (2π)−n

∫

R2n

aL(x, ξ) dx dξ ,

just the integral of the left-reduced symbol. In fact this is true for any amplitude
(of order −∞) representing A :

Feb.17.2000.eq:2 (3.108)

A = (2π)−n

∫
ei(x−y)a(x, y, ξ) dξ =⇒ Tr(A) = (2π)−n

∫

R2n

a(x, x, ξ) dx dξ .

The integral in (
Feb.17.2000.eq:1
3.107) extends by continuity to aL ∈ Sm

∞(R2n) provided m <
−2n. Thus, as a functional,

Feb.17.2000.eq:3 (3.109) Tr : Ψ−2n−ε
∞,iso (Rn)→ C, for any ε > 0.

To extend it further we need somehow to regularize the resultant divergent integral
in (

Feb.17.2000.eq:1
3.107) (and to pay the price in terms of properties). One elegant way to do

this is to use a holomorphic family as discussed in Section
S.Complex.order
3.13. Notice that we are

passing from the algebra-with-bounds in (
Feb.17.2000.eq:3
3.109) to polyhomogeneous operators.

Lemma 3.13. If A(z) ∈ Ψz
iso(R

n) is a holomorphic family then f(z) = Tr(A(z)),
defined by (

Feb.17.2000.eq:2
3.108) when <(z) < −2n, extends to a meromorphic function of z with

at most simple poles on the divisor

{−2n,−2n+ 1, . . . ,−1, 0, 1, . . .} ⊂ C .
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Proof. We know that A(z) ∈ Ψz
iso(R

n) is a holomorphic family if and only if
its left-reduced symbol is of the form

σL(A(z)) = (1 + |x|2 + |z|2)z/2a(z;x, ξ)

where a(z;x, y) is an entire function with values in S0
phg(R

n). For <z < −2n the

trace of A(z) is

f(z) = (2π)−n

∫

R2n

(1 + |x|2 + |ξ|2)z/2a(z;x, ξ) dx dξ .

Consider the part of this integral on the ball

f1(z) = (2π)−n

∫

|x|2+|ξ|2≤1

(1 + |x|2 + |ξ|2)z/2a(z, x, y) dx dξ .

This is clearly an entire function of z, since the integrand is entire and the domain
compact.

To analyze the remaining part f2(z) = f(z) − f1(z) let us introduce polar
coordinates

r = (|x|2 + |ξ|2)1/2, θ =
(x, ξ)

r
∈ S2n−1 .

The integral, convergent in <z < −2n, becomes

f2(z) = (2π)−n

∫ ∞

1

∫

S2n−1

(1 + r2)z/2ã(z; r, θ) dθr2n−1 dr.

Let us now pass to the radical compactification of R2n or more prosaically, introduce
t = 1/r ∈ [0, 1] as variable of integration, so

f2(z) = (2π)−n

∫ 1

0

∫

S2n−1

t−z(1 + t2)z/2ã(z;
1

t
, θ) dθt−2n dt

t
.

Now the definition of S0
phg(R

2n) reduces to the statement that

Feb.17.2000.eq:4 (3.110) b(z; t, θ) = (1 + t2)z/2ã(z;
1

t
, θ) ∈ C∞(C× [0, 1]× S2n−1)

is holomorphic in z.
If we replace b by its Taylor series at t = 0 to high order,

Feb.17.2000.eq:5 (3.111) b(z; t, θ) =

k∑

j=0

tj

j!
bj(z; θ) + tk+1b(k)(z; t, θ) ,

where b(k)(z; t, θ) has the same regularity (
Feb.17.2000.eq:4
3.110), then f2(z) is decomposed as

f2(z) = (2π)−n
k∑

j=0

∫ 1

0

∫

S2n−1

t−z+j

j!
bj(z; θ)t

−2n dt

t
+ f

(k)
2 (z).Feb.17.2000.eq:6 (3.112)

The presence of this factor tk in the remainder in (
Feb.17.2000.eq:5
3.111) shows that f

(k)
2 (z) is

holomorphic in <z < −2n+ k. On the other hand the individual terms in the sum
in (

Feb.17.2000.eq:6
3.112) can be computed (for <z < −2n) as

(2π)−n

[
t−z+j−2n

(−z + j − 2n)

]1

0

∫

S2n−1

bj(z, θ)
dθ

j!

= (2π)−n 1

(z − j + 2n)

∫

S2n−1

bj(z, θ)
dθ

j!
.
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Each of these terms extends to be meromorphic in the entire complex plane, with
a simple pole (at most) at z = −2n+ j. This shows that f(z) has a meromorphic
continuation as claimed. �

By this argument we have actually computed the residues of the analytic con-
tinuation of Tr(A(z)) as

1.2.2000.283 (3.113) lim
z→−2n+j

(z − j + 2n) Tr(A(z)) = (2π)−n

∫

S2n−1

aj(θ) dθ

when aj(θ) ∈ C∞(S2n−1) is the function occurring in the asymptotic expansion of
the left symbol of A(z):

Feb.17.2000.eq:7 (3.114) σL(A(z)) ∼
∞∑

j=0

(|x|2 + |ξ|2)z/2−j ãj(z, θ)

|x|2 + |ξ|2 →∞, θ =
(x, ξ)

(|x|2 + |ξ|2)1/2
, aj(θ) = ãj(−2n+ j, θ).

More generally, if m ∈ Z and A(z) ∈ Ψm+z
iso (Rn) is a holomorphic family then

Tr(A(z)) is meromorphic with at most

simple poles at − 2n−m+ N0 .

Indeed this just follows by considering the family A(z −m).
We are especially interested in the behavior at z = 0. Since the residue there

is an integral of the term of order −2n, we know that

Feb.24.2000.eq:2 (3.115)
A(z) ∈ Ψm+z

iso (Rn) holomorphic with A(0) = 0

=⇒ Tr(A(z)) is regular at z = 0 .

This allows us to make the following definition:

TrRes(A) = lim
z→0

zTr(A(z)) if

A(z) ∈ Ψm+z
iso (Rn) is holomorphic with A(0) = A .

We know that such a holomorphic family exists, since we showed in Section
S.Complex.order
3.13 the

existence of a holomorphic family F (z) ∈ Ψz
iso(R

n) with F (0) = Id; A(z) = AF (z)
is therefore an example. Similarly we know that TrRes(A) is independent of the
choice of holomorphic family A(z) because of (

Feb.24.2000.eq:2
3.115) applied to the difference,

which vanishes at zero.

Lemma 3.14. The residue functional TrRes(A), A ∈ ΨZ
iso(R

n), is a trace:

Feb.24.2000.eq:4 (3.116) TrRes([A,B]) = 0 ∀ A,B ∈ ΨZ

iso(R
n)

which vanishes on Ψ−2n−1
iso (Rn) and is given explicitly by

Feb.24.2000.eq:5 (3.117) TrRes(A) = (2π)−n

∫

S2n−1

a−2n(θ) dθ

where a−2n(θ) is the term of order −2n in the expansion of the left (or right) symbol
of a.
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Proof. We have already shown that TrRes(A) is well-defined and (
Feb.24.2000.eq:5
3.117) fol-

lows from (
1.2.2000.283
3.113) with a−2n(θ) the term of order −2n in the left-reduced symbol

of A = A(0). On the other hand, the same argument applies for the right-reduced
symbol.

To see (
Feb.24.2000.eq:4
3.116) just note that if A(z) and B(z) are holomorphic families with

A(0) = A, and B(0) = B then C(z) = [A(z), B(z)] is a holomorphic family with
C(0) = [A,B]. On the other hand, Tr(C(z)) = 0 when <z � 0, so the analytic
continuation of Tr(C(z)) vanishes identically and (

Feb.24.2000.eq:4
3.116) follows. �

As we shall see below, TrRes is the unique trace (up to a multiple of course) on
ΨZ

iso(R
n).

3.19. Exterior derivation

Let A(z) ∈ Ψz
iso(R

n) be a holomorphic family with A(0) = Id . Then

G(z) = A(z) ·A(−z) ∈ Ψ0
iso(R

n)

is a holomorphic family of fixed order with G(0) = Id . By analytic Fredholm theory

1.2.2000.284 (3.118) G−1(z) ∈ Ψ0
iso(R

n) is a meromorphic family with finite rank poles.

It follows that A−1(z) = A(−z)G−1(z) is a meromorphic family of order −z with
at most finite rank poles and regular near 0. Set

1.2.2000.286 (3.119) Ψm
iso(R

n) 3 B 7→ A(z)BA−1(z) = B(z) .

Thus B(z) is a meromorphic family of order m with B(0) = B. The derivative gives
a linear map.

1.2.2000.285 (3.120) Ψm
iso(R

n) 3 B 7→ DAB =
d

dz
A(z)BA−1(z)|z=0 ∈ Ψm

iso(R
n) .

Proposition 3.18. For any holomorphic family of order z, with A(0) = Id, the
map (

1.2.2000.285
3.120), defined through (

1.2.2000.286
3.119), is a derivation and for two choices of A(z)

the derivations differ by an inner derivation.

Proof. Since

A(z)B1B2A
−1(z) = A(z)B1A

−1(z)A(z)B2A
−1(z)

it follows that

d

dz
A(z)B1B2A

−1(z)|z=0 = (DAB1) ◦B2 +B1 ◦ (DAB2) .

If A1(z) and A2(z) are two holomorphic families of order z with A1(0) = A2(0) = Id
then

A2(z) = A1(z)G(z)

when G(z) ∈ Ψ∞
iso(R

n) is a meromorphic family, with finite rank poles. Thus

A2(z)BA
−1
2 (z) = A1(z)G(z)BG−1(z)A−1

1 (z)

= A1(z)BA
−1(z) + zA1(z)H(z)A−1

1 (z) .

Here H(z) = (G(z)BG−1(z) − B)/z is a holomorphic family of degree m with
H(0) = G′(0)B −BG′(0). Thus

d

dz
A2(z)BA

−1
2 (z)|z=0 =

d

dz
A1(z)BA

−1(z)|z=0 + [G′(0), B]
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which shows that the two derivations differ by an inner derivation, which is to say
commutation with an element of Ψ0

iso(R
n). �

Note that in fact

DA : Ψm
iso(R

n)→ Ψm−1
iso (Rn) ∀ m

since the symbol of A(z)BA−1(z) is equal to the principal symbol of B for all z.
For the specific choice of A(z) = H(z) given by

σL(H(z)) = (1 + |x|2 + |ξ|2)z/2

we shall set

DAB = DHB .

Observe that 1
2 log(1 + |x|2 + |ξ|2) ∈ Sε

∞(R2n) ∀ ε > 0. Thus log(1 + |x|2 + |ξ|2),
defined by Weyl quantization, is an element of Ψ−ε

∞−iso(R
n) for all ε > 0. By differ-

entiation the symbols satisfy

DHB = [
1

2
log(1 + |x|2 + |D|2), B] + [G,B]

where G ∈ Ψ−1
iso (Rn). Thus DH is not itself an interior derivation. It is therefore

an exterior derivation.

3.20. Regularized traceS.Regularized.trace

In Section
S.Residue.trace
3.18 we defined the residue trace of B as the residue at z = 0 of the

analytic continuation of Tr(BA(z)), where A(z) is a holomorphic family of order z
with A(0) = Id . Next we consider the functional

Feb.24.2000.eq:E (3.121) TrA(B) = lim
z=0

(Tr(BA(z))− 1

z
TrRes(B)) .

In contrast to the residue trace, TrA(z) does depend on the choice of analytic
family A(z).

Lemma 3.15. If Ai(z), i = 1, 2, are two holomorphic families of order z with
Ai(0) = Id and G′(0) = d

dzA2(z)A
−2
1 (z)|z=0 then

Feb.24.2000.eq:F (3.122) TrA2(B)− TrA1(B) = TrRes(BG
′(0)) .

Proof. Writing G(z) = A2(z)A
−1
1 (z), which is a meromorphic family of order

0 with G(0) = Id,

Tr(BA2(z)) = Tr(BG(z)A1(z))

= Tr(BA1(z)) + zTr(BG′(0)A1(z)) + z2 Tr(H(z)A1(z))

where H(z) = B
z2 (G(z) − Id−zG′(0)) is then meromorphic with only finite rank

poles and is regular near z = 0. Thus the analytic continuation of z2 Tr(H(z)A(z))
vanishes at zero from which (

Feb.24.2000.eq:F
3.122) follows. �

This regularized trace TrA(B) therefore only depends on the first order, in z,
term in A(z) at z = 0. It is important to note that it is not itself a trace.

Lemma 3.16. If B1, B2 ∈ ΨZ
iso(R

n) then

Feb.24.2000.eq:G (3.123) TrA([B1, B2]) = TrRes(B2DAB1) .
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Proof. Since TrA([B1, B2]) is the regularized value at 0 of the analytic con-
tinuation of the trace of

Feb.24.2000.eq:H (3.124) B1B2A(z)−B2B1A(z) = B2[A(z), B1] + [B1, B2A(z)]

= B2([A(z), B]A−1(z))A1(z) + [B1B2A(z)] .

The second term on the right in (
Feb.24.2000.eq:H
3.124) has zero trace before analytic contin-

uation. Thus TrA([B1, B2]) is the regularized value of the analytic continuation of
the trace of Q(z)A(z) where

Q(z) = B2[A(z), B1]A
−1(z) = zDAB1 + z2L(z)

with L(z) meromorphic of fixed order and regular at z = 0. Thus (
Feb.24.2000.eq:G
3.123) follows.

�

Note that

Feb.24.2000.eq:H1 (3.125) TrRes(DAB) = 0 ∀ B ∈ ΨZ

iso(R
n)

and any family A. Indeed the residue trace is the residue of z = 0 of the analytic
continuation of Tr(H(z)A(z)) when A(z) is any meromorphic family of fixed order
with H(0) = DAB. In particular we can take

H(z) = 1
z (A(z)BA−1(z)−B) .

Then H(z)A(z) = 1
z [A(z), B] so the trace vanishes before analytic continuation.

3.21. Projections

3.22. Complex powers

3.23. Index and invertibilityS.Index.and.invertibility

We have already seen that the elliptic elements

1.2.2000.369 (3.126) E0
iso(R

n;CN ) ⊂ Ψ0
iso(R

n;CN ) ↪→ B(L2(Rn;CN ))

define Fredholm operators. The index of such an operator

1.2.2000.370 (3.127) Ind(A) = dim Nul(A) − dim Nul(A∗)

is a measure of its non-invertibility. Set

1.2.2000.371 (3.128) E0
iso,k(Rn;CN ) =

{
A ∈ E0

iso(R
n;CN ); Ind(A) = k

}
, k ∈ Z.

1.2.2000.372 Proposition 3.19. If A ∈ E0
iso(R

n;CN) and Ind(A) = 0 then there exists
E ∈ Ψ−∞

iso (Rn;CN ) such that A+E is invertible in B(L2(Rn;CN )) and the inverse
then lies in Ψ0

iso(R
n;CN ).

Proof. Let B be the generalized inverse of A, assumed to be elliptic. The
assumption that Ind(A) = 0 means that Nul(A) and Nul(A∗) have the same di-
mension. Let e1, · · · , ep ∈ S(Rn;CN ) and f1, · · · , fp ∈ S(Rn;CN ) be bases of
Nul(A) and Nul(A∗). Then consider

1.2.2000.375 (3.129) E =

p∑

j=1

fj(x)ej(y) ∈ Ψ−∞
iso (Rn;CN ).

By construction E is an isomorphism (in fact an arbitrary one) between Nul(A) and
Nul(A∗). Thus A+E is continuous, injective and surjective, hence has an inverse in
B(L2(Rn;CN )). Indeed this inverse is B +E−1 where E−1 is the inverse of E as a
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map from Nul(A) to Nul(A∗). This shows that A can be perturbed by a smoothing
operator to be invertible. �

Let

1.2.2000.374 (3.130) G0
iso(R

n;CN ) ⊂ E0
iso,0(R

n;CN ) ⊂ E0
iso(R

n;CN ) ⊂ Ψ0iso(R
n;CN )

denote the group of the invertible elements (invertibility being either in B(L2(R;CN )
or in Ψ0

iso(R
n;CN)) in the ring of elliptic elements of index 0.

1.2.2000.373 Corollary 3.7. The first inclusion in (
1.2.2000.374
3.130) is dense in the topology of

Ψ0
iso(R

n;CN ).

Proof. This follows from the proof of Proposition
1.2.2000.372
3.19, since A + sE is in-

vertible for all s 6= 0. �

We next derive some simple formulæ for the index of an element ofE0
iso(R

n;CN ).
First observe that the trace of a finite dimensional projection is its rank, the di-
mension of its range. Thus

1.2.2000.376 (3.131) Ind(A) = Tr(ΠNul(A))− Tr(ΠNul(A∗))

where the trace may be reinterpreted as the trace on smoothing operators. The
identities, (

21.3.1998.170
3.34), satisfied by the generalized inverse of A shows that this can be

rewritten

1.2.2000.377 (3.132) Ind(A) = −Tr(BA− Id) + Tr(AB − Id) = Tr([A,B]).

Here [A,B] = ΠNul(A)−ΠNul(A∗) is a smoothing operator, even though both A and
B are elliptic of order 0.

1.2.2000.378 Lemma 3.17. If A ∈ E0
iso(R

n;CN ) the identity (
1.2.2000.377
3.132), which may be rewritten

1.2.2000.379 (3.133) Ind(A) = Tr([A,B]),

holds for any parametrix B.

Proof. If B′ is a parametrix and B is the generalized inverse then B ′ − B =
E ∈ Ψ−∞

iso (Rn;CN ). Thus

[A,B′] = [A,B] + [A,E].

Since Tr([A,E] = 0, one of the arguments being a smoothing operator, (
1.2.2000.379
3.133)

follows in general from the particular case (
1.2.2000.377
3.132). �

Note that it follows from (
1.2.2000.379
3.133) that Ind(A) = Ind(A+E) if E is smoothing.

In fact the index is even more stable than this as we shall see, since it is locally
constant on E0

iso(R
n;CN ). In any case this shows that

1.2.2000.381 (3.134) Ind : E0
iso(R

n;CN ) −→ Z, Ind(a) = Ind(A) if a = [A],

E0
iso(R

n;CN ) = E0
iso(R

n;CN )/Ψ−∞
iso (Rn;CN)

⊂ A0
iso(R

n;CN ) = Ψ0
iso(R

n;CN )/Ψ−∞
iso (Rn;CN )

is well-defined.
The argument of the trace functional in (

1.2.2000.379
3.133) is a smoothing operator, but

we may still rewrite the formula in terms of the regularized trace, with respect to
the standard regularizer H(z) with left symbol (1 + |x|2 + |ξ|2) z

2 . The advantage
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of doing so is that we can then use the trace defect formula (
Feb.24.2000.eq:G
3.123). Thus for any

elliptic isotropic operator of order 0

1.2.2000.380 (3.135) Ind(A) = TrRes(BDHA).

Here B is a parametrix for A. The residue trace is actually a functional

TrRes : AZ

iso(R
n;CN ) −→ C,

so if we write a−1 for the inverse of a in the ring E0
iso(R

n;CN) then

1.2.2000.382 (3.136) Ind(a) = TrRes(a
−1DHa), DH : A0

iso(R
n;CN) −→ A0

iso(R
n;CN )

being the induced derivation (since DH clearly preserves the ideal Ψ−∞
iso (Rn;CN ).

From this simple formula we can easily deduce two elementary properties of
elliptic operators. These actually hold in general for Fredholm operators, although
the proofs here are not valid in that generality. Namely

Ind : E0
iso(R

n;CN ) −→ Z is locally constant and1.2.2000.383 (3.137)

Ind(a1a2) = Ind(a1) + Ind(a2) ∀ a1, a2 ∈ E0
iso(R

n;CN ).1.2.2000.384 (3.138)

The first of these follows the continuity of the formula (
1.2.2000.382
3.136) since under deforma-

tion of a in E0
iso(R

n;CN ) the inverse a−1 varies continuously, so Ind is continuous
and integer-valued, hence locally constant. Similarly the second, logarithmic addi-
tivity, property follows from the fact that DH is a derivation, so

DH(a1a2) = (DHa1)a2 + a1DHa2

and the the trace property of TrRes which shows that

1.2.2000.385 (3.139)

Ind(a1a2) = TrRes((a1a2)
−1DH(a1a2) = Tr(a−1

2 a−1
1 ((DHa1)a2 + a1DHa2)

= Tr(a−1
2 a−1

1 (DHa1)a2) + Tr(a−1
2 DHa2) = Ind(a1) + Ind(a2).

3.24. Variation 1-form

In the previous section we have seen that the index

1.2.2000.386 (3.140) Ind : E0
iso(R

n;CN) −→ Z

is a multiplicative map which is the obstruction to perturbative invertibility. In the
next two sections we will derive a closely related obstruction to the perturbative
invertibility of a family of elliptic operators. Thus, suppose

1.2.2000.387 (3.141) Y 3 y 7−→ Ay ∈ E0
iso,0(R

n;CN)

is a family of elliptic operators depending smoothly on a parameter in the compact
manifold Y. We are interested in the families perturbative invertibility question.
That is, does there exist a smooth family

1.2.2000.388 (3.142) Y 3 y 7−→ Ey ∈ Ψ−∞
iso (Rn;CN) such that (Ay +Ey) ∈ G0

iso(R
n;CN ) ∀ y.

We have assumed that the operators have index zero since this is necessary (and
sufficient) for Ey to exist for any one y ∈ Y. Thus the issue is the smoothness (really
just the continuity) of the perturbation Ey.

We shall start by essentially writing down such a putative obstruction directly
and then subsequently we shall investigate its topological origins.
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1.2.2000.389 Proposition 3.20. If a smooth family (
1.2.2000.387
3.141), parameterized by a compact

manifold Y, is perturbatively invariant in the sense that there is a smooth family as
in (

1.2.2000.388
3.142), then the closed 2-form on Y

1.2.2000.390 (3.143) β =
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay · a−1
y DHay) ∈ C∞(Y ; Λ2),

ay = [Ay] ∈ E0
iso,0(R

n;CN ),

is exact.

Proof. Note first that β is indeed a smooth form, since the full symbolic
inverse depends smoothly on parameters. Next we show that β is always closed.
The 1-forms a−1

y dyaya
−1
y and day are exact so differentiating directly gives

1.2.2000.391 (3.144)

dβ =
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧ d(a−1
y DHay))

= −1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧ a−1
y dya

−1
y DHay))

+
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧ a−1
y DH(day))

=
1

2
TrRes(a

−1
y dyay ∧ a−1

y dyay ∧DH(a−1
y day)).

Using the trace property and the commutativity of a 2-form with other forms the
last expression can be written

1.2.2000.392 (3.145)
1

6
TrRes(DH(a−1

y dyay ∧ a−1
y dyay ∧ a−1

y day)) = 0

by property (
Feb.24.2000.eq:H1
3.125) of the residue trace.

Now, suppose that a smooth perturbation as in (
1.2.2000.388
3.142) does exist. We can

replace Ay by Ay +Ey without affecting β, since the residue trace vanishes on the
ideal of smoothing operators. Thus we can assume that Ay itself is invertible. Then
consider the 1-form defined using the regularized trace

1.2.2000.393 (3.146) α = TrH(A−1
y dyAy).

This is an extension of the 1-form d log detF on G−∞
iso (Rn;CN ). The extension is not

in general closed, because the regularized trace does not satisfy the trace condition.
Using the stanadard formula for the variation of the inverse, dA−1

y = −A−1
y dAyA

−1
y ,

the exterior derivative is the 2-form

1.2.2000.394 (3.147) dα = −TrH(A−1
y (dyA)A−1

y dyAy).

The 2-form argument is a commutator. Indeed, in terms of local coordinates we
can write

A−1
y (dyA)A−1

y dyAy =

p∑

j,k=1

A−1
y (

∂A

∂yj
)A−1

y (
∂A

∂yk
)dyj ∧ dyk

=
1

2

p∑

j,k=1

(
A−1

y (
∂A

∂yj
)A−1

y (
∂A

∂yk
)−A−1

y (
∂A

∂yk
)A−1

y (
∂A

∂yj
)

)
dyj ∧ dyk

=
1

2

p∑

j,k=1

[A−1
y (

∂A

∂yj
), A−1

y (
∂A

∂yk
)]dyj ∧ dyk
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Applying the trace defect formula (
Feb.24.2000.eq:G
3.123) shows that

1.2.2000.395 (3.148) dα = −1

2
TrRes

(
A−1

y dyAy ∧DH(A−1
y dyAy)

)
,

locally and hence globally.
Expanding the action of the derivation DH gives

1.2.2000.396 (3.149) dα = β − 1

2
TrRes

(
A−1

y dyAy ∧ A−1
y dy(DHAy)

)
= β − dγ, where

γ =
1

2
TrRes

(
A−1

y dyAy ∧ .A−1
y DHAy

)
.

We conclude that if Ay has an invertible lift then β is exact. �

Note that the form γ in (
1.2.2000.396
3.149) is well-defined as a form on E0

iso,0(R
n;CN ),

and is independent of the perturbation. Thus the cohomology class which we have
constructed as the obstruction to perturbative invertibility can be written

1.2.2000.397 (3.150) [β] = [β − dγ] ∈ H2(E0
iso,0(R

n;CN )).

3.25. Determinant bundle

To better explain the topological origin of the cohomology class (
1.2.2000.397
3.150) we con-

struct the determinant bundle. This was originally introduced for families of Dirac
operators by Quillen

Quillen1
[10]. Recall that the Fredholm determinant is a character

1.2.2000.398 (3.151) detFr : Id +Ψ−2n−1
iso (Rn;CN ) −→ C,

detFr(AB) = detFr(A) detFr(B)∀ A, B ∈ Id+Ψ−2n−1
iso (Rn;CN ).

As we shall see, it is not possible to extend the Fredholm determinant as a mul-
tiplicative function to G0

iso(R
n;CN ), essentially because of the non-extendibility of

the trace.
However in trying to extend the determinant we can consider the possible values

it would take on a point A ∈ G0
iso(R

n;CN ) as the set of pairs (A, z), z ∈ C. Thus
we simple consider the product

1.2.2000.399 (3.152) D0 = G0 × C,
where from now on we simplify the notation and write G0 = Giso(Rn;CN ) etc.
Although it is not reasonable to expect full multiplicative of the determinant, it is
more reasonable to expect the determinant of A(Id +B), B ∈ Ψ−2n−1 to be related
to the product of determinants. Thus it is natural to identify pairs in D0,

1.2.2000.400 (3.153)
(A, z) ∼p (A′, z′) if

A,A′ ∈ G0, A′ = A(Id +B), z′ = detFr(Id +B)z, B ∈ Ψp, p < −2n.

The equivalence relations here are slightly different, depending on p. In all cases
the action of the determinant is linear, so the quotient is a line bundle.

1.2.2000.401 Lemma 3.18. For any integer p < −2n, and also p = −∞, the quotient

1.2.2000.402 (3.154) D0
p = D0/ ∼p

is a smooth line bundle over G0
p = G0/Gp.



3.31. PROBLEMS 95

Proof. The projection is just the quotient in the first factor and this clearly
defines a commutative square

1.2.2000.403 (3.155) D0
[∼p]

//

π

��

D0
p

π

��

G0
/Gp

// G0
p .

�

3.26. Index bundle

3.27. Index formulæ

susceptible

3.28. Isotropic essential support

3.29. Isotropic wavefront set

3.30. Isotropic FBI transform

3.31. ProblemsS.Problems.3

21.2.1998.121 Problem 3.1. Define the isotropic Sobolev spaces of integral order by
21.2.1998.122 (3.156)

Hk
iso(R

n) =





{
u ∈ L2(Rn);xαDβ

xu ∈ L2(Rn) ∀ |α|+ |β| ≤ k
}

k ∈ N{
u ∈ S ′(Rn);u =

∑
|α|+|β|≤−k

xαDβ
xuα,β, uα,β ∈ L2(Rn)

}
k ∈ −N.

Show that if A ∈ Ψp
iso(R

n) with p an integer, then A : Hk
iso(R

n) −→ Hk−p
iso (Rn) for

any integral k. Deduce (using the properties of elliptic isotropic operators) that the
general definition

21.2.1998.123 (3.157) Hm
iso(R

n) =
{
u ∈ S ′(Rn);Au ∈ L2(Rn), ∀ A ∈ Ψ−m

iso (Rn)
}
, m ∈ R

is consistent with (
21.2.1998.122
3.156) and has the properties

A ∈ ΨM
iso(R

n) =⇒ A : Hm
iso(R

n) −→ Hm−M
iso (Rn),21.2.1998.124 (3.158)

⋂

m

Hm
iso(R

n) = S(Rn),
⋃

m

Hm
iso(R

n) = S ′(Rn)21.2.1998.126 (3.159)

A ∈ Ψm
iso(R

n), u ∈ S ′(Rn), Au ∈ Hm′

(Rn) =⇒ u ∈ Hm′−m(Rn),21.2.1998.125 (3.160)

21.2.1998.127 Problem 3.2. Show that if ε > 0 then

Hε
iso(R

n) ( (1 + |x|)−εL2(Rn) ∩Hε(Rn)

Deduce thatHε
iso(R

n) ↪→ L2(Rn) is a compact inclusion (i.e. the image of a bounded
set is precompact).

21.2.1998.128 Problem 3.3. Using Problem
21.2.1998.127
3.2, or otherwise, show that each element of

Ψ−ε
iso(R

n), ε > 0, defines a compact operator on L2(Rn).
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21.2.1998.129 Problem 3.4. Show that if E ∈ Ψ−∞
iso (Rn) then there exists F ∈ Ψ−∞

iso (Rn)
such that

(Id +E)(Id +F ) = IdG with G ∈ Ψ−∞
iso (Rn) of finite rank,

that is, G · S(Rn) is finite dimensional.

21.2.1998.130 Problem 3.5. Using Problem
21.2.1998.129
3.4 show that an elliptic element A ∈ Ψm

iso(R
n)

has a parametrix B ∈ Ψ−m
iso (Rn) up to finite rank error ; that is, such that A◦B− Id

and B ◦A− Id are finite rank elements of Ψ−∞
iso (Rn). Deduce that such an elliptic

A defines a Fredholm operator

A : HM
iso(R

n) −→ HM−m
iso (Rn)

for any M. [The requirements for an operator A between Hilbert spaces to be
Fredholm are that it be bounded, have finite-dimensional null space and closed
range with a finite-dimensional complement.]

21.2.1998.111 Problem 3.6. [The harmonic oscillator] Show that the ‘harmonic oscillator’

H = |D|2 + |x|2, Hu =

n∑

j=1

D2
ju+ |x|2u,

is an elliptic element of Ψ2
iso(R

n). Consider the ‘creation’ and ‘annihilation’ opera-
tors

21.2.1998.131 (3.161) Cj = Dj + ixj , Aj = Dj − ixj = C∗
j ,

and show that

21.2.1998.132 (3.162) H =

n∑

j=1

CjAj + n =

n∑

j=1

AjCj − n,

[Aj , H ] = 2Aj , [Cj , H ] = −2Cj , [Cl, Cj ] = 0, [Al, Aj ] = 0, [Al, Cj ] = 2δlk Id,

where [A,B] = A ◦B − B ◦A is the commutator bracket and δlk is the Kronecker
symbol. Knowing that (H − λ)u = 0, for λ ∈ C and u ∈ S ′(Rn) implies u ∈ S(Rn)
(why?) show that

Eλ = {u ∈ S ′(Rn); (H − λ)u = 0} 6= {0} ⇐⇒ λ ∈ n+ 2N021.2.1998.133 (3.163)

and E−n+2k =




∑

|α|=k

cαC
α exp(−|x|2/2), cα ∈ C



 , k ∈ N0.21.2.1998.134 (3.164)

1.2.2000.406 Problem 3.7. [Definition of determinant of matrices.]

iml.6 Problem 3.8. [Proof that dα = 0 in (
iml.5
3.93).] To prove that the 1-form is

closed it suffices to show that it is closed when restricted to any 2-dimensional
submanifold. Thus we may suppose that A = A(s, t) depends on 2 parameters. In
terms of these parameters

iml.7 (3.165) α = Tr(A(s, t)−1 dA(s, t)

ds
)ds+ Tr(A(s, t)−1 dA(s, t)

dt
)dt.

Show that the exterior derivative can be written

iml.8 (3.166) dα = Tr([A(s, t)−1 dA(s, t)

dt
, A(s, t)−1 dA(s, t)

ds
])ds ∧ dt

and hence that it vanishes.
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21.2.1998.137 Problem 3.9. If E and F are vector spaces, show that the space of operators
Ψm

iso(R
n;E,F ) from S ′(Rn;E) to S ′(Rn;F ) is well-defined as the matrices with

entries in Ψm
iso(R

n) for any choice of bases of E and F.

1.2.2000.349 Problem 3.10. Necessity of ellipticity for a psuedodifferential operator to be
Fredholm on the isotropic Sobolev spaces.

(1) Reduce to the case of operators of order 0.
(2) Construct a sequence in L2 such that ‖un‖ = 1, un → 0 weakly and

Aun → 0 strongly in L2.

21.2.1998.135 Problem 3.11. [Koszul complex] Consider the form bundles over Rn. That is
ΛkRn is the vector space of dimension

(
n
k

)
consisting of the totally antisymmetric

k-linear forms on Rn. If e1, e2, . . . , en is the standard basis for Rn then for a k-tuple
α eα defined on basis elements by

eα(ei1 , . . . , eik
) =

k∏

j=1

δ1jαj

extends uniquely to a k-linear map. Elements dxα ∈ ΛkRn are defined by the total
antisymmetrization of the eα. Explicitly,

dxα(v1, . . . , vk) =
∑

π

sgnπeα(vπ1 , . . . , vπn
)

where the sum is over permutations π of {1, . . . , n} and sgnπ is the parity of π.
The dxα for strictly increasing k-tuples α of elements of {1, . . . , n} give a basis for
ΛkRn. The wedge product is defined by dxα ∧ dxβ = dxα,β .

Now let S ′(Rn; Λk) be the tensor product, that is u ∈ S ′(Rn; Λk) is a finite sum

21.2.1998.136 (3.167) u =
∑

α

uαdx
α.

The annihilation operators in (
21.2.1998.131
3.161) define an operator, for each k,

D : S ′(Rn; Λk) −→ S ′(Rn; Λk+1), Du =

n∑

j=1

Ajuαdx
j ∧ dxα.

Show that D2 = 0. Define inner products on the ΛkRn by declaring the basis
introduced above to be orthonormal. Show that the adjoint of D, defined with
respect to these inner products and the L2 pairing is

D∗ : S ′(Rn; Λk) −→ S ′(Rn; Λk−1), D∗u =
n∑

j=1

Cjuαιjdx
α.

Here, ιj is ‘contraction with ej ;’ it is the adjoint of dxj ∧ . Show that D+D∗ is an
elliptic element of Ψ1

iso(R
n; Λ∗). Maybe using Problem

21.2.1998.111
3.6 show that the null space

of D +D∗ on S ′(Rn; Λ∗Rn) is 1-dimensional. Deduce that

21.2.1998.138 (3.168) {u ∈ S ′(Rn);Du = 0} = C exp(−|x|2/2),

{u ∈ S ′(Rn; Λk);Du = 0} = (S ′(Rn; Λk−1), k ≥ 1.

Observe that, as an operator from S ′(Rn; Λodd) to S ′(Rn; Λeven), D + D∗ is an
elliptic element of Ψ1

iso(R
n; Λodd,Λeven) and has index 1.
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22.2.1998.141 Problem 3.12. [Isotropic essential support] For an element of Sm(Rn) define
(isotropic) essential support, or operator wavefront set, of A ∈ Ψm

iso(R
n) by

22.2.1998.145 (3.169) WFiso(A) = cone supp(σL(A)) ⊂ R2n \ {0}.
Show that WFiso(A) = cone supp(σL(A)) and check the following

WF′
iso(A+B) ∪WF′

iso(A ◦B) ⊂WF′
iso(A) ∩WF′

iso(B),22.2.1998.149 (3.170)

WF′
iso(A) = ∅ ⇐⇒ A ∈ Ψ−∞

iso (Rn).22.2.1998.146 (3.171)

22.2.1998.150 Problem 3.13. [Isotropic partition of unity] Show that if Ui ⊂ Sn−1 is an open

cover of the unit sphere and Ũi = {Z ∈ R2n \ {0}; Z
|Z| ∈ Ui} is the corresponding

conic open cover of R2n \ {0} then there exist (finitely many) operators Ai ∈
Ψ0

iso(R
n) with WF′

iso(Ai) ⊂ Ũi, such that

22.2.1998.151 (3.172) Id−
∑

i

Ai ∈ Ψ−∞
iso (Rn).

22.2.1998.152 Problem 3.14. Suppose A ∈ Ψm
iso(R

n), is elliptic and has index zero as an
operator on S ′(Rn). Show that there exists E ∈ Ψ−∞

iso (Rn) such that A + E is an
isomorphism of S ′(Rn).

22.2.1998.147 Problem 3.15. [Isotropic wave front set] For u ∈ S ′(Rn) define

22.2.1998.148 (3.173) WFiso(u) =
⋂{

WF′
iso(A);A ∈ Ψ0

iso(R
n), Au ∈ S(Rn)

}
.



CHAPTER 4

MicrolocalizationC.Microlocalization

4.1. Calculus of supports

Recall that we have already defined the support of a tempered distribution in
the slightly round-about way:

7.1 (4.1) if u ∈ S ′(Rn), supp(u) = {x ∈ Rn; ∃ φ ∈ S(Rn), φ(x) 6= 0, φu = 0}{.
Now if A : S(Rn) −→ S ′(Rn) is any continuous linear operator we can consider the
support of the kernel:

7.2 (4.2) supp(A) = supp(KA) ⊂ Rn × Rn = R2n.

We write out the space as a product here to point to the fact that any subset of
the product defines (is) a relation i.e. a map on subsets:

7.3 (4.3)
G ⊂ Rn × Rn, S ⊂ Rn =⇒

G ◦ S =
{
x ∈ Rn; ∃ y ∈ S s.t. (x, y) ∈ G

}
.

One can write this much more geometrically in terms of the two projection maps

7.4 (4.4) R2n

πL

||zz
zz

zz
zz πR

""EE
EE

EE
EE

Rn Rn.

Thus πR(x, y) = y, πL(x, y) = x. Then (
7.3
4.3) can be written in terms of the action

of maps on sets as

7.5 (4.5) G ◦ S = πL

(
π−1

R (S) ∩G
)
.

From this it follows that if S is compact and G is closed, then G ◦ S is closed,
since its intersection with any compact set is the image of a compact set under a
continuous map, hence compact. Now, by the calculus of supports we mean the
‘trivial’ result.

7.6 Proposition 4.1. If A : S(Rn) −→ S ′(Rn) is a continuous linear map then

7.7 (4.6) supp(Aφ) ⊂ supp(A) ◦ supp(φ) ∀ φ ∈ C∞c (Rn).

Proof. Since we want to bound supp(Aφ) we can use (
7.1
4.1) directly, i.e. show

that

7.8 (4.7) x /∈ supp(A) ◦ supp(φ) =⇒ x /∈ supp(Aφ).

Since we know supp(A) ◦ supp(φ) to be closed, the assumption that x is outside
this set means that there exists ψ ∈ C∞c (Rn) with

ψ(x) 6= 0 and supp(ψ) ∩ supp(A) ◦ supp(φ) = ∅.
99
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From (
7.3
4.3) or (

7.5
4.5) this means

7.9 (4.8) supp(A) ∩ (supp(ψ)× supp(φ)) = ∅ in R2n.

But this certainly implies that

7.10 (4.9)

KA(x, y)ψ(x)φ(y) = 0

=⇒ ψA(φ) =

∫
KA(x, y)ψ(x)φ(y)dy = 0.

Thus we have proved (
7.7
4.6) and the lemma. �

Diff ops.

4.2. Singular supports

As well as the support of a tempered distribution we can consider the singular
support:

7.11 (4.10) sing supp(u) =
{
x ∈ Rn; ∃ φ ∈ S(Rn), φ(x) 6= 0, φu ∈ S(Rn)

}{
.

Again this is a closed set since x /∈ sing supp(u) =⇒ ∃ φ ∈ S(Rn) with φu ∈ S(Rn)
and φ(x) 6= 0 so φ(x′) 6= 0 for |x− x′| < ε, some ε > 0 and hence x′ /∈ sing supp(u)
i.e. the complement of sing supp(u) is open.

Directly from the definition we have

sing supp(u) ⊂ supp(u) ∀ u ∈ S ′(Rn) and7.12 (4.11)

sing supp(u) = ∅ ⇐⇒ u ∈ C∞(Rn).7.13 (4.12)

Examples

4.3. Pseudolocality

We would like to have a result like (
7.7
4.6) for singular support, and indeed we can

get one for pseudodifferential operators. First let us work out the singular support
of the kernels of pseudodifferential operators.

7.14 Proposition 4.2. If A ∈ Ψm
∞(Rn) then

7.15 (4.13) sing supp(A) = sing supp(KA) ⊂
{
(x, y) ∈ R2n;x = y

}
.

Proof. The kernel is defined by an oscillatory integral

(4.14) I(a) = (2π)−n

∫
ei(x−y)·ξa(x, y, ξ)dξ.

If the order m is < −n we can show by integration by parts that

7.16 (4.15) (x− y)αI(a) = I ((−Dξ)
αa) ,

and then this must hold by continuity for all orders. If a is of order m and |α| >
m+ n then (−Dξ)

αa is of order less than −n, so

7.17 (4.16) (x− y)αI(a) ∈ C0
∞(Rn), |α| > m+ n.

In fact we can also differentiate under the integral sign:

7.18 (4.17) Dβ
xD

γ
y (x − y)αI(a) = I

(
Dβ

xD
γ
y (−Dξ)

αa
)

so generalizing (
7.17
4.16) to

7.19 (4.18) (x− y)αI(a) ∈ Ck
∞(Rn) if |α| > m+ n+ k.

This implies that I(A) is C∞ on the complement of the diagonal, {x = y}. This
proves (

7.15
4.13). �
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An operator is said to be pseudolocal if it satisfies the condition

7.20 (4.19) sing supp(Au) ⊂ sing supp(u) ∀ u ∈ C−∞(Rn).

7.21 Proposition 4.3. Pseudodifferential operators are pseudolocal.

Proof. Suppose u ∈ S ′(Rn) has compact support and x /∈ sing supp(u). Then
we can choose φ ∈ S(Rn) with φ ≡ 1 near x and φu ∈ S(Rn) (by definition). Thus

7.22 (4.20) u = u1 + u2, u1 = (1− φ)u, u2 ∈ S(Rn).

Since A : S(Rn) −→ S(Rn), Au2 ∈ S(Rn) so

7.23 (4.21) sing supp(Au) = sing supp(Au1) and x /∈ supp(u1).

Choose ψ ∈ S(Rn) with compact support, ψ(x) = 1 and

7.24 (4.22) supp(ψ) ∩ supp(1− φ) = ∅.
Thus

7.25 (4.23) ψAu1 = ψA(1− φ)u = Ãu

where

(4.24) KÃ(x, y) = ψ(x)KA(x, y)(1− φ(y)).

Combining (
7.24
4.22) and (

7.15
4.13) shows that KÃ ∈ Ψ−∞

∞ (Rn) so, by Lemma
5.42
2.8, Ãu ∈

C∞(Rn) and x /∈ sing supp(Au) by (
7.15
4.13)(?). This proves the proposition. �

4.4. Coordinate invarianceSect.CooInv

If Ω ⊂ Rn is an open set, put

7.26 (4.25)
C∞c (Ω) =

{
u ∈ S(Rn); supp(u) b Ω

}

C−∞
c (Ω) =

{
u ∈ S ′(Rn); supp(u) b Ω

}

respectively the space of C∞ functions of compact support in Ω and of distributions
of compact support in Ω. Here K b Ω indicates that K is a compact subset of Ω.
Notice that if u ∈ C−∞

c (Ω) then u defines a continuous linear functional

7.27 (4.26) C∞(Ω) 3 φ 7−→ u(φ) = u(ψφ) ∈ C
where if ψ ∈ C∞c (Ω) is chosen to be identically one near supp(u) then (

7.27
4.26) is

independent of ψ. [Think about what continuity means here!]
Now suppose

7.28 (4.27) F : Ω −→ Ω′

is a diffeomorphism between open sets of Rn. The pull-back operation is

7.29 (4.28) F ∗ : C∞c (Ω′)←→ C∞c (Ω), F ∗φ = φ ◦ F.

7.30 Lemma 4.1. If F is a diffeomorphism, (
7.28
4.27), between open sets of Rn then

there is an extension by continuity of (
7.29
4.28) to

7.31 (4.29) F ∗ : C−∞
c (Ω′)←→ C−∞

c (Ω).
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Proof. The density of C∞c (Ω) in C−∞
c (Ω), in the weak topology given by the

seminorms from (
7.27
4.26), can be proved in the same way as the density of S(Rn) in

S ′(Rn) (see Problem
P.7.1
4.5). Thus, we only need to show continuity of (

7.31
4.29) in this

sense. Suppose u ∈ C∞c (Ω) and φ ∈ C∞c (Ω′) then

7.32 (4.30)

(F ∗u)(φ) =

∫
u(F (x))φ(x)dx

=

∫
u(y)φ(G(y))|JG(y)|dy

where JG(y) =
(

∂G(y)
∂y

)
is the Jacobian of G, the inverse of F. Thus (

7.29
4.28) can be

written

7.33 (4.31) F ∗u(φ) = (|JG|u) (G∗φ)

and since G∗ : C∞(Ω) −→ C∞(Ω′) is continuous (!) we conclude that F ∗ is contin-
uous as desired. �

Now suppose that

A : S(Rn) −→ S ′(Rn)

has

7.34 (4.32) supp(A) b Ω× Ω ⊂ R2n.

Then

7.35 (4.33) A : C∞c (Ω) −→ C−∞
c (Ω)

by Proposition
7.6
4.1. Applying a diffeomorphism, F, as in (

7.28
4.27) set

7.36 (4.34) AF : C∞c (Ω′) −→ C−∞
c (Ω′), AF = G∗ ◦A ◦ F ∗.

7.37 Lemma 4.2. If A satisfies (
7.34
4.32) and F is a diffeomorphism (

7.28
4.27) then

7.38 (4.35) KAF
(x, y) = (G×G)∗K · |JG(y)| on Ω′ × Ω′

has compact support in Ω′ × Ω′.

Proof. Essentially the same as that of (
7.32
4.30). �

7.39 Proposition 4.4. Suppose A ∈ Ψm
∞(Rn) has kernel satisfying (

7.34
4.32) and F is

a diffeomorphism as in (
7.28
4.27) then AF , defined by (

7.36
4.34), is an element of Ψm

∞(Rn).

Proof. Since A ∈ Ψm
∞(Rn),

7.40 (4.36) KA(x, y) = (2π)−n

∫
ei(x−y)·ξa(x, ξ)dξ

for some a ∈ Sm
∞(Rn;Rn). Now choose ψ ∈ C∞c (Ω) such that ψ(x)ψ(y) = 1 on

supp(KA), possible by (
7.34
4.32). Then

7.41 (4.37) KA = I (ψ(x)ψ(y)a(x, ξ)) .

In fact suppose µε(x, y) ∈ C∞(R2n) and µ ≡ 1 in |x− y| < ε for ε > 0, µ(x, y) = 0
in |x− y| > 2ε. Then if

7.42 (4.38) KAε
= I (µε(x, y)ψ(x)ψ(y)a(x, ξ))

we know that if

7.43 (4.39) A′
ε = A−Aε then KA′

ε
= (1− µε(x, y))KA ∈ Ψ−∞

∞ (Rn),
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by (
7.15
4.13). Certainly A′

ε also satisfies (
7.34
4.32) and from (

7.38
4.35)

7.44 (4.40) (A′
ε)F ∈ Ψ−∞

∞ (Rn).

So we only need to consider Aε defined by (
7.42
4.38). Again using (

7.38
4.35) (assuming

m < −n)

7.45 (4.41) K(Aε)F
(x, y) = (2π)−n

∫
ei(G(x)−G(y))·ξb(G(x), G(y), ξ)

∣∣∂G
∂y

∣∣dξ

where b(x, y, ξ) = µε(x − y)ψ(x)ψ(y)a(x, ξ). Applying Taylor’s formula,

7.46 (4.42) G(x)−G(y) = (x− y) · T (x, y)

where T (x, y) is an invertible C∞ matrix on K ×K ∩ {|x − y| < ε} for ε < ε(K),
where ε(K) > 0 depends on the compact set K b Ω′. Thus we can set(??)

(4.43) η = T t(x, y) · ξ
and rewrite (

7.45
4.41) as

7.47 (4.44)

K(Aε)F
(x, y) = (2π)−n

∫
ei(x−y)·ηc(x, y, η)dη

c(x, y, η) = b
(
G(x), G(y), (T t)−1(x, y)η

) ∣∣∂G
∂y

∣∣ ·
∣∣ detT (x, y)

∣∣−1
.

So it only remains to show that c ∈ Sm
∞(R2n;Rn) and the proof is complete. We

can drop all the C∞ factors, given by
∣∣∂G/∂y

∣∣ etc. and proceed to show that

(4.45)
∣∣Dα

xD
β
yD

γ
ξ a (G(x), G(y), S(x, y)ξ)

∣∣ ≤ C(1 + |ξ|)m−|γ| on K ×K × Rn

where K ⊂⊂ Ω′ and S is C∞ with | detS| ≥ ε. The estimates with α = β = 0 follow
easily and the general case by induction:

Dα
xD

β
yD

γ
ξ a (G(x), G(y), S(x, y)ξ)

=
∑

|µ|≤|α|+|β|+|γ|
|α′|≤|α|,|β|≤|β|

|ν|+|γ|≤|µ|

Mα′,ρ′,µ′

α,β,γ,ν (x, y)ξν
(
Dα′

Dβ′

Dµa
)

(G(x), G(y), Sξ)

where the coefficients are C∞ and the main point is that |ν| ≤ |µ|. �

4.5. ProblemsP.7.1

P5.1 Problem 4.1. Show that Weyl quantization

(4.46) S∞
∞(Rn;Rn) 3 a 7−→ qW (a) = (2π)−n

∫
ei(x−y)·ξa(

x+ y

2
, ξ)dξ

is well-defined by continuity from S−∞
∞ (Rn;Rn) and induces an isomorphism

(4.47) Sm
∞(Rn;Rn)

σW−→←−
qW

Ψm
∞(Rn) ∀ m ∈ R.

Find an asymptotic formula relating qW (A) to qL(A) for any A ∈ Ψm
∞(Rn).

P5.2 Problem 4.2. Show that if A ∈ Ψm
∞(Rn) then A∗ = A if and only if σW (A) is

real-valued.

P5.3 Problem 4.3. Is it true that every E ∈ Ψ−∞
∞ (Rn) defines a map from S ′(Rn)

to S(Rn)?
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5.46 Problem 4.4. Show that S(Rn) is dense in L2(Rn) by proving that if φ ∈
C∞(Rn) has compact support and is identically equal to 1 near the origin then

(4.48) un(x) = (2π)−nφ(
x

n
)

∫
eix·ξφ(ξ/n)û(ξ)dξ ∈ S(Rn) if u ∈ L2(Rn)

and un → u in L2(Rn). Can you see any relation to pseudodifferential operators
here?

5.47 Problem 4.5. Check carefully that with the definition

(4.49) Hk(Rn) =



u ∈ S

′(Rn);u =
∑

|α|≤−k

Dαuα, uα ∈ L2(Rn)





for −k ∈ N one does have

(4.50) u ∈ Hk(Rn)⇐⇒ 〈D〉ku ∈ L2(Rn)

as claimed in the text.

5.48 Problem 4.6. Suppose that a(x) ∈ C∞∞(Rn) and that a(x) ≥ 0. Show that the
operator

(4.51) A =

n∑

j=1

D2
xj

+ a(x)

can have no solution which is in L2(Rn).

5.49 Problem 4.7. Show that for any open set Ω ⊂ Rn, C∞c (Ω) is dense in C−∞
c (Ω)

in the weak topology.

5.53 Problem 4.8. Use formula (
7.47
4.44) to find the principal symbol of AF ; more

precisely show that if F ∗ : T ∗Ω′ −→ T ∗ω is the (co)-differential of F then

σm(AF ) = σm(A) ◦ F ∗.

We have now studied special distributions, the Schwartz kernels of pseudodif-
ferential operators. We shall now apply this knowledge to the study of general
distributions. In particular we shall examine the wavefront set, a refinement of sin-
gular support, of general distributions. This notion is fundamental to the general
idea of ‘microlocalization.’

4.6. Characteristic variety

If A ∈ Ψm
∞(Rn), the left-reduced symbol is elliptic at (x, ξ) ∈ Rn × (Rn\{0}) if

there exists ε > 0 such that

8.1 (4.52)

∣∣σL(A)(x, ξ)
∣∣ ≥ ε|ξ|m in

{
(x, ξ) ∈ Rn × (Rn\{0}) ; |x− x| ≤ ε,

∣∣ ξ
|ξ| −

ξ

|ξ|
∣∣ ≤ ε, |ξ| ≥ 1

ε

}
.

Directly from the definition, ellipticity at (x, ξ) is actually a property of the

principal symbol, σm(A) and if A is elliptic at (x, ξ) then it is elliptic at (x, tξ) for
any t > 0. Clearly

{
(x, ξ) ∈ Rn × (Rn\{0}); A is elliptic (of order m) at (x, ξ)

}
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is an open cone in Rn × (Rn\{0}). The complement

8.2 (4.53) Σm(A) =
{
(x, ξ) ∈ Rn × (Rn\{0}) ; A is not elliptic of order m at (x, ξ)

}

is therefore a closed conic subset of Rn × (Rn\{0}) ; it is the characteristic set (or
variety) of A. Since the product of two symbols is only elliptic at (x, ξ) if they are
both elliptic there, if follows from the composition properties of pseudodifferential
operators that

8.3 (4.54) Σm+m′(A ◦B) = Σm(A) ∪ Σm′(B).

4.7. Wavefront set

We adopt the following bald definition:

8.4 (4.55)
If u ∈ C−∞

c (Rn) =
{
u ∈ S ′(Rn); supp(u) b Rn

}
then

WF(u) =
⋂{

Σ0(A); A ∈ Ψ0
∞(Rn) and Au ∈ C∞(Rn)

}
.

Thus WF(u) ⊂ Rn × (Rn\{0}) is always a closed conic set, being the intersection
of such sets. The first thing we wish to show is that WF(u) is a refinement of
sing supp(u). Let

8.5 (4.56) π : Rn × (Rn\{0}) 3 (x, ξ) 7−→ x ∈ Rn

be projection onto the first factor.

8.6 Proposition 4.5. If u ∈ C−∞
c (Rn) then

8.7 (4.57) π(WF(u)) = sing supp(u).

Proof. The inclusion π(WF(u)) ⊂ sing supp(w) is straightforward. Indeed,
if x /∈ sing supp(u) then there exists φ ∈ C∞c (Rn) with φ(x) 6= 0 such that φu ∈
C∞(Rn). Of course as a multiplication operator, φ ∈ Ψ0

∞(Rn) and Σ0(φ) 63 (x, ξ)
for any ξ 6= 0. Thus the definition (

8.4
4.55) shows that (x, ξ) /∈WF(u) for all ξ ∈ Rnr0

proving the inclusion.
Using the calculus of pseudodifferential operators, the opposite inclusion,

(4.58) π(WF(u)) ⊃ sing supp(u)

is only a little more complicated. Thus we have to show that if (x, ξ) /∈WF(u) for
all ξ ∈ Rnr0 then x /∈ sing supp(u). The hypothesis is that for each (x, ξ), ξ ∈ Rnr0,

there exists A ∈ Ψ0
∞(Rn) such that A is elliptic at (x, ξ) and Au ∈ C∞(Rn). The

set of elliptic points is open so there exists ε = ε(ξ) > 0 such that A is elliptic on

8.8 (4.59)
{
(x, ξ) ∈ Rn × (Rnr0); |x− x| < ε,

∣∣ ξ
|ξ| −

ξ

|ξ|
∣∣ < ε

}
.

Let Bj , j = 1, . . . , N be a finite set of such operators associated to ξj and such that
the corresponding sets in (

8.8
4.59) cover {x}× (Rnr0); the finiteness follows from the

compactness of the sphere. Then consider

B =

N∑

j=1

B∗
jBj =⇒ Bu ∈ C∞(Rn).
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This operator B is elliptic at (x, ξ), for all ξ 6= 0. Thus if φ ∈ C∞c (Rn), 0 ≤ φ(x) ≤ 1,
has support sufficiently close to x, φ(x) = 1 in |x−x| < ε/2 then, since B has non-
negative principal symbol

(4.60) B + (1− φ) ∈ Ψ0
∞(Rn)

is globally elliptic. Thus, by Lemma
5.31
2.7, there exists G ∈ Ψ0

∞(Rn) which is a
parametrix for B + (1− φ) :

8.9 (4.61) Id ≡ G ◦B +G(1− φ) mod Ψ−∞
∞ (Rn).

Let ψ ∈ C∞c (Rn) be such that supp(ψ) ⊂ {φ = 1} and ψ(x) 6= 0. Then, from the
reduction formula

ψ ◦G ◦ (1− φ) ∈ Ψ−∞
∞ (Rn).

Thus from (
8.9
4.61) we find

ψu = ψG ◦Bu+ ψG(1− φ)u ∈ C∞(Rn).

Thus x /∈ sing supp(u) and the proposition is proved. �

We extend the definition to general tempered distributions by setting

8.10 (4.62) WF(u) =
⋃

φ∈C∞
c (Rn)

WF(φu), u ∈ S ′(Rn).

Then (
8.7
4.57) holds for every u ∈ S ′(Rn).

4.8. Essential support

Next we shall consider the notion of the essential support of a pseudodifferential
operator. If a ∈ Sm

∞(RN ;Rn) we define the cone support of a by

8.11 (4.63)

cone supp(a) =
{
(x, ξ) ∈ RN × (Rnr0); ∃ ε > 0 and ∀ M ∈ R, ∃ CM s.t.

|a(x, ξ)| ≤ CM 〈ξ〉−M if |x− x| ≤ ε,
∣∣ ξ
|ξ| −

ξ

|ξ|
∣∣ ≤ ε

}{
.

This is clearly a closed conic set in RN × (Rnr0). By definition the symbol decays
rapidly outside this cone, in fact even more is true.

8.29 Lemma 4.3. If a ∈ S∞
∞(RN ;Rn) then

8.15 (4.64)

(x, η) /∈ cone supp(a) =⇒
∃ ε > 0 s.t. ∀ M,α, β ∃ CM with

∣∣Dα
xD

β
ξ a(x, η)

∣∣ ≤ CM 〈η〉−M if |x− x| < ε,
∣∣ η
|η| −

η

|η|
∣∣ < ε.

Proof. To prove (
8.15
4.64) it suffices to show it to be valid for Dxj

a, Dξk
a and

then use an inductive argument, i.e. to show that

8.17 (4.65) cone supp(Dxj
a), cone supp(Dξk

a) ⊂ cone supp(a).

Arguing by contradiction suppose that Dx`
a does not decay to order M in any cone

around (x, ξ) /∈ cone supp . Then there exists a sequence (xj , ξj) with

8.18 (4.66)

{
xj −→ x,

∣∣ ξj

|ξj |
− ξ

|ξ|

∣∣ −→ 0, |ξj | −→ ∞
and

∣∣Dx`
a(xj , ξj)

∣∣ > j〈ξj〉M .
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We can assume that M < m, since a ∈ Sm
∞

(
Rn;RN

)
. Applying Taylor’s formula

with remainder, and using the symbol bounds on D2
xj
a, gives

8.19 (4.67) a(xj + te`, ξj) = a(xj , ξj) + it(Dxj
a)(xj , ξj) +O

(
t2〈ξj〉m

)
, (e`)j = δ`j

providing |t| < 1. Taking t = 〈ξj〉M−m −→ 0 as j −→ ∞, the first and third terms
on the right in (

8.19
4.67) are small compared to the second, so

(4.68)
∣∣a
(
xj + 〈ξj〉

M−m
2 , ξj

) ∣∣ > 〈ξj〉2M−m,

contradicting the assumption that (x, ξ) /∈ cone supp(a). A similar argument applies
to Dξ`

a so (
8.15
4.64), and hence the lemma, is proved. �

For a pseudodifferential operator we define the essential support by

8.12 (4.69) WF′(A) = cone supp (σL(A)) ⊂ Rn × (Rnr0) .

8.13 Lemma 4.4. For every A ∈ Ψm
∞(Rn)

8.14 (4.70) WF′(A) = cone supp(σR(A)).

Proof. Using (
8.15
4.64) and the formula relating σR(A) to σL(A) we conclude

that

8.16 (4.71) cone supp(σL(A)) = cone supp(σR(A)),

from which (
8.14
4.70) follows. �

A similar argument shows that

8.20 (4.72) WF′(A ◦B) ⊂WF′(A) ∩WF′(B).

Indeed the asymptotic formula for σL(A ◦B) in terms of σL(A) and σL(B) shows
that

8.21 (4.73) cone supp(σL(A ◦B)) ⊂ cone supp (σL(A)) ∩ cone supp (σL(B))

which is the same thing.

4.9. Microlocal parametricesSect.MicPar

The concept of essential support allows us to refine the notion of a parametrix
for an elliptic operator to that of a microlocal parametrix.

9.1 Lemma 4.5. If A ∈ Ψm
∞(Rn) and z /∈ Σm(A) then there exists a microlocal

parametrix at z, B ∈ Ψ−m
∞ (Rn) such that

9.2 (4.74) z /∈WF′(Id−AB) and z /∈WF′(Id−BA).

Proof. If z = (x, ξ), ξ 6= 0, consider the symbol

(4.75) γε(x, ξ) = φ

(
x− x
ε

)
(1− φ)(εξ)φ

(
(
ξ

|ξ| −
ξ

|ξ|
)
/
ε

)

where as usual φ ∈ C∞c (Rn), φ(ζ) = 1 in |ζ| ≤ 1
2 , φ(ζ) = 0 in |ζ| ≥ 1. Thus

γε ∈ S0
∞ (Rn;Rn) has support in

9.3 (4.76) |x− x| ≤ ε, |ξ| ≥ 1

2ε
,

∣∣∣∣
ξ

|ξ| −
ξ

|ξ|

∣∣∣∣ ≤ ε
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and is identically equal to one, and hence elliptic, on a similar smaller set

9.4 (4.77) |x− x| < ε

2
, |ξ| ≥ 1

ε
,

∣∣∣∣
ξ

|ξ| −
ξ

|ξ|

∣∣∣∣ ≤
ε

2
.

Define Lε ∈ Ψ0
∞(Rn) by σL(Lε) = γε. Thus, for any ε > 0,

8.33 (4.78) z /∈WF′(Id−Lε), WF′(Lε) ⊂
{

(x, ξ); |x − x| ≤ ε and

∣∣∣∣
ξ

|ξ| −
ξ

|ξ|

∣∣∣∣ ≤ ε
}
.

Let G2m ∈ Ψ2m
∞ (Rn) be a globally elliptic operator with positive principal

symbol. For example take σL(G2m) = (1 + |ξ|2)m, so Gs ◦ Gt = Gs+t for any s,
t ∈ R. Now consider the operator

(4.79) J = (Id−Lε) ◦G2m +A∗A ∈ Ψ2m
∞ (Rn).

The principal symbol of J is (1−γε)(1+ |ξ|2)m + |σm(A)|2 which is globally elliptic
if ε > 0 is small enough (so that σm(A) is elliptic on the set (

9.3
4.76)). According to

Lemma
5.1
2.75, J has a global parametrix H ∈ Ψ−2m

∞ (Rn). Then

8.34 (4.80) B = H ◦A∗ ∈ Ψ−m
∞ (Rn)

is a microlocal right parametrix for A in the sense that B ◦ A − Id = RR with
z /∈WF′(RR) since

8.35 (4.81) RR = B ◦A− Id = H ◦A∗ ◦A− Id

= (H ◦ J − Id) +H ◦ (Id−Lε)G2m ◦A

and the first term on the right is in Ψ−∞
∞ (Rn) whilst z is not in the operator

wavefront set of (Id−Lε) and hence not in the operator wavefront set of the second
term.

By a completely analogous construction we can find a left microlocal paramet-
rix. Namely (Id−Lε) ◦ G2m + A ◦ A∗ is also globally elliptic with parametrix H ′

and then B′ = A∗ ◦H ′ satisfies

(4.82) B′ ◦A− Id = RL, z /∈WF′(RL).

Then, as usual,

(4.83) B = (B′ ◦A−RL)B = B′ (A ◦B)−RLB = B′ +B′RR −RLB

so z /∈ WF′(B − B′), which implies that B is both a left and right microlocal
parametrix. �

In fact this argument shows that such a left parametrix is essentially unique. See
Problem

P.9.1
4.25.

4.10. Microlocality

Now we can consider the relationship between these two notions of wavefront
set.

8.22 Proposition 4.6. Pseudodifferential operators are microlocal in the sense that

8.23 (4.84) WF(Au) ⊂WF′(A) ∩WF(u) ∀ A ∈ Ψ∞
∞(Rn), u ∈ C−∞

c (Rn).
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Proof. We need to show that

8.24 (4.85) WF(Au) ⊂WF′(A) and WF(Au) ⊂WF(u).

the second being the usual definition of microlocality. The first inclusion is easy.
Suppose (x, ξ) /∈ cone suppσL(A). If we choose B ∈ Ψ0

∞(Rn) with σL(B) supported
in a small cone around (x, ξ) then we can arrange

(4.86) (x, ξ) /∈ Σ0(B), WF′(B) ∩WF′(A) = ∅.
Then from (

8.20
4.72), WF′(BA) = ∅ so BA ∈ Ψ−∞

∞ (Rn) and BAu ∈ C∞(Rn). Thus
(x, ξ) /∈WF(Au).

Similarly suppose (x, ξ) /∈ WF(u). Then there exists G ∈ Ψ0
∞(Rn) which is

elliptic at (x, ξ) with Gu ∈ C∞(Rn). Let B be a microlocal parametrix for G at
(x, ξ) as in Lemma

9.1
4.5. Thus

(4.87) u = BGu+ Su, (x, ξ) /∈WF′(S).

Now apply A to this identity. Since, by assumption, Gu ∈ C∞c (Rn) the first term
on the right in

8.31 (4.88) Au = ABGu+ASu

is smooth. Since, by (
8.20
4.72), (x, ξ) /∈ WF′(AS) it follows from the first part of the

argument above that (x, ξ) /∈WF(ASu) and hence (x, ξ) /∈WF(Au). �

We can deduce from the existence of microlocal parametrices at elliptic points
a partial converse of (8.24).

8.32 Proposition 4.7. For any u ∈ C−∞(Rn) and any A ∈ Ψm
∞(Rn)

(4.89) WF(u) ⊂WF(Au) ∪ Σm(A).

Proof. If (x, ξ) /∈ Σm(A) then, by definition, A is elliptic at (x, ξ). Thus, by
Lemma

9.1
4.5, A has a microlocal parametrix B, so

(4.90) u = BAu+ Su, (x, ξ) /∈WF′(S).

It follows that (x, ξ) /∈ WF(Au) implies that (x, ξ) /∈ WF(u) proving the Proposi-
tion. �

4.11. Explicit formulations

From this discussion of WF′(A) we can easily find a ‘local coordinate’ formu-
lations of WF(u) in general.

8.25 Lemma 4.6. If (x, ξ) ∈ Rn × (Rnr0) and u ∈ S ′(Rn) then (x, ξ) /∈ WF(u) if
and only if there exists φ ∈ C∞c (Rn) with φ(x) 6= 0 such that for some ε > 0, and
for all M there exists CM with

8.26 (4.91)
∣∣φ̂u(ξ)

∣∣ ≤ CM 〈ξ〉M in
∣∣ ξ
|ξ| −

ξ̄

|ξ|
∣∣ < ε.

Proof. If ζ ∈ C∞(R), ζ(ξ) ≡ 1 in |ξ| < ε
2 and supp(ζ) ⊂

[
−3ε
4 , 3ε

4

]
then

(4.92) γ(ξ) = (1− ζ)(ξ) · ζ
( ξ
|ξ| −

x

|x|
)
∈ S0

∞(Rn)

is elliptic at ξ̄ and from (
8.26
4.91)

(4.93) γ(ξ) · φ̂u(ξ) ∈ S(Rn).
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Thus if σR(A) = φ1(x)γ(ξ) then A(φ2u) ∈ C∞ where φ1φ2 = φ, φ1(x), φ2(x) 6= 0,
φ1, φ2 ∈ C∞c (Rn). Thus (x, ξ) /∈ WF(u). Conversely if (x, ξ) /∈ WF(u) and A is
chosen as above then A(φ1u) ∈ S(Rn) and Lemma

8.25
4.6 holds. �

4.12. Wavefront set of KA

At this stage, a natural thing to look at is the wavefront set of the kernel of a
pseudodifferential operator, since these kernels are certainly an interesting class of
distributions.

8.27 Proposition 4.8. If A ∈ Ψm
∞(Rn) then

8.28 (4.94)
WF(KA) =

{
(x, y, ξ, η) ∈ R2n ×

(
R2nr0

)
;

x = y, ξ + η = 0 and (x, ξ) ∈WF′(A)
}
.

In particular this shows that WF′(A) determines WF(KA) and conversely.

Proof. Using Proposition
8.6
4.5 we know that π (WF(KA)) ⊂

{
(x, x)

}
so

WF(KA) ⊂
{
(x, x; ξ, η)

}
.

To find the wave front set more precisely consider the kernel

KA(x, y) = (2π)−n

∫
ei(x−y)·ξb(x, ξ)dξ

where we can assume |x− y| < 1 on supp(KA). Thus is φ ∈ C∞c (X) then

g(x, y) = KA(x, y) ∈ C−∞
c (Rn)

and

ĝ(ζ, η) = (2π)−n

∫
e−iζx−iηyei(x−y)·ζ(φb)(x, ξ)dζdxdy

=

∫
e−i(ζ+η)·x(φb)(x,−η)dx

= φ̂b(ζ + η,−η).
The fact that φb is a symbol of compact support in x means that for every M

∣∣φ̂b(ζ + η,−η)
∣∣ ≤ CM (〈ζ + η〉)−M 〈η〉m.

This is rapidly decreasing if ζ 6= −η, so

WF(KA) ⊂
{
(x, x, η,−η)

}
as claimed.

Moreover if (x, η) /∈ WF′(A) then choosing φ to have small support near x makes

φ̂b rapidly decreasing near −η for all ζ. This proves Proposition
8.27
4.8. �

4.13. Elementary calculus of wavefront sets

We want to achieve a reasonable understanding, in terms of wavefront sets, of
three fundamental operations. These are

Pull-back: F ∗upb (4.95)

Push-forward: F∗u andproof (4.96)

Multiplication: u1 · u2.mult (4.97)
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In order to begin to analyze these three operations we shall first introduce and
discuss some other more “elementary” operations:

Pairing: (u, v) −→ 〈u, v〉 =

∫
u(x)v(x)dxpair (4.98)

Projection: u(x, y) 7−→
∫
u(x, y)dyproj (4.99)

Restriction: u(x, y) 7−→ u(x, 0)rest (4.100)

Exterior product: (u, v) 7−→ (u� v)(x, y) = u(x)v(y)expr (4.101)

Invariance: F ∗u, for F a diffeomorphism.inv (4.102)

Here (
rest
4.100) and (

inv
4.102) are special cases of (

pb
4.95), (

proj
4.99) of (

proof
4.96) and (

expr
4.101) is a

combination of (
mult
4.97) and (

pb
4.95). Conversely the three fundamental operations can

be expressed in terms of these elementary ones. We can give direct definitions of
the latter which we then use to analyze the former. We shall start with the pairing
in (

pair
4.98).

4.14. Pairing

We know how to ‘pair’ a distribution and a C∞ function. If both are C∞ and
have compact supports then

9.7 (4.103) 〈u1, u2〉 =

∫
u1(x)u2(x)dx

and in general this pairing extends by continuity to either C−∞
c (Rn) × C∞(Rn) or

C∞(Rn) × C−∞
c (Rn) Suppose both u1 and u2 are distributions, when can we pair

them?

9.8 Proposition 4.9. Suppose u1, u2 ∈ C−∞
c (Rn) satisfy

9.9 (4.104) WF(u1) ∩WF(u2) = ∅
then if A ∈ Ψ0

∞(Rn) has

9.10 (4.105) WF(u1) ∩WF′(A) = ∅, WF(u2) ∩WF′(Id−A∗) = ∅
the bilinear form

9.11 (4.106) 〈u1, u2〉 = 〈Au1, u2〉+ 〈u1, (Id−A∗)u2〉
is independent of the choice of A.

Notice that A satisfying (
9.10
4.105) does indeed exist, just choose a ∈ S0

∞ (Rn;Rn)
to be identically 1 on WF(u2), but to have cone supp(a) ∩WF(u1) = ∅, possible
because of (

9.9
4.104), and set A = qL(a).

Proof. Of course (
9.11
4.106) makes sense because Au1, (Id−A∗)u2 ∈ C∞(Rn).

To prove that this definition is independent of the choice of A, suppose A′ also
satisfies (

9.10
4.105). Set

(4.107) 〈u1, u2〉′ = 〈A′u1, u2〉+ 〈u1, (Id−A′)∗u2〉.
Then

(4.108) WF′(A−A′) ∩WF(u1) = WF′((A−A′)∗) ∩WF(u2) = ∅.
The difference can be written

9.12 (4.109) 〈u1, u2〉′ − 〈u1, u2〉 = 〈(A −A′)u1, u2〉 − 〈u1, (A−A′)∗u2〉.
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Naturally we expect this to be zero, but this is not quite obvious since u1 and u2

are both distributions. We need an approximation argument to finish the proof.
Choose B ∈ Ψ0

∞(Rn) with

9.13 (4.110)
WF′(B) ∩WF(u1) = WF′(B) ∩WF(u2) = ∅

WF′(Id−B) ∩WF(A−A′) = ∅

If vn −→ u2, in C−∞
c (Rn), vn ∈ C∞c (Rn) then

(4.111) wn = φ
[
(Id−B) vn +Bu2

]
−→ u2

if φ ≡ 1 in a neighbourhood of supp(u2), φ ∈ C∞c (Rn). Here Bu2 ∈ C∞(Rn), so
(4.112)
(A−A′)wn = (A−A′)φ(Id−B) · vn + (A−A′)φBu2 −→ (A−A′)u2 in C∞(Rn),

since (A−A′)φ(Id−B) ∈ Ψ−∞
∞ (Rn). Thus

〈(A−A′)u1, u2〉 −→ 〈(A−A′)u1, u2〉
〈u1, (A−A′)

∗
wn〉 −→ 〈u1, (A−A′)

∗
u2〉,

since wn −→ u2 in C−∞
c (Rn) and (A−A′)∗wn −→ (A−A′)

∗
u2 in C∞(Rn). Thus

(4.113) 〈u1, u2〉′ − 〈u1, u2〉 = lim
n→∞

[
〈(A−A′)u1, wn〉 − 〈u1, (A−A′)

∗
wn

]
= 0.

�

Here we are using the complex pairing. If we define the real pairing by

9.15 (4.114) (u1, u2) = 〈u1, u2〉

then we find

9.16 Proposition 4.10. If u1, u2 ∈ C−∞
c (Rn) satisfy

9.17 (4.115) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the real pairing, defined by

9.18 (4.116) (u1, u2) = (Au1, u2) + (u1, A
tu2),

where A satisfies (
9.10
4.105), is independent of A.

Proof. Notice that

9.19 (4.117) WF(u) =
{
(x,−ξ) ∈ Rn × (Rnr0); (x, ξ) ∈WF(u)

}
.

We can write (
9.17
4.115), using (

9.15
4.114), as

(4.118) (u1, u2) = 〈Au1, u2〉+ 〈u1, Atu2〉.

Since, by definition, Atu2 = A∗u2,

(4.119) (u1, u2) = 〈Au1, u2〉+ 〈u1, A
∗u2〉 = 〈u1, u2〉

is defined by (
9.11
4.106), since (

9.17
4.115) translates to (

9.9
4.104). �
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4.15. Multiplication of distributions

The pairing result (
9.18
4.116) can be used to define the product of two distributions

under the same hypotheses, (
9.17
4.115).

9.20 Proposition 4.11. If u1, u2 ∈ C−∞
c (Rn) satisfy

9.21 (4.120) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the product of u1 and u2 ∈ C−∞
c (Rn) is well-defined by

9.22 (4.121) u1u2(φ) = (u1, φu2) = (φu1, u2) ∀ φ ∈ C∞c (Rn)

using (
9.18
4.116).

Proof. We only need to observe that if u ∈ C−∞
c (Rn) and A ∈ Ψm

∞(Rn) has
WF′(A) ∩WF(u) = ∅ then for any fixed ψ ∈ C∞c (Rn)

9.23 (4.122) ‖ψAφu‖Ck ≤ C‖φ‖Cp p = k +N

for some N, depending on m. This implies the continuity of φ 7−→ u1u2(φ) defined
by (

9.22
4.121). �

4.16. Projection

Here we write Rn
z = Rp

x × Rk
y and define a continuous linear map, which we

write rather formally as an integral

10.1 (4.123) C−∞
c (Rn) 3 u 7−→

∫
u(x, y)dy ∈ C−∞

c (Rp)

by pairing. If φ ∈ C∞(Rp) then

10.2 (4.124) π∗
1φ ∈ C∞(Rn), π1 : Rn 3 (x, y) 7−→ x ∈ Rp

and for u ∈ C−∞
c (Rn) we define the formal ‘integral’ in (

10.1
4.123) by

10.3 (4.125) (

∫
u(x, y)dy, φ) = ((π1)∗u, φ) := u(π∗

1φ).

In this sense we see that the projection is dual to pull-back (on functions) under
π1, so is “push-forward under π1,” a special case of (

proof
4.96). The support of the

projection satisfies

10.4 (4.126) supp ((π1)∗u) ⊂ π1 (supp(u)) ∀ u ∈ C−∞
c (Rn),

as follows by duality from

10.5 (4.127) supp(π∗
1φ) ⊂ π−1

1 (suppφ) .

10.6 Proposition 4.12. Let π1 : Rp+k −→ Rp be projection, then for every u ∈
C−∞

c (Rp+k)

10.7 (4.128)
WF ((π1)∗u) ⊂

{
(x, ξ) ∈ Rp × (Rp\0) ;

∃ y ∈ Rk with (x, y, ξ, 0) ∈WF(u)
}
.

Proof. First notice that

10.8 (4.129) (π1)∗ : C∞c (Rn) −→ C∞c (Rp).

Combining this with (
10.4
4.126) we see that

10.9 (4.130) sing supp ((π1)∗u) ⊂ π1 (sing suppu)
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which is at least consistent with Proposition
10.6
4.12. To prove the proposition in full

let me restate the local characterization of the wavefront set, in terms of the Fourier
transform:

10.10 Lemma 4.7. Suppose K ⊂⊂ Rn and Γ ⊂ Rnr0 is a closed cone, then

10.11 (4.131)
u ∈ C−∞

c (Rn), WF(u) ∩ (K × Γ) = ∅, A ∈ Ψm
∞(Rn), WF′(A) ⊂ K × Γ

=⇒ Au ∈ S(Rn).

In particular

10.12 (4.132)
u ∈ C−∞

c (Rn), WF(u) ∩ (K × Γ) = ∅, φ ∈ C∞c (Rn), supp(φ) ⊂ K
=⇒ φ̂u(ξ) is rapidly decreasing in Γ.

Conversely suppose Γ ⊂ Rnr0 is a closed cone and u ∈ S ′(Rn) is such that for
some φ ∈ C∞c (Rn)

10.13 (4.133) φ̂u(ξ) is rapidly decreasing in Γ

then

10.14 (4.134) WF(u) ∩
{
x ∈ Rn;φ(x) 6= 0

}
× int(Γ) = ∅.

With these local tools at our disposal, let us attack (
10.7
4.128). We need to show

that

10.15 (4.135)
(x, ξ) ∈ Rp × (Rp\0) s.t. (x, y, ξ, 0) /∈WF(u) ∀ y ∈ Rn

=⇒ (x, ξ) /∈WF ((π1)∗u) .

Notice that, WF(u) being conic and π(WF(u)) being compact, WF(u)∩(Rn×Sn−1)
is compact. The hypothesis (

10.15
4.135) is the statement that

(4.136) {x} × Rk × Sn−1 × {0} ∩WF(u) = ∅.
Thus x has an open neighbourhood, W, in Rp, and (ξ, 0) a conic neighbourhood γ1

in (Rn\0) such that

(4.137) (W × Rk × γ1) ∩WF(u) = ∅.
Now if φ ∈ C∞c (Rp) is chosen to have support in W

10.16 (4.138) ̂(π∗
1φ)u(ξ, η) is rapidly decreasing in γ1.

Set v = φ(π1)∗u. From the definition of projection and the identity

(4.139) v = φ(π1)∗u = (π1)∗[(π
∗
1φ)u],

we have

10.17 (4.140) v̂(ξ) = v(e−ix·ξ) = ̂((π∗
1φ)u)(ξ, 0).

Now (
10.16
4.138) shows that v̂(ξ) is rapidly decreasing in γ1 ∩ (Rp × {0}), which is a

cone around ξ in Rp. Since v = φ(π1)∗u this shows that (x, ξ) /∈ WF ((π1)∗u) , as
claimed. �

Before going on to talk about the other operations, let me note a corollary of
this which is useful and, even more, helps to explain what is going on:

10.18 Corollary 4.1. If u ∈ C−∞
c (Rn) and

(4.141) WF(u) ∩
{
(x, y, ξ, 0);x ∈ Rp, y ∈ Rk, ξ ∈ Rp\0

}
= ∅

then (π1)∗(u) ∈ C∞c (Rn).



4.17. RESTRICTION 115

Proof. Indeed, (
10.7
4.128) says WF ((π1)∗u) = ∅. �

Here, the vectors (x, y, ξ, 0) are the ones “normal” (as we shall see, really conor-
mal) to the surfaces over which we are integrating. Thus Lemma

10.10
4.7 and Corol-

lary
10.18
4.1 both state that the only singularities that survive integration are the ones

which are conormal to the surface along which we integrating; the ones even par-
tially in the direction of integration are wiped out. This in particular fits with the
fact that if we integrate in all variables then there are no singularities left.

4.17. Restriction

Next we wish to consider the restriction of a distribution to a subspace

10.19 (4.142) C−∞
c (Rn) 3 u 7−→ u � {y = 0} ∈ C−∞

c (Rp).

This is not always defined, i.e. no reasonable map (
10.19
4.142) exists for all distributions.

However under an appropriate condition on the wavefront set we can interpret
(
10.19
4.142) in terms of pairing, using our definition of products. Thus let

(4.143) ι : Rp 3 x 7−→ (x, 0) ∈ Rn

be the inclusion map. We want to think of u � {y = 0} as ι∗u. If u ∈ C∞c (Rn) then
for any φ′ ∈ C∞c (Rn) the identity

10.35 (4.144) ι∗u(ι∗φ′) = u (φ′δ(y))

holds.
The restriction map ι∗ : C∞c (Rn) −→ C∞c (Rp) is surjective. If u ∈ C−∞

c (Rn)
satisfies the condition

10.21 (4.145) WF(u) ∩
{
(x, 0, 0, η);x ∈ Rp, η ∈ Rn−p

}
= ∅

then we can interpret the pairing

10.20 (4.146)
ι∗u(φ) = u (φ′δ(y)) ∀ φ ∈ C∞c (Rp)

where φ′ ∈ C∞c (Rn) and ι∗φ′ = φ

to define ι∗u. Indeed, the right side makes sense by Proposition
9.20
4.11.

Thus we have directly proved the first part of

10.22 Proposition 4.13. Set R =
{
u ∈ C−∞

c (Rn); (
10.21
4.145) holds

}
then (

10.20
4.146) de-

fines a linear restriction map ι∗ : R −→ C−∞
c (Rp) and

10.23 (4.147) WF(ι∗u) ⊂
{
(x, ξ) ∈ Rp × (Rpr0); ∃ η ∈ Rn with (x, 0, ξ, η) ∈WF(u)

}
.

Proof. First note that (
10.21
4.145) means precisely that

10.24 (4.148) û(ξ, η) is rapidly decreasing in a cone around {0} × Rk\0.
When u ∈ C∞c (Rn) taking Fourier transforms in (

10.35
4.144) gives

10.25 (4.149) ι̂∗u(ξ) =
1

(2π)k

∫
û(ξ, η)dη.

In general (
10.24
4.148) ensures that the integral in (

10.25
4.149) converges, it will then hold

by continuity.
We actually apply (

10.25
4.149) to a localized version of u; if ψ ∈ C∞c (Rp) then

10.26 (4.150) ψ̂ι∗(u)(ξ) = (2π)−k

∫
ψ̂(ξ)û(ξ, η)dη.
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Thus suppose (x, ξ) ∈ Rp × (Rp\0) is such that (x, 0, ξ, η) /∈WF(u) for any η. If ψ
has support close to x and ζ ∈ C∞c (Rn−p) has support close to 0 this means

10.27 (4.151) ψ̂ζu(ξ, η) is rapidly decreasing in a cone around each (ξ, η).

We also have rapid decrease around (0, η) from (
10.24
4.148) (make sure you understand

this point) as

(4.152) ψ̂ζu(ξ, η) is rapidly decreasing in γ × Rp

for a cone, γ, around ξ. From (
10.25
4.149)

(4.153) ψ̂ι∗(ζu)(ξ) is rapidly decreasing in γ.

Thus (x, ξ) /∈ WF(ι∗(ζu)). Of course if we choose ζ(y) = 1 near 0, ι∗(ζu) = ι∗(u)

so (x, ξ) /∈ WF(u), provided (x, 0, ξ, η) /∈ WF(u), for all η. This is what (
10.23
4.147)

says. �

Try to picture what is going on here. We can restate the main conclusion of
Proposition

10.22
4.13 as follows.

Take WF(u) ∩
{
(x, 0, ξ, η) ∈ Rp × {0} × (Rn\0)

}
and let Z denote projection

off the η variable:

10.28 (4.154) Rp × {0} × Rp × Rk Z−→ Rp × Rp

then

(4.155) WF(ι∗u) ⊂ Z(WF(u) ∩ {y = 0}).
We will want to think more about these operations later.

4.18. Exterior product

This is maybe the easiest of the elementary operators. It is always defined

10.29 (4.156) (u1 � u2)(φ) = u1 (u2(φ(x, ·)) = u2(u1(φ(·, y)).
Moreover we can easily compute the Fourier transform:

10.30 (4.157) û1 � u2(ξ, η) = û1(ξ)û2(η).

10.31 Proposition 4.14. The (exterior) product

10.32 (4.158) C−∞
c (Rp)× C−∞

c (Rk)←− C−∞
c (Rp+k)

is a bilinear map such that

10.33 (4.159)
WF(u1 � u2) ⊂ [(supp(u1)× {0})×WF(u2)]

∪ [WF(u1)× (supp(u2)× {0})] ∪ [WF(u1)×WF(u2)].

Proof. We can localize near any point (x, y) with φ1(x)φ2(y), where φ1 is
supported near x and φ2 is supported near y. Thus we only need examine the
decay of

10.34 (4.160) ̂φ1u1 � φ2u2 = φ̂1u1(ξ) · φ̂2u2(η).

Notice that if φ̂1u1(ξ) is rapidly decreasing around ξ 6= 0 then the product is rapidly

decreasing around any (ξ, η). This gives (
10.33
4.159). �



4.19. DIFFEOMORPHISMS 117

4.19. Diffeomorphisms

We next turn to the question of the extension of F ∗, where F : Ω1 −→ Ω2 is
a C∞ map, from C∞(Ω2) to some elements of C−∞(Ω2). The simplest example of
pull-back is that of transformation by a diffeomorphism.

We have already noted how pseudodifferential operators behave under a diffeo-
morphism: F : Ω1 −→ Ω2 between open sets of Rn. Suppose A ∈ Ψm

∞(Rn) has
Schwartz kernel of compact support in Ω1 × Ω1 then we define

11.1 (4.161) AF : C∞c (Ω2) −→ C∞c (Ω2)

by AF = G∗ ·A · F ∗, G = F−1. In § Sect.CooInv
4.4 we showed that AF ∈ Ψm

∞(Rn). In fact we
showed much more, namely we computed a (very complicated) formula for the full
symbols. Recall the definition of the cotangent bundle of Rn

11.2 (4.162) T ∗Rn ' Rn × Rn

identified as pairs of points (x, ξ), where x ∈ Rn and

11.3 (4.163) ξ = df(x) for some f ∈ C∞(Rn).

The differential df(x) of f at x ∈ Rn is just the equivalence class of f(x)−f(x) ∈ Ix

modulo I2
x. Here

11.4 (4.164)




Ix =

{
g ∈ C∞(Rn); g(x) = 0

}

I2
x =

{ ∑
finite

gihi, gi, hi ∈ Ix

}
.

The identification of ξ, given by (
11.2
4.162) and (

11.3
4.163), with a point in Rn is obtained

using Taylor’s formula. Thus if f ∈ C∞(Rn)

11.5 (4.165) f(x) = f(x) +

n∑

i=1

∂f

∂xj
(x)(x− x)j +

∑

i,j=1

gij(x)xixj .

The double sum here is in I2
x, so the residue class of f(x) − f(x) in Ix

/
I2

x is the
same as that of

(4.166)
n∑

i=1

∂f

∂xj
(x)(x− x)j .

That is, d(x − x)j = dxj , j = 1, . . . , n form a basis for T ∗
xR

n and in terms of this
basis

(4.167) df(x) =

n∑

i=1

∂f

∂xj
(x)dxj .

Thus the entries of ξ are just
(

∂f
∂x1

, . . . ∂f
∂xn

)
for some f. Another way of saying this

is that the linear functions ξ · x = ξ1x1 + ξ2x2 · · · ξnxn have differentials spanning
T ∗

xR
n.
So suppose F : Ω1 −→ Ω2 is a C∞ map. Then

(4.168) F ∗ : T ∗
y Ω2 −→ T ∗

xΩ1, y = F (x)
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is defined by F ∗df(y) = d(F ∗f)(x) since F ∗ : Iy −→ Ix, F
∗ : I2

y −→ I2
x. In

coordinates F (x) = y =⇒

(4.169)
∂

∂xj
(F ∗f(x)) =

∂

∂y
f(F (x)) =

n∑

k=1

∂f

∂xk
(y)

∂Fk

∂xj

i.e. F ∗(η · dy) = ξ · dx if

11.6 (4.170) ξj =

n∑

k=1

∂Fk

∂xj
(x) · ηk.

Of course if F is a diffeomorphism then the Jacobian matrix ∂F
∂x is invertible

and (
11.6
4.170) is a linear isomorphism. In this case

11.7 (4.171)
F ∗ : T ∗

Ω2
Rn ←→ T ∗

Ω1
Rn

(x, ξ)←→ (F (x), η)

with ξ and η connected by (
11.6
4.170). Thus (F ∗)∗ : C∞(T ∗Ω1) −→ C∞(T ∗Ω2).

11.8 Proposition 4.15. If F : Ω1 −→ Ω2 is a diffeomorphism of open sets of Rn

and A ∈ Ψm
∞(Rn) has Schwartz kernel with compact support in Ω1 × Ω2 then

11.9 (4.172) σm(AF ) = (F ∗)∗σm(A)

and

11.10 (4.173) F ∗
(
WF′(AF )

)
= WF′(A).

It follows that symbol σm(A) of A is well-defined as an element of S
m−[1]
∞ (T ∗Rn)

independent of coordinates and WF′(A) ⊂ T ∗Rn\0 is a well-defined closed conic
set, independent of coordinates. The elliptic set and the characteristic set Σm are
therefore also well-defined complementary conic subsets of T ∗Ω\0.

Proof. Look at the formulae. �

The main use we make of this invariance result is the freedom it gives us to
choose local coordinates adapted to a particular problem. It also suggests that
there should be neater ways to write various formulae, e.g. the wavefront sets of
push-forward and pull-backs.

11.12 Proposition 4.16. If u ∈ C−∞
c (Rn) has supp(u) ⊂ Ω2 and F : Ω1 −→ Ω2 is

a diffeomorphism then
11.13 (4.174)

WF(F ∗u) ⊂
{
(x, ξ) ∈ Rn × (Rn\0); (F (x), η) ∈WF(u), ηj =

∑

i

∂Fi

∂xj
(x)ξi

}
.

Proof. Just use the standard definition

(4.175) WF(F ∗u) =
⋂{

Σ(A); A(F ∗u) ∈ C∞
}
.

To test the wavefront set of F ∗u it suffices to consider A’s with kernels supported
in Ω1 × Ω1 since supp(F ∗u b Ω1 and for a general pseudodifferential operator A′
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there exists A with kernel supported in Ω1 such that A′u − Au ∈ C∞(Rn). Then
AF ∗u ∈ C∞c (Ω1)⇐⇒ AFu ∈ C∞c (Ω2). Thus

WF(F ∗u) =
⋂{

Σ(A); AFu ∈ C∞
}

(4.176)

=
⋂{

F ∗(Σ(AF ));AFu ∈ C∞
}

(4.177)

= F ∗ WF(u)(4.178)

since, for u, it is enough to consider operators with kernels supported in Ω2×Ω2. �

4.20. Products

Although we have discussed the definition of the product of two distributions
we have not yet analyzed the wavefront set of the result.

11.14 Proposition 4.17. If u1, u2 ∈ C−∞
c (Rn) are such that

(4.179) (x, ξ) ∈WF(u1) =⇒ (x,−ξ) /∈WF(u2)

then the product u1u2 ∈ C−∞
c (Rn), defined by Proposition

9.20
4.11 satisfies

11.35 (4.180)

WF(u1u2) ⊂
{
(x, ξ);x ∈ supp(u1) and (x, ξ) ∈WF(u2)

}

∪
{
(x, ξ);x ∈ supp(u2) and (x, ξ) ∈WF(u1)

}

∪
{
(x, ξ); ξ = η1 + η2, (x, ηi) ∈WF(ui), i = 1, 2

}
.

Proof. We can represent the product in terms of three ‘elementary’ opera-
tions.

11.15 (4.181) u1u2(x) = ι∗
[
F ∗(u1 � u2)

]

where F : R2n −→ R2n is the linear transformation

(4.182) F (x, y) = (x+ y, x− y)
and ι : Rn ↪→ Rn × {0} ⊂ R2n is inclusion as the first factor. Thus (

11.15
4.181)

corresponds to the ‘informal’ notation

11.16 (4.183) u1u2(x) = u1(x+ y)u2(x− y) � {y = 0}
and will follow by continuity once we analyse the wavefront set properties.

We know from Proposition
10.31
4.14 that

(4.184)

WF (u1 � u2) ⊂
{
(X,Y,Ξ, H) ;X ∈ supp(u1),Ξ = 0, (Y,H) ∈WF(u2)

}

∪
{
(X,Y,Ξ, H) ; (X,Ξ) ∈WF(u1), Y ∈ supp(u2), H = 0

}

∪
{
(X,Y,Ξ, H) ; (X,Ξ) ∈WF(u1), (Y,H) ∈WF(u2)

}
.

Since F is a diffeomorphism, by Proposition
11.12
4.16,

WF(F ∗(u1 � u2)) =
{
(x, y, ξ, η); (F t(x, y),Ξ, H) ∈WF(u1 � u2),

(ξ, η) = At(Ξ, H)
}
.

where F t is the transpose of F as a linear map. In fact F t = F, so

WF(F ∗(u1 � u2)) ⊂
{
(x, y, ξ, η);x + y ∈ supp(u1), ξ + η = 0, (x− y, 1

2
(ξ − η)) ∈WF(u2)

}

∪
{
(x, y, ξ, η); (x + y,

1

2
(ξ + η)) ∈WF(u1), (x− y, 1

2
(ξ − η)) ∈WF(u2)

}
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and so using Proposition
10.22
4.13

WF(F ∗(u1 � u2)) � {y = 0}
⊂
{
(x, 0, ξ,−ξ);x ∈ supp(u1), (x, ξ) ∈WF(u2)

}

∪
{
(x, 0, ξ, η); (x ∈ supp(u2), (x, ξ) ∈WF(u2)

}

∪
{
(x, 0, ξ, η); (x,

1

2
(ξ + η)) ∈WF(u2), (x,

1

2
(ξ − η)) ∈WF(u1)

}

Notice that
(4.185)

(x, 0, 0, η) ∈WF (F ∗(u1 � u2)) =⇒ (x,
1

2
η) ∈WF(u1) and (x,

1

2
η) WF(u2)

which introduces the assumption under which u1u2 is defined. Finally then we see
that

11.17 (4.186)
WF(u1u2) ⊂

{
(x,ξ);x ∈ supp(u1), (x, ξ) ∈WF(u2)

}

∪
{
(x, ξ);x ∈ supp(u2), (x, ξ) ∈WF(u1)

}

∪
{
(x, ξ); (x, η1) ∈WF(u1), (x, η2) ∈WF(u2) and ξ = η1 + η2

}
.

which is another way of writing the conclusion of Proposition
11.14
4.17. �

4.21. Pull-back

Now let us consider a general C∞ map

11.18 (4.187) F : Ω1 −→ Ω2, Ω1 ⊂ Rn,Ω2 ⊂ Rm.

Thus even the dimension of domain and range spaces can be different. When can
we define F ∗u, for u ∈ C−∞

c (Ω2) and what can we say about WF(F ∗u)? For a
general map F it is not possible to give a sensible, i.e. consistent, definition of F ∗u
for all distributions u ∈ C−∞(Ω2).

For smooth functions we have defined

(4.188) F ∗ : C∞c (Ω2) −→ C∞(Ω1)

but in general F ∗φ does not have compact support, even if φ does. We therefore
impose the condition that F be proper

11.19 (4.189) F−1(K) b Ω2 ∀ K b Ω2,

(mostly just for convenience). In fact if we want to understand F ∗u near x1 ∈ Ω1

we only need to consider u near F (x1) ∈ Ω2.
The problem is that the map (

11.18
4.187) may be rather complicated. However any

smooth map can be decomposed into a product of simpler maps, which we can
analyze locally. Set

(4.190) graph(F ) =
{
(x, y) ∈ Ω1 × Ω2; y = F (x)

} ιF−→ Ω1 × Ω2.

This is always an embedded submanifold of Ω1 × Ω2 the functions yi − Fi(x),
i = 1, . . . , N are independent defining functions for graph(F ) and x1, . . . , xn are
coordinates on it. Now we can write

11.20 (4.191) F = π2 ◦ ιF ◦ g
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where g : Ω1 ←→ graph(F ) is the diffeomorphism onto its range x 7−→ (x, F (x)).
This decomposes F as a projection, an inclusion and a diffeomorphism. Now con-
sider

11.21 (4.192) F ∗φ = g∗ · ι∗F · π∗
2φ

i.e. F ∗φ is obtained by pulling φ back from Ω2 to Ω1×Ω2, restricting to graph(F )
and then introducing the xi as coordinates. We have directly discussed (π∗

2φ) but
we can actually write it as

11.22 (4.193) π∗
2φ = 1 � φ(y),

so the result we have proved can be applied to it. So let us see what writing (
11.21
4.192)

as

11.23 (4.194) F ∗φ = g∗ ◦ ι∗F (1 � φ)

tells us. If u ∈ C−∞
c (Ω2) then

11.24 (4.195) WF(1 � u) ⊂
{
(x, y, 0, η); (y, η) ∈WF(u)

}

by Proposition
10.31
4.14. So we have to discuss ι∗F (1 � u), i.e. restriction to y = F (x).

We can do this by making a diffeomorphism:

11.25 (4.196) TF (x, y) = (x, y + F (x))

so that T−1
F (graph(F )) = {(x, 0)}. Notice that g ◦ TF = π1, so

11.26 (4.197) F ∗φ = ι∗{y=0} (T ∗
F (1 � u)) .

Now from Proposition
11.12
4.16 we know that

11.27 (4.198) WF(T ∗
F (1 � u)) = T ∗

F (WF(1 � u))

=
{
(X,Y,Ξ, H); (X,Y + F (X), ξ, η) ∈WF(1 � u),

η = H, ξi = Ξi + Σ
∂Fj

∂xi
Hj

}

i.e.

11.28 (4.199) WF(T ∗
F (1 � u)) =

{
(x, y, ξ, η); ξi =

∑

j

∂Fj

∂xj
(x)ηj , (F (x), η) ∈WF(u)

}
.

So consider our existence condition for restriction to y = 0, that ξ 6= 0 on WF(T ∗
F (1�

u)) i.e.

11.29 (4.200) (F (x), η) ∈WF(u) =⇒
∑

j

∂Fj

∂xi
(x)ηj 6= 0.

If (
11.29
4.200) holds then, from (

11.27
4.198) and Proposition

10.22
4.13

11.30 (4.201) WF(F ∗u) ⊂
{
(x, ξ); ∃ (F (x), η) ∈WF(u) and ξj =

∑

j

∂Fj

∂xi
(x)ηj

}
.

We can reinterpret (
11.29
4.200) and (

11.30
4.201) more geometrically. The differential of

F gives a map

(4.202)

F ∗ : T ∗
F (x)Ω2 −→ T ∗

xΩ1 ∀ x ∈ Ω1

(F (x), η) 7−→ (x, ξ) where ξi = Σ
∂Fj

∂xi
ηj .
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Thus (
11.29
4.200) can be restated as:

11.31 (4.203)
∀ x ∈ Ω1, the null space of F ∗

x : T ∗
F (x)Ω2 −→ T ∗

x Ω1

does not meet WF(u)

and then (
11.30
4.201) becomes

11.32 (4.204) WF(F ∗u) ⊂
⋃

x∈Ω1

F ∗
x [WF(u) ∩ T ∗

F (x)Ω2] = F ∗(WF(u))

(proved we are a little careful in that F ∗ is not a map; it is a relation between
T ∗Ω2 and T ∗Ω1) and in this sense (

11.31
4.203) holds. Notice that (

11.30
4.201) is a sensi-

ble “consequence” of (
11.31
4.203), since otherwise WF(F ∗u) would contain some zero

directions.

11.33 Proposition 4.18. If F : Ω1 −→ Ω2 is a proper C∞ map then F ∗ extends (by
continuity) from C∞c (Ω2) to

11.34 (4.205)
{
u ∈ C−∞

c (Ω2);F
∗(WF(u)) ∩ (Ω1 × 0) = ∅ in T ∗Ω1

}

and (
11.32
4.204) holds.

4.22. The operation F∗

Next we will look at the dual operation, that of push-forward. Notice the basic
properties of pull-back:

Maps C∞c to C∞c (if F is proper)12.1 (4.206)

Not always defined on distributions.12.2 (4.207)

Dually we find

12.3 Proposition 4.19. If F : Ω1 −→ Ω2 is a C∞ map of an open subset of Rn

into an open subset of Rn then for any u ∈ C−∞
c (Ω1)

12.4 (4.208) F∗(u)(φ) = u(F ∗φ)

is a distribution of compact support and

12.5 (4.209) F∗ : C−∞
c (Ω1) −→ C−∞

c (Ω2)

has the property:

12.6 (4.210)
WF(F∗u) ⊂

{
(y, η);y ∈ F (supp(u)), y = F (x), F ∗

x η = 0
}
∪

{
(y, η); y = F (x), (x, F ∗

x η) ∈WF(u)
}
.

Proof. Notice that the ‘opposite ’ of (
12.1
4.206) and (

12.2
4.207) hold, i.e. F∗ is always

defined but even if u ∈ C∞c (Ω1) in general F∗u /∈ C∞c (Ω2). All we really have to
prove is (

12.6
4.210). As usual we look for a formula in terms of elementary operations.

So suppose u ∈ C∞c (Ω1)

12.7 (4.211)

F∗u(φ) = u(F ∗φ) φ ∈ C∞c (Ω2)

=

∫
u(x) φ(F (x)) dx

=

∫
u(x)δ(y − F (x)) φ(y) dydx.

Thus, we see that

12.8 (4.212) F∗u = π∗H
∗(u� δ)
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where δ = δ(y) ∈ C−∞
c (Rm), H is the diffeomorphism

(4.213) H(x, y) = (x, y − F (x))

and π : Rn+m −→ Rm is projection off the first factor.
Thus (

12.8
4.212) is the desired decomposition into elementary operations, since

u�δ ∈ C−∞
c (Rn+m), π∗H

∗(u�δ) is always defined and indeed the map is continuous,
which actually proves (

12.8
4.212).

So all we need to do is estimate the wavefront set using our earlier results.
From Proposition

10.31
4.14 it follows that

(4.214)

WF(u� δ) ⊂
{
(x, 0, ξ, η);x ∈ supp(u), ξ = 0

}
∪
{
(x, 0, ξ, 0); (x, ξ) ∈WF(u)

}

∪
{
(x, 0, ξ, η); (x, ξ) ∈WF(u)

}

=
{
(x, 0, ξ, η);x ∈ supp(u), ξ = 0

}
∪
{
(x, 0, ξ, η); (x, ξ) ∈WF(u)

}
.

Then consider what happens under H∗. This is a diffeomorphism so the wavefront
set transforms under the pull-back:

(4.215)

WF(H∗(u� δ)) = WF(u(x)δ(y − F (x))

=
{
(x, F (x),Ξ, η); Ξi = ξi −

∑

j

∂Fj

∂xi
(x)ηj , (x, 0, ξ, η) ∈WF(u� δ)

}

=
{
(x, F (x),Ξ, η);x ∈ supp(u),Ξi = −

∑

j

∂Fj

∂xi
(x)ηj)

}

∪
{
(x, F (x),Ξ, η); η ∈ Rm, (x, ξ) ∈WF(u)),Ξi = ξi −

∑

j

∂Fi

∂xj
ηj

}
.

Finally recall the behaviour of wavefront sets under projection, to see that

WF(F∗u) ⊂
{
(y, η); ∃ (x, y, 0, η) ∈WF(H∗(u� δ))

}

=
{
(y, η); y = F (x) for some x ∈ supp(u) and

∑

j

∂Fj

∂xi
ηj = 0, i = 1, . . . , n

}

∪
{
(y, η); y = F (x) for some (x, ξ) ∈WF(u) and

ξi =
∑

j

∂Fi

∂xi
ηj , i = 1, . . . , n)

}
.

This says

WF(F∗u) ⊂
{
(y, η); y ∈ F (supp(u)) and F ∗

x (η) = 0
}

(4.216)

∪
{
(y, η); y = F (x) with (x, F ∗

xη) ∈WF(u)
}

(4.217)

which is just (
12.6
4.210). �

As usual one should note that the two terms here are “really the same”.
Now let us look at F∗ as a linear map,

12.9 (4.218) F∗ : C∞c (Ω1) −→ C−∞
c (Ω2).
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As such it has a Schwartz kernel, indeed (
12.8
4.212) is just the usual formula for an

operator in terms of its kernel:

12.10 (4.219) F∗u(y) =

∫
K(y, x)u(x)dx, K(y, x) = δ(y − F (x)).

So consider the wavefront set of the kernel:

12.11 (4.220) WF(δ(y − F (x)) = WF(H∗δ(y)) =
{
(y, x; η, ξ); y = F (x), ξ = F ∗

xη
}
.

Now changing the order of the factors we can regard this as a subset

12.12 (4.221) WF′(K) =
{
((y, η), (x, ξ)); y = F (x), ξ = F ∗η

}
⊂ (Ω2×Rm)× (Ω1×Rn).

As a subset of the product we can regard WF′(K) as a relation: if Γ ⊂ Ω2 ×
(Rn\0) set

WF′(K) ◦ Γ =
{
(y, η) ∈ Ω2 × (Rm\0); ∃ ((y, η)), (x, ξ)) ∈WF′(K) and (x, ξ) ∈ Γ

}

Indeed with this definition

12.14 (4.222) WF(F∗u) ⊂WF′(K) ◦WF(u), K = kernel of F∗.

4.23. Wavefront relation

One serious application of our results to date is:

12.15 Theorem 4.1. Suppose Ω1 ⊂ Rn, Ω2 ⊂ Rm are open and A ∈ C−∞(Ω1 × Ω2)
has proper support, in the sense that the two projections

12.16 (4.223) supp(A)

π1

{{vv
vv

vv
vv

v

π2

##HH
HH

HH
HH

H

Ω1 Ω2

are proper, then A defines a linear map

12.17 (4.224) A : C∞c (Ω2) −→ C−∞
c (Ω1)

and extends by continuity to a linear map

A :
{
u ∈ C−∞

c (X); WF(u) ∩
{
(y, η) ∈ Ω2 × (Rn\0);(4.225)

∃ (x, 0, y,−η) ∈WF(K)
}

= ∅
}
−→ C−∞

c (Ω1)12.18 (4.226)

for which

12.19 (4.227) WF(Au) ⊂WF′(A) ◦WF(u),

where

12.20 (4.228)
WF′(A) =

{
((x, ξ), (y, η)) ∈(Ω1 × Rn)× (Ω2 × Rm); (ξ, η) 6= 0

and (x, y, ξ,−η) ∈WF(K)
}
.

Proof. The action of the map A can be written in terms of its Schwartz kernel
as

12.21 (4.229) Au(x) =

∫
K(x, y)u(y)dy = (π1)∗(K · (1 � u)).

Here 1 � u is always defined and

(4.230) WF(1 � u) ⊂
{
(x, y, 0, η); (y, η) ∈WF(u)

}
.
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So the main question is, when is the product defined? Our sufficient condition for
this is:

(4.231) (x, y, ξ, η) ∈WF(K) =⇒ (x, y,−ξ,−η) /∈WF(1 � u)

which is

(4.232) (x, y, 0, η) ∈WF(K) =⇒ (x, y, 0,−η) /∈WF(1 � u)

(4.233) i.e. (y,−η) /∈WF(u)

This of course is (
12.18
4.226):

(4.234) Au is defined (by continuity) if

(4.235)
{
(y, η) ∈WF(u); ∃ (x, 0, y,−η) ∈WF(A)

}
= ∅.

Then from our bound on the wavefront set of a product

(4.236)

WF (K · (1 � u)) ⊂
{
(x, y, ξ, η); (ξ, η) =(ξ′, η′) + (0, η′′) with

(x, y, ξ′, η′) ∈WF(K) and (x, η′′) ∈WF(u)
}

∪
{
(x, y, ξ, η); (x,y, ξ, η) ∈WF(K), y ∈ supp(u)

}

∪
{
(x, y, 0, η);(x, y) ∈ supp(A)(y, η) ∈WF(u)

}
.

This gives the bound

WF (π∗(K · (1 � u))) ⊂
{
(x, ξ); (x, y, ξ, 0) ∈WF(K · (1 � u)) for some y

}
(4.237)

⊂WF′(A) ◦WF(u).(4.238)

�

4.24. Applications

Having proved this rather general theorem, let us note some examples and
applications.

First, for pseudodifferential operators we know that

(4.239) WF′(A) ⊂ {(x, x, ξ, ξ)}
i.e. corresponds to the identity relation (which is a map). Then (

12.19
4.227) is the

microlocality of pseudodifferential operators. The next result also applies to all
pseudodifferential operators.

12.22 Corollary 4.2. If K ∈ C−∞(Ω1 × Ω2) has proper support and

12.23 (4.240) WF′(K) ∩ {(x, y, ξ, 0)} = ∅
then the operator with Scwartz kernel K defines a continuous linear map

12.24 (4.241) A : C∞c (Ω2) −→ C∞c (Ω1).

If

12.25 (4.242) WF′(K) ∩ {(x, y, 0, η)} = ∅
then A extends by continuity to

12.26 (4.243) A : C−∞
c (Ω2) −→ C−∞

c (Ω1).

Proof. Immediate from (
12.17
4.224)-(

12.26
4.243). �



126 4. MICROLOCALIZATION

4.25. ProblemsP.9.1

12.27 Problem 4.9. Show that the general definition (
8.10
4.62) reduces to

(4.244) WF(u) =
⋂{

Σ0(A); A ∈ Ψ0
∞(Rn) and Au ∈ C∞(Rn)

}
, u ∈ S ′(Rn)

and prove the basic result of ‘microlocal elliptic regularity:’

8.30 (4.245)
If u ∈ S ′(Rn) and A ∈ Ψm

∞(Rn) then

WF(u) ⊂ Σ(A) ∪WF(Au).

12.28 Problem 4.10. Compute the wavefront set of the following distributions:

(4.246)

δ(x) ∈ S ′(Rn), |x| ∈ S ′(Rn) and

χBn(x) =

{
1 |x| ≤ 1

0 |x| > 1.

12.29 Problem 4.11. Let Γ ⊂ Rn × (Rnr0) be an open cone and define

C−∞
c,Γ (Rn) =

{
u ∈ C−∞

c (Rn);Au ∈ C∞(Rn)(4.247)

∀ A ∈ Ψ0
∞(Rn) with WF′(A) ∩ Γ = ∅

}
.(4.248)

Describe a complete topology on this space with respect to which C∞c (Rn) is a dense
subspace.

12.30 Problem 4.12. Show that, for any pseudodifferential operator A ∈ Ψm
∞(Rn),

WF′(A) = WF′(A∗).

12.31 Problem 4.13. Give an alternative proof to Lemma
9.1
4.5 along the following

lines (rather than using Lemma
5.1
2.75). If σL(A) is the left reduced symbol then for

ε > 0 small enough

(4.249) b0 = γε

/
σL(A) ∈ S−m

∞ (Rn;Rn) .

If we choose B0 ∈ Ψ−m
∞ (Rn) with σL(B0) = b0 then

9.5 (4.250) Id−A ◦B0 = G ∈ Ψ0
∞(Rn)

has principal symbol

(4.251) σ0(G) = 1− σL(A) · b0.
From (

9.4
4.77)

(4.252) γε/4σ0(G) = γε/4.

Thus we conclude that if σL(C) = γε/4 then

(4.253) G = (Id−C)G+ CG with CG ∈ Ψ−1
∞ (Rn).

Thus (
9.5
4.250) becomes

9.6 (4.254) Id−AB0 = CG+R1 WF′(R1) 63 z.
Let B1 ∼

∑
j≥1

(CG)j , B1 ∈ Ψ−1 and set

(4.255) B = B0 (Id +B1) ∈ Ψ−m
∞ (Rn).
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From (
9.6
4.254)

AB = AB0(I +B1)(4.256)

= (Id−CG) (I +B1)−R1 (Id +B1)(4.257)

= Id +R2, WF′(R2) 63 z.(4.258)

Thus B is a right microlocal parametrix as desired. Write out the construction of
a left parametrix using the same method, or by finding a right parametrix for the
adjoint of A and then taking adjoints using Problem

12.30
4.12.

12.32 Problem 4.14. Essential uniqueness of left and right parametrices.

12.33 Problem 4.15. If (x̄, ξ̄) ∈ Rn×(Rnr0) is a given point, construct a distribution
u ∈ C−∞

c (Rn) which has

(4.259) WF(u) =
{
(x̄, tξ̄); t > 0

}
⊂ Rn × (Rnr0).

12.34 Problem 4.16. Suppose that A ∈ Ψm
∞(Rn) has Schwartz kernel of compact

support. If u ∈ C−∞
c (Rn) use the four ‘elementary operations’ (and an earlier

result on the wavefront set of kernels) to investigate under what conditions

(4.260) κ(x, y) = KA(x, y)u(y) and then γ(x) = (π1)∗κ

make sense. What can you say about WF(γ)?

12.35 Problem 4.17. Consider the projection operation under π1 : Rp×Rk −→ Rp.
Show that (π1)∗ can be extended to some distributions which do not have compact
support, for example

(4.261)
{
u ∈ S ′(Rn); supp(u) ∩K × Rk is compact for each K ⊂⊂ Rn

}
.





CHAPTER 5

Pseudodifferential operators on manifolds

In this chapter the notion of a pseudodifferential on a manifold is discussed.
Some preliminary material on manifolds is therefore necessary. However the discus-
sion of the basic properties of differentiable manifolds is kept to a bare minimum.
For a more leisurely treatement the reader might well consult XX or YY. Our main
aims here are first, to be able to prove the Hodge theorem (given the deRham the-
orem). Then we describe some global object which are very useful in applications,
namely a global quantization map, the structure of complex powers and the zeta
function.

5.1. C∞ structures

Let X be a paracompact Hausdorff topological space. A C∞ structure on X is
a subspace

13.1 (5.1) F ⊂ C0(X) = {u : X −→ R continuous }
with the following property:

For each x ∈ X there exists elements f1, . . . , fn ∈ F such that for some open
neighbourhood Ω 3 x

13.2 (5.2) F : Ω 3 x 7−→ (f1(x), . . . , fn(x)) ∈ Rn

is a homeomorphism onto an open subset of Rn and every f ∈ F satisfies

13.3 (5.3) f � Ω = g ◦ F for some g ∈ C∞(Rn).

The map (
13.2
5.2) is a coordinate system near x. Two C∞ structures F1 and F2

are ‘compatible’ if F1 ∪F2 is also a C∞ structure. Compatibility in this sense is an
equivalence relation on C∞ structures. It therefore makes sense to say that:

13.4 Definition 5.1. A C∞ manifold is a (connected) paracompact Hausdorff topo-
logical space with a maximal C∞ structure.

The maximal C∞ structure is conventionally denoted

(5.4) C∞(X) ⊂ C0(X).

It is necessarily an algebra. If we let C∞c (W ) ⊂ C∞(X) denote the subspace of
functions which vanish outside a compact subset of W then any local coordinates
(
13.2
5.2) have the property

13.5 (5.5) F ∗ : C∞c (F (Ω)) ←→
{
u ∈ C∞(X); u = 0 on X\K,K ⊂⊂ Ω

}
.

Futhermore C∞(X) is local:

13.6 (5.6)
u : X −→ R and ∀ x ∈ X ∃ Ωx open, Ωx 3 x,

s.t. u− fx = 0 on Ωx for some fx ∈ C∞(X) =⇒ u ∈ C∞(X).

129
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A map G : X −→ Y between C∞ manifolds X and Y is C∞ if

(5.7) G∗ : C∞(Y ) −→ C∞(X)

i.e. G ◦ u ∈ C∞(X) for all u ∈ C∞(Y ).

5.2. Form bundles

A vector bundle is a triple π : V −→ X consisting of two manifolds, X and V,
and a surjective C∞ map π with each

(5.8) Vx = π−1(x)

having a linear structure such that

(5.9) F =
{
u : V −→ R, u is linear on each Vx

}

is a C∞ structure on V compatible with C∞(V ) (i.e. contained in it, since it is
maximal).

The basic example is the cotangent bundle which we defined before for open
sets in Rn. The same definition works here. Namely for each x ∈ X set

(5.10)

Ix =
{
u ∈ C∞(X);u(x) = 0

}

I2
x =

{
u =

∑

finite

uiu
′
i; ui, u

′
i ∈ Ix

}

T ∗
xX = Ix

/
I2

x, T
∗X =

⋃

x∈X

T ∗
xX.

So π : T ∗X −→ X just maps each T ∗
xX to x. We need to give T ∗X a C∞ structure

so that “it” (meaning π : T ∗X −→ X) becomes a vector bundle. To do so note
that the differential of any f ∈ C∞(X)

(5.11) df : X −→ T ∗X df(x) = [f − f(x)] ∈ T ∗
xX

is a section (π ◦ df = Id). Put

(5.12) F =
{
u : T ∗X −→ R;u ◦ df : X −→ R is C∞ ∀ f ∈ C∞(X)

}
.

Then F = C∞(T ∗X) is a maximal C∞ structure on T ∗X and

Flin =
{
u : T ∗X −→ R, linear on each T ∗

xX ;u ∈ F
}

is therefore compatible with it. Clearly df is C∞.
Any (functorial) operation on finite dimensional vector spaces can be easily seen

to generate new vectors bundles from old. Thus duality, tensor product, exterior
powers all lead to new vector bundles:

(5.13) TxX = (T ∗
xX)

∗
, TX =

⋃

x∈X

TxX

is the tangent bundle

Λk
xX =

{
u :

k factors

TxX × · · · × TxX −→ R;u is multilinear and antisymmetric
}

leads to the k-form bundle

ΛkX =
⋃

x∈X

Λk
xX, Λ1X ' T ∗X

where equivalence means there exists (in this case a natural) C∞ diffeomorphism
mapping fibres to fibres linearly (and in this case projecting to the identity on X).
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A similar construction leads to the density bundles

Ωα
xX =

{
u :

n=dimX factors

TxX ∧ · · · ∧ TxX −→ R; absolutely homogeneous of degree α
}

that is
u(tv1 ∧ . . . vn) = |t|αu(v1 ∧ · · · ∧ vn).

These are important because of integration. In general if π : V −→ X is a vector
bundle then

C∞(X ;V ) =
{
u : X −→ V ; π ◦ u = Id

}

is the space of sections. It has a natural linear structure. Suppose W ⊂ X is a
coordinate neighbourhood and u ∈ C∞(X ; Ω), Ω = Ω1X, has compact support in
W. Then the coordinate map gives an identification

Ω∗
xX ←→ Ω∗

F (x)R
n ∀ α

and

(5.14)

∫
u =

∫

Rn

gu(x), u = gu(x)|dx|

is defined independent of coordiantes. That is the integral

(5.15)

∫
: C∞c (X ; Ω) −→ R

is well-defined.

5.3. Pseudodifferential operators

Let X be a C∞ manifold, and let C∞c (X) ⊂ C∞(X) be the space of C∞ functions
of compact support. Then, for any m ∈ R, Ψm(X) is the space of linear operators

13.7 (5.16) A : C∞c (X) −→ C∞(X)

with the following properties. First,

13.8 (5.17)

if φ, ψ ∈ C∞(X) have disjoint supports then ∃ K ∈ C∞(X ×X ; ΩR)

such that ∀ u ∈ C∞c (X) φAψu =

∫

X

K(x, y)u(y),

and secondly if F : W −→ Rn is a coordinate system in X and ψ ∈ C∞c (X) has
support in W then

∃ B ∈ Ψm
∞(Rn), supp(B) ⊂W ×W s.t.

ψAψu � W = F ∗(B((F−1)∗(ψu))) ∀ u ∈ C∞c (X).

This is a pretty horrible definition, since it requires us to check every coordinate
system, at least in principle. In practice the coordinate-invariance we proved earlier
means that this is not necessary and also that there are plenty of examples!

Any open cover of a C∞ manifold has a partition of unity subordinate to it, i.e.
if Ar ⊂ X are open sets for r ∈ R and

(5.18) X =
⋃

r∈R

Ar

there exists φi ∈ C∞c (X), all non-negative with locally finite support:

(5.19) ∀ i supp(φi) ∩ supp(φj) 6= ∅ for a finite set of indices j,
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where each supp(φi) ⊂ Ar for some r = r(i) and

(5.20)
∑

i

φi(x) = 1 ∀ x.

In fact one can do slightly better than this, for a covering by coordinate neighbour-
hoods.

13.9 Lemma 5.1. There exists a partition of unity on X (a C∞ manifold) φi s.t. for
every i

(5.21)
⋃

j

{
supp(φj); supp(φj) ∩ supp(φi) 6= 0

}

is contained in a coordinate neighbourhood!

Using such a partition of unity we see that every element of Ψm(X) can be
written in the form

A =
∑

i

∑

j

φjF
∗KAφi

where the terms have smooth kernels if the supports of φi and φj do not meet, or
else are pseudodifferential operators in any local coordinates in a patch containing
both supports. Below we shall use this to prove:

13.10 Theorem 5.1. Let X be a compact C∞ manifold then the pseudodifferential
operators Ψ∗(X) form a symbol-filtered ring.

If X is a C∞ manifold we have defined the space Ψm(X) as consisting of those
linear operators

14.1 (5.22) A : C∞c (X) −→ C∞(X)

which are given locally by pseudodifferential operators of order m on X, in a precise
sense. Let us recast this definition in terms of the Schwartz kernel theorem. Over
the product, X2, consider the right density bundle, ΩR = π∗

RΩ. Here we use the
pull-back operation on vector bundles:

14.2 Theorem 5.2. If W −→ Y is a C∞ vector bundle and F : X −→ Y is a C∞
map then F ∗W −→ X is a well-defined C∞ vector bundle over X with total space

14.3 (5.23) F ∗W =
⋃

x∈X

WF (x);

if φ ∈ C∞(Y ;W ) then F ∗φ is a section of F ∗W and C∞(X ;F ∗W ) is spanned by
C∞(X) · F ∗C∞(Y ;W ).

Distributional sections of any C∞ vector bundle can be defined in two equivalent
ways:

14.4 (5.24) “Algebraically” C−∞(X ;W ) = C−∞(X)
⊗

C∞(X)

C∞(X ;W )

or

14.5 (5.25) “Analytically” C−∞(X ;W ) =
[
C∞c (X ; Ω⊗W ′)

]

where W ′ is the dual bundle and Ω the density bundle over X. In order to use
(
14.5
5.25) we need to define a topology on C∞c (X ;U) for any vector bundle U over X.

One can do this by reference to local coordinates.
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If W −→ X is a vector bundle the spaces Sm(W ) of symbols on W is well-
defined for each m ∈ R.

14.6 Proposition 5.1. A pseudodifferential operator A ∈ Ψm(X) can be written in
terms of its kernel

(5.26) KA ∈ C∞(X2; ΩR)

where

14.7 (5.27) KA is C∞ in X2\∆
and if Xi ⊂ X is a coordinate partition, ρi ∈ C∞c (X) has support in Xi then in
terms of the same coordinates xi = F ∗

i (xi) and yi = F ∗(xi) in the two factors of X

14.8 (5.28) ρi(x)ρ(y)KA = Ki(x, y)|dy|, Ki ∈ Ψm(Rn).

Suppose ρ2
i is a partition of unity of X, subordinate to a coordinate covering.

For each i the symbol of Ki in (
14.8
5.28) is an equivalence class on Rn × (Rn\0), with

support in supp(ρi) ∗ (R2\0). Set

14.9 (5.29) σm(τ) =
∑

{i,π(τ)∈supp(ρi)}

ai(x
(i), ξ(i))

where

(5.30) τ = F ∗
i (
∑

j

ξ
(i)
j · dxj) ξ(i) · dx ∈ T ∗

x(i)Rn, x(i) = Fi(π(τ))

and the ai are representations of the symbols of the Ki. This defines a function on
T ∗X\0, in fact the equivalence class

14.10 (5.31) σm(A) ∈ Sm−[1](T ∗X)

is well-defined.

14.11 Proposition 5.2. The principal symbol map in (
14.10
5.31), defined as in (

14.9
5.29),

gives a short exact sequence:

14.12 (5.32) 0 ↪→ Ψm−1(X) ↪→ Ψm(X)
σm−→ Sm−[1](T ∗X) −→ 0.

Proof. First we need to check that σm(A) is indeed well-defined. This involves
checking what happens under a change of coordinate covering and a change of
partition of unity subordinate to it. First, under a change of partition of unity,
subordinate to a fixed covering note that

14.13 (5.33)

ρ′j(x)ρ
′
j(y)KA =

∑

i

ρ′j(x)ρ
2
i (x)ρ

′
j(y)KA

≡
∑

i

ρ′j(x)ρi(x)ρi(y)ρ
′
j(y)KA

≡ (ρ′j)
2
∑

i

ρi(x)KAρj(y).

where equality is modulo Ψm−1, since [φ,Ψm] ⊂ Ψm−1 for any C∞ function φ.
It follows from (

14.12
5.32) that the principal symbols, defined by (

14.9
5.29), for the two

partitions of unity agree.
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For a change of coordinate covering it suffices to use the transformation law
for the principal symbol under a diffeomorphism of Rn and the freedom, just es-
tablished, to choose the partition of unity to be subordinates to both coordinate
coverings. Thus σm is well-defined.

Certainly if A ∈ Ψm−1(X) then σm(N) ≡ 0. Moreover if A ∈ Ψm(X) and
σm(A) ≡ 0 then all the operators ρi(x)Kρi(y) are actually of order m− 1. Since

14.14 (5.34) A ≡
∑

i

∑

i

ρ′iρj(X)Aρ′iρj mod Ψm−1(X)

for any two partitions of units ρ
′2
i , (ρ

′
i)

2 we can choose the ρ′i to each have support
in a region where ρj 6= 0 for some j. Then (

14.14
5.34) shows that A ∈ Ψm−1(X).

Thus it only remains to show that the map σm is surjective. If a ∈ Sm(T ∗X)
choose Ai ∈ Ψm

∞(Rn) by

(5.35) σL(Ai) = ρi(x)(F
∗)−1aiρi(y) ∈ Sm

∞(Rn × Rn)

and set

14.15 (5.36) A =
∑

i

F ∗
i AiG

∗
i Gi = F−1

i .

Then, from (
14.9
5.29) σm(A) ≡ a by invariance of the principal symbol. �

The other basic properties of the calculus are easily established. For example

14.16 (5.37) σm+m′(A · B) = σm(A) · σm(B)

if A ∈ Ψm(X), B ∈ Ψm′

(X), X compact. Similarly note that

(5.38) AB =
∑

i,j

ρ2
iAρ

2
jB =

∑

i,j

ρiAρi · ρjBρi mod Ψm′
m−1

which gives (
14.16
5.37).

In § Sect.MicPar4.9 we used the symbol calculus to construct a left and right parametrix for
an elliptic element of Ψm(X), where X is compact, i.e. an element B ∈ Ψ−m(X),
such that

14.17 (5.39) AB − Id, BA− Id ∈ Ψ−∞(X).

As a consequence of this construction note that:

14.18 Proposition 5.3. If A ∈ Ψm(X) is elliptic, and X is compact, then

14.19 (5.40) A : C∞(X) −→ C∞(X)

is Fredholm, i.e. has finite dimensional null space and closed range with finite di-
mensional complement. If ν is a non-vanishing C∞ measure on X and a generalized
inverse of A is defined by

14.20 (5.41)
Gu = f if u ∈ Ran(A), Af = u, f ⊥ν Nul(A)

Gu = 0 if u ⊥ν Ran(A)

then G ∈ Ψ−m(X) satisfies

14.21 (5.42)
GA = Id−πN

AG = Id−πR

where πN and πR are ν-orthogonal projections onto the null space of A and the
ν-orthocomplement of the range of A respectively.
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Proof. The main point to note is that E ∈ Ψ−∞(X) is smoothing,

14.22 (5.43) E : C−∞(X) −→ C∞(X) ∀ E ∈ Ψ−∞(X).

Such a map is compact on L2(X), i.e. maps bounded sets into precompact sets by
the theorem of Ascoli and Arzela. The second thing to recall is that a Hilbert space
with a compact unit ball is finite dimensional. Then

14.23 (5.44) Nul(A) = {u ∈ C∞(X);Au = 0} = {u ∈ L2(X);Au = 0}
since, from (

14.23
5.44) Au = 0 =⇒ (BA − Id)u = −Eu, E ∈ Ψ∞(X), so Au = 0,

u ∈ C−∞(X) =⇒ u ∈ C∞(X). Then

(5.45) Nul(A) = {u ∈ L2(X);Au = 0

∫
|u|2ν = 1} ⊂ L2(X)

is compact since it is closed (A is continuous) and so Nul(A) = E(Nul(A)) is
precompact. Thus Nul(A) is finite dimensional.

Next let us show that Ran(A) is closed. Suppose fj = Auj −→ f in C∞(X),
uj ∈ C∞(X). By what we have just shown we can assume that uj ⊥ν Nul(A). Now
if B is the parametrix

(5.46) uj = Bfj + Euj , E ∈ Ψ−∞(X).

Suppose, along some subsequence, ‖uj‖ν −→ ∞. Then

(5.47)
uj

‖uj‖ν
= B

(
fj

‖uj‖ν

)
+E

(
uj

‖uj‖ν

)

shows that
uj

‖uj‖ν
lies in a precompact subset of L2,

uj

‖uj‖ν
−→ u. This is a con-

tradiction, since Au = 0 but ‖u‖ = 1 and u ⊥ν Nul(A). Thus the norm sequence
‖uj‖ is bounded and therefore the sequence has a weakly convergent subsequence,
which we can relabel as uj . The parametrix shows that u = Bfj +Euj is strongly
convergent with limit u, which satisfies Au = f.

Finally we have to show that Ran(A) has a finite dimensional complement.
If πR is orthogonal projection off Ran(A) then from the second part of (

14.17
5.39)

f = πRE
′f for some smoothing operator E. This shows that the orthocomplement

has compact unit ball, hence is finite dimensional. �

Notice that it follows that the two projections in (
14.21
5.42) are both smoothing

operators of finite rank.

5.4. Pseudodifferential operators on vector bundles

We have just shown that any elliptic pseudodifferential operator, A ∈ Ψm(X)
on a compact manifold X has a generalized inverse B ∈ Ψ−m(X), meaning

15.1 (5.48)
BA = Id−πN

AB = Id−πR

where πN and πR are the orthogonal projections onto the null space of A and
the orthocomplement of the range of A with respect to a prescribed C∞ positive
density ν, both are elements of Ψ−∞(X) and have finite rank. To use this theorem
in geometric situations we need first to make the “trivial” extension to operators
on sections of vector bundles.

As usual there are two ways (at least) to approach this extension; the high road
and the low road. The “low” road is to go back to the definition of Ψm(X) and
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to generalize to Ψm(X ;V,W ). This just requires to take the definition, following
(
13.7
5.16), but using a covering with respect to which the bundles V,W are both locally

trivial. The local coordinate representatives of the pseudodifferential operator are
then matrices of pseudodifferential opertors. The symbol mapping becomes

15.2 (5.49) Ψm(X ;V,W ) −→ Sm−[1] (T ∗X ; Hom(V,W ))

where Hom(V,W ) ' V ⊗W ′ is the bundle of homomorphisms from V to W and
the symbol space consists of symbolic sections of the lift of this bundle to T ∗X. We
leave the detailed description and proof of these results to the enthusiasts.

So what is the “high” road. This involves only a little sheaf-theoretic thought.
Namely we want to define the space Ψm(X ;V,W ) using Ψm(X) by:

15.3 (5.50) Ψm(X ;V,W ) = Ψm(X)
⊗

C∞(X2)

C∞(X2;V �W ′).

To make sense of this we first note that Ψm(X) is a C∞(X2)-module as is the space
C∞(X2;V �W ′) where V �W ′ is the “exterior” product:

15.4 (5.51) (V �W ′)(x,y) = Vx ⊗W ′
y.

The tensor product in (
15.3
5.50) means that

15.5 (5.52) A ∈ Ψm(X ;V,W ) is of the form A =
∑

i

Ai ·Gi

where Ai ∈ Ψm(X), Gi ∈ C∞(X2;V �W ′) and equality is fixed by the relation

15.6 (5.53) φA ·G−A · φG ≡ 0.

Now what we really need to note is:

15.7 Proposition 5.4. For any compact C∞ manifold Y and any vector bundle U
over Y

15.8 (5.54) C−∞(Y ;U) ≡ C−∞(Y )
⊗

C∞(Y )

C∞(Y ;U).

Proof. C−∞(Y ;U) = (C∞(Y ; Ω ⊗ U ′))′ is the definition. Clearly we have a
mapping

(5.55) C−∞(Y )
⊗

C∞(Y )

C∞(Y ;U) 3
∑

i

Ai · gi −→ C−∞(Y ;U)

given by

15.9 (5.56)
∑

i

ui · gi(ψ) =
∑

i

ui(gi · ψ)

since giψ ∈ C∞(Y ; Ω) and linearity shows that the map descends to the tensor
product. To prove that the map is an isomorphism we construct an inverse. Since
Y is compact we can find a finite number of sections gi ∈ C∞(Y ;U) such that any
u ∈ C∞(Y ;U) can be written

(5.57) u =
∑

i

higi hi ∈ C∞(Y ).

By reference to local coordinates the same is true of distributional sections with

(5.58) hi = u · qi qi ∈ C∞(Y ;U ′).

This gives a left and right inverse. �
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15.10 Theorem 5.3. The calculus extends to operators sections of vector bundles
over any compact C∞ manifolds.

5.5. Laplacian on forms

Since this is more differential geometry than differential analysis I will be brief.
We already defined the exterior derivative

15.11 (5.59) d : C∞(X) −→ C∞(X ;T ∗X)

as part of the definition of T ∗X, i.e.

(5.60) df(x) = [f(x− f(x)] ∈ T ∗
xX ∀ x ∈ X.

The importance of the form bundles is tha they give a resolution of (
15.11
5.59).

[Actually I didn’t mean to be this brief, but was interupted while writing the
lecture!]

5.6. Hodge theorem

5.7. Pseudodifferential projectionsS.pseudo.proj

5.6.1998.228 Proposition 5.5. If P ∈ Ψ0(M ;E) is such that P 2 − P ∈ Ψ−∞(M ;E) then
there exists Π ∈ Ψ0(M ;E) such that Π2 = Π and Π− P ∈ Ψ−∞(M ;E).

4.6.1998.227 Proposition 5.6. If P ∈ Ψ0(M ;E) is such that P 2 − P ∈ Ψ−∞(M ;E) and
F ⊂ Hs(M ;E) is a closed subspace corresponding to which there are smoothing
operators A,B ∈ Ψ−∞(M ;E) with Id−P = A on F and (P + B)L2(M ;E) ⊂ F
then there is a smoothing operator B′ ∈ Ψ−∞(M : E) such that F = Ran(P + B′)
and (P +B′)2 = P +B′.

Proof. Assume first that s = 0, so F is a closed subspace of L2(X ;E). Ap-
plying Proposition

5.6.1998.228
5.5 to P we may assume that it is a projection, without af-

fecting the other conditions. Consider the intersection E = F ∩ Ran(Id−Π). This
is a closed subspace of L2(M ;E). With A as in the statement of the proposition,
E ⊂ Nul(Id−A). Indeed P vanishes on Ran(Id−P ) and hence on E and by hypoth-
esis Id−P − A vanishes on F and hence on E. From the properties of smoothing
operators, E is contained in a finite dimensional subspace of C∞(M ;E), so is itself
such a space. We may modify P by adding a smoothing projection onto E to it,
and so assume that F ∩ Ran(Id−P ) = {0}.

Consider the sum G = F + Ran(Id−P ). Consider the operator Id +B = (P +
B) + (Id−P ), with B as in the statement of the Proposition. The range of Id +B
is contained in G. Thus G must be a closed subspace of L2(M ;E) with a finite
dimensional complement in C∞(M ;E). Adding a smoothing projection onto such
a complement we can, again by altering P by smoothing term, arrange that

5.6.1998.229 (5.61) L2(M ;E) = F ⊕Ran(Id−P )

is a (possibly non-orthogonal) direct sum. Since P has only been altered by a
smoothing operator the hypotheses of the Proposition continue to hold. Let Π
be the projection with range F and null space equal to the range of Id−P. It
follows that P ′ = P + (Id−P )RP for some bounded operator R (namely R =
(Id−P )(P ′ − P )P.) Then restricted to F, P ′ = Id and P = Id +A so R = −A on
F. In fact R = AP ∈ Ψ−∞(M ;E), since they are equal on F and both vanish on
Ran(Id−P ). Thus P ′ differs from P by a smoothing operator.



138 5. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

The case of general s follows by conjugating with a pseudodifferential isomor-
phism of Hs(M ;E) to L2(M ;E) since this preserves both the assumptions and the
conclusions. �

5.8. Heat kernel

5.9. Resolvent

5.10. Complex powers

5.11. Problems

6.3.1998.156 Problem 5.1. Show that compatibility in the sense defined before Defini-
tion

13.4
5.1 is an equivalence relation on C∞ structures. Conclude that there is a

unique maximal C∞ structure containing any give C∞ structure.

6.3.1998.158 Problem 5.2. Let F be a C∞ structure on X and let Oa, a ∈ A, be a covering
of X by coordinate neighbourhoods, in the sense of (

13.2
5.2) and (

13.3
5.3). Show that the

maximal C∞ structure containing F consists of ALL functions on X which are of
the form (

13.3
5.3) on each of these coordinate patches. Conclude that the maximal C∞

structure is an algebra.

6.3.1998.159 Problem 5.3 (Partitions of unity). Show that any C∞ manifold admits parti-
tions of unity. That is, if Oa, a ∈ A, is an open cover of X then there exist elements
ρa,i ∈ C∞(X), a ∈ A, i ∈ N, with 0 ≤ ρa,i ≤ 1, with each ρa,i vanishing outside
a compact subset Ka,i ⊂ Oa such that only finite collections of the {Ka,i} have
non-trivial intersection and for which∑

a∈A,i∈N

ρa,i = 1.



CHAPTER 6

Elliptic boundary problemsC.Elliptic.boundary

Summary

Elliptic boundary problems are discussed, especially for operators of Dirac type.
We start with a discussion of manifolds with boundary, including functions spaces
and distributions. This leads to the ‘jumps formula’ for the relationship of the
action of a differential operator to the operation of cutting off at the boundary;
this is really Green’s formula. The idea behind Calderòn’s approach to boundary
problems is introduced in the restricted context of a dividing hypersurface in a
manifold without boundary. This includes the fundamental result on the boundary
behaviour of a pseudodifferential operator with a rational symbol. These ideas are
then extended to the case of an operator of Dirac type on a compact manifold
with boundary with the use of left and right parametrices to define the Calderòn
projector. General boundary problems defined by pseudodifferential projections are
discussed by reference to the ‘Calderòn realization’ of the operator. Local boundary
conditions, and the corresponding ellipticity conditions, are then discussed and the
special case of Hodge theory on a compact manifold with boundary is analysed in
detail for absolute and relative boundary conditions.

Introduction

Elliptic boundary problems arise from the fact that elliptic differential operators
on compact manifolds with boundary have infinite dimensional null spaces. The
main task we carry out below is the parameterization of this null space, in terms of
boundary values, of an elliptic differential operator on a manifold with boundary.
For simplicity of presentation the discussion of elliptic boundary problems here will
be largely confined to the case of first order systems of differential operators of
Dirac type. This has the virtue that the principal results can be readily stated.

Status as of 4 August, 1998

Read through Section
S.Manifolds.boundary
6.1–Section

S.Smooth.functions.MWB
6.2: It is pretty terse in places! Several vital

sections are still missing.

6.1. Manifolds with boundaryS.Manifolds.boundary

Smooth manifolds with boundary can be defined in very much the same was as
manifolds without boundary. Thus we start with a paracompact Hausdorff space
X and assume that it is covered by ‘appropriate’ coordinate patches with corre-
sponding transition maps. In this case the ‘model space’ is Rn,1 = [0,∞)× Rn−1,
a Euclidean half-space of fixed dimension, n. As usual it is more convenient to use

139
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as models all open subsets of Rn,1; of course this means relatively open, not open
as subsets of Rn. Thus we allow any

O = O′ ∩ Rn,1 , O′ ⊂ Rn open,

as local models.
By a smooth map between open sets in this sense we mean a map with a smooth

extension. Thus if Oi for i = 1, 2 are open in Rn,1 then smoothness of a map F
means that

1.6.1998.220 (6.1) F : O1 → O2, ∃ O′
i ⊂ Rn, i = 1, 2, open and F̃ : O′

1 → O′
2

which is C∞ with Oi = O′
i ∩ Rn,1 and F = F ′|O1.

It is important to note that the smoothness condition is much stronger than
just smoothness of F on O ∩ (0,∞)× Rn−1.

By a diffeomorphism between such open sets we mean an invertible smooth
map with a smooth inverse. Various ways of restating the condition that a map be
a diffeomorphism are discussed below.

With this notion of local model we define a coordinate system (in the sense of
manifolds with boundary) as a homeomorphism of open sets

X ⊃ U Φ−→ O ⊂ Rn,1 , O, U open.

Thus Φ−1 is assumed to exist and both Φ and Φ−1 are assumed to be continuous.
The compatibility of two such coordinate systems (U1,Φ1, O1) and (U2,Φ2, O2) is
the requirement that either U1 ∩ U2 = φ or if U1 ∩ U2 6= φ then

Φ1,2 = Φ2 ◦ Φ−1
1 : Φ1(U1 ∩ U2)→ Φ2(U1 ∩ U2)

is a diffeomorphism in the sense described above. Notice that both Φ1(U1 ∩ U2)
and Φ2(U1 ∩ U2) are open in Rn,1. The inverse Φ1,2 is defined analogously.

A C∞ manifold with boundary can then be formally defined as a paracompact
Hausdorff topological space which has a maximal covering by mutually compatible
coordinate systems.

An alternative definition, i.e. characterization, of a manifold with boundary is
that there exists a C∞ manifold X̃ without boundary and a function f ∈ C∞(X̃)

such that df 6= 0 on {f = 0} ⊂ X̃ and

X =
{
p ∈ X̃; f(p) ≥ 0

}
,

with coordinate systems obtained by restriction from X̃. The doubling construction
described below shows that this is in fact an equivalent notion.

6.2. Smooth functionsS.Smooth.functions.MWB

As in the boundaryless case, the space of functions on a compact manifold
with boundary is the primary object of interest. There are two basic approaches to
defining local smoothness, the one intrinsic and the other extrinsic, in the style of
the two definitions of a manifold with boundary above. Thus if O ⊂ Rn,1 is open
we can simply set

C∞(O) = {u : O → C; ∃ ũ ∈ C∞(O′) ,

O′ ⊂ Rn open, O = O′ ∩ Rn,1 , u = ũ|O
}
.
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Here the open set in the definition might depend on u. The derivatives of ũ ∈
C∞(O′) are bounded on all compact subsets, K b 0. Thus

eq:F1 (6.2) sup
K∩O◦

|Dαu| <∞ , O◦ = O ∩ ((0,∞)× Rn−1) .

The second approach is to use (
eq:F1
6.2) as a definition, i.e. to set

eq:F2 (6.3) C∞(O) = {u : O◦ → C; (
eq:F1
6.2) holds ∀ K b O and all α} .

In particular this implies the continuity of u ∈ C∞(O) up to any point p ∈ O ∩
({0} × Rn−1), the boundary of O as a manifold with boundary.

As the notation here asserts, these two approaches are equivalent. This follows
(as does much more) from a result of Seeley:

Proposition 6.1. If C∞(O) is defined by (
eq:F2
6.3) and O′ ⊂ Rn is open with

O = O′ ∩ Rn,1 then there is a linear extension map

E : C∞(O) → C∞(O′) , Eu|O′ = u

which is continuous in the sense that for each K ′ b O′, compact, there is some
K b O such that for each α

sup
K′

|DαEu| ≤ Cα,K′ sup
K∩O

|Dαu| .

The existence of such an extension map shows that the definition of a diffeo-
morphism of open sets O1, O2, given above, is equivalent to the condition that
the map be invertible and that it, and its inverse, have components which are in
C∞(O1) and C∞(O2) respectively.

Given the local definition of smoothness, the global definition should be evident.
Namely, if X is a C∞ manifold with boundary then

C∞(X) =
{
u : X → C; (Φ−1)∗(u|U ) ∈ C∞(O) ∀ coordinate systems

}
.

This is also equivalent to demanding that local regularity, i.e. the regularity of
(Φ−1)∗(u|O), hold for any one covering by admissible coordinate systems.

As is the case of manifolds without boundary, C∞(X) admits partitions of unity.
In fact the proof of Lemma

13.9
5.1 applies verbatim; see also Problem

6.3.1998.159
5.3.

The topology of C∞(X) is given by the supremum norms of the derivatives in
local coordinates. Thus a seminorm

sup
KbO

∣∣Dα(Φ−1)∗(u|U )
∣∣

arises for each compact subset of each coordinate patch. In fact there is a countable
set of norms giving the same topology. If X is compact, C∞(X) is a Fréchet space,
if it is not compact it is an inductive limit of Fréchet spaces (an LF space).

The boundary of X, ∂X , is the union of the Φ−1(O ∩ ({0} × Rn−1)) over
coordinate systems. It is a manifold without boundary. It is compact if X is
compact. Furthermore, ∂X has a global defining function ρ ∈ C∞(X); that is
ρ ≥ 0, ∂X = {ρ = 0} and dρ 6= 0 at ∂X . Moreover if ∂X is compact then any such
boundary defining function can be extended to a product decomposition of X near
∂X :

11.6.1998.250 (6.4) ∃C ⊃ ∂X , open in X ε > 0 and a diffeomorphismϕ : C ' [0, ε)ρ × ∂X.
If ∂X is not compact this is still possible for an appropriate choice of ρ. For an

outline of proofs see Problem
11.6.1998.251
6.1.
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11.6.1998.249 Lemma 6.1. If X is a manifold with compact boundary then for any boundary
defining function ρ ∈ C∞(X) there exists ε > 0 and a diffeomorphism (

11.6.1998.250
6.4).

11.6.1998.251 Problem 6.1.

The existence of such a product decomposition near the boundary (which might
have several components) allows the doubling construction mentioned above to be
carried through. Namely, let

eq:F4 (6.5) X̃ = (X ∪X)/∂X

be the disjoint union of two copies of X with boundary points identified. Then
consider

eq:F5 (6.6) C∞(X̃) = {(u1, u2) ∈ C∞(X)⊕ C∞(X);

(ϕ−1)∗(u1|C) = f(ρ, ·) , (ϕ−1)∗(u2|C) = f(−ρ, ·) ,
f ∈ C∞((−1, 1)× ∂X)} .

This is a C∞ structure on X̃ such that X ↪→ X̃ , as the first term in (
eq:F4
6.5), is an

embedding as a submanifold with boundary, so

C∞(X) = C∞(X̃)|X .

In view of this possibility of extending X to X̃, we shall not pause to discuss
all the usual ‘natural’ constructions of tensor bundles, density bundles, bundles of
differential operators, etc. They can simply be realized by restriction from X̃. In
practice it is probably preferable to use intrinsic definitions.

The definition of C∞(X) implies that there is a well-defined restriction map

C∞(X) 3 u 7−→ u|∂X ∈ C∞(∂X).

It is always surjective. Indeed the existence of a product decomposition shows that
any smooth function on ∂X can be extended locally to be independent of the chosen
normal variable, and then cut off near the boundary.

There are important points to observe in the description of functions near
the boundary. We may think of C∞(X) ⊂ C∞(X◦) as a subspace of the smooth
functions on the interior of X which describes the ‘completion’ (compactification if
X is compact!) of the interior to a manifold with boundary. It is in this sense that
the action of a differential operator P ∈ Diffm(X)

P : C∞(X)→ C∞(X)

should be understood. Thus P is just a differential operator on the interior of X
with ‘coefficients smooth up to the boundary.’

Once this action is understood, there is an obvious definition of the space of
C∞ functions which vanish to all orders at the boundary,

Ċ∞(X) = {u ∈ C∞(X);Pu|∂X = 0 ∀ P ∈ Diff∗(X)} .
Having chosen a product decomposition near the boundary, Taylor’s theorem gives
us an isomorphism

C∞(X)/Ċ∞(X) ∼=
⊕

k≥0

C∞(∂X) · [dρ|∂X ]k.
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6.3. DistributionsS.Distributions.MWB

It is somewhat confusing that there are three (though really only two) spaces of
distributions immediately apparent on a compact manifold with boundary. Under-
standing the relationship between them is important to the approach to boundary
problems used here.

The coarsest (as it is a little dangerous to say largest) space is C−∞(X◦),
the dual of C∞c (X◦; Ω), just the space of distributions on the interior of X . The
elements of C−∞(X◦) may have unconstrained growth, and unconstrained order of
singularity, approaching the boundary. They are not of much practical value here
and appear for conceptual reasons.

Probably the most natural space of distributions to consider is the dual of
C∞(X ; Ω) since this is arguably the direct analogue of the boundaryless case. We
shall denote this space

eq:D1 (6.7) Ċ−∞(X) = (C∞(X ; Ω))′

and call it the space of supported distributions. The ‘dot’ is supposed to indicate
this support property, which we proceed to describe.

If X̃ is any compact extension of X (for example the double) then, as already

noted, the restriction map C∞(X̃ ; Ω) → C∞(X ; Ω) is continuous and surjective.
Thus, by duality, we get an injective ‘extension’ map

eq:D2 (6.8) Ċ−∞(X) 3 u 7→ ũ ∈ C−∞(X̃), ũ(ϕ) = u(ϕ|X ).

We shall regard this injection as an identification Ċ−∞(X) ↪→ C−∞(X̃); its range
is easily characterized.

prop:D4 Proposition 6.2. The range of the map (
eq:D2
6.8) is the subspace consisting of

those ũ ∈ C−∞(X̃) with supp ũ ⊂ X.

The proof is given below. This proposition is the justification for calling
Ċ−∞(X) the space of supported distributions; the dot is support to indicate that

this is the subspace of the ‘same’ space for X̃, i.e. C−∞(X̃), of elements with support
in X.

This notation is consistent with Ċ∞(X) ⊂ C∞(X̃) being the subspace (by
extension as zero) of elements with support in X . The same observation applies to
sections of any vector bundle, so

Ċ∞(X ; Ω) ⊂ C∞(X̃ ; Ω)

is a well-defined closed subspace. We set

eq:D5 (6.9) C−∞(X) = (Ċ∞(X ; Ω))′

and call this the space of extendible distributions on X . The inclusion map for the
test functions gives by duality a restriction map:

eq:D6 (6.10) RX : C−∞(X̃)→ C−∞(X),

RXu(ϕ) = u(ϕ) ∀ ϕ ∈ Ċ∞(X ; Ω) ↪→ C∞(X̃; Ω) .

We write, at least sometimes, RX for the map since it has a large null space so
should not be regarded as an identification. In fact

eq:D7 (6.11) Nul(RX) =
{
v ∈ C−∞(X̃); supp(v) ∩X◦ = φ

}
= Ċ−∞(X̃\X◦) ,
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is just the space of distributions supported ‘on the other side of the boundary’. The
primary justification for calling C−∞(X) the space of extendible distributions is:

prop:D8 Proposition 6.3. If X is a compact manifold with boundary, then the space
C∞c (X◦; Ω) is dense in Ċ∞(X ; Ω) and hence the restriction map

eq:D9 (6.12) C−∞(X) ↪→ C−∞(X◦)

is injective, whereas the restriction map from (
eq:D6
6.10), RX : Ċ−∞(X) −→ C−∞(X),

is surjective.

Proof. If V is a real vector field on X̃ which is inward-pointing across the
boundary then

exp(sV ) : X̃ → X̃

is a diffeomorphism with Fs(X) ⊂ X◦ for s > 0. Furthermore if ϕ ∈ C∞(X̃) then

F ∗
s ϕ → ϕ in C∞(X̃) as s → 0. The support property shows that F ∗

s ϕ ∈ C∞c (X◦)

if s < 0 and ϕ ∈ Ċ∞(X). This shows the density of C∞c (X◦) in Ċ∞(X). Since
all topologies are uniform convergence of all derivatives in open sets. The same
argument applies to densities. The injectivity of (

eq:D9
6.12) follows by duality.

On the other hand the surjectivity of (
eq:D6
6.10) follows directly from the Hahn-

Banach theorem. �

Proof of Proposition
prop:D4
6.2. For ũ ∈ C−∞(X̃) the condition that supp ũ ⊂ X

is just

eq:D10 (6.13) ũ(ϕ) = 0 ∀ ϕ ∈ C∞c ⊂ (X̃\X ; Ω) ⊂ C∞(X̃ ; Ω) .

Certainly (
eq:D10
6.13) holds if u ∈ Ċ−∞(X) since ϕ|X = 0. Conversely, if (

eq:D10
6.13)

holds, then by continuity and the density of C∞c (X̃\X ; Ω) in C∞(X̃\X◦; Ω), what

follows from Proposition
prop:D8
6.3, ũ vanishes on Ċ∞(X\X◦). �

It is sometimes useful to consider topologies on the spaces of distributions
C−∞(X) and Ċ−∞(X). For example we may consider the weak topology. This is
given by all the seminorms u 7→ ‖〈u, φ〉‖, where φ is a test function.

11.6.1998.252 Lemma 6.2. With respect to the weak topology, the subspace C∞c (X◦) is dense

in both Ċ−∞(X) and C−∞(X).

6.4. Boundary TermsS.Boundary.terms

To examine the precise relationship between the supported and extendible dis-
tributions consider the space of ‘boundary terms’.

BT1 (6.14) Ċ−∞
∂X (X) =

{
u ∈ Ċ−∞(X) ; supp(u) ⊂ ∂X

}
.

Here the support may be computed with respect to any extension, or intrinsically
on X . We may also define a map ‘cutting off’ at the boundary:

BT2 (6.15) C∞(X) 3 u 7→ uc ∈ Ċ−∞(X) , uc(ϕ) =

∫

X

uϕ ∀ ϕ ∈ C∞(X ; Ω) .
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BT3 Proposition 6.4. If X is a compact manifold with boundary then there is a
commutative diagram

BT4 (6.16) Ċ∞(X)

��

C∞(X)

()c

yyssssssssss

��

0 // Ċ−∞
∂X (X) // Ċ−∞(X) // C−∞(X) // 0

with the horizontal sequence exact.

Proof. The commutativity of the triangle follows directly from the definitions.
The exactness of the horizontal sequence follows from the density of C∞c (X◦; Ω) in

Ċ∞(X ; Ω). Indeed, this shows that v ∈ Ċ−∞
∂X (X) maps to 0 in C−∞(X) since

v(ϕ) = 0 ∀ ϕ ∈ C∞c (X◦; Ω). Similarly, if u ∈ Ċ−∞(X) maps to zero in C−∞(X)
then u(ϕ) = 0 for all ϕ ∈ C∞c (X◦; Ω), so supp(u) ∩X◦ = ∅. �

Note that both maps in (
BT4
6.16) from C∞(X) into supported and extendible

distributions are injective. We regard the map into C−∞(X) as an identification.
In particular this is consistent with the action of differential operators. Thus P ∈
Diffm(X) acts on C∞(X) and then the smoothness of the coefficients of P amount
to the fact that it preserves C∞(X), as a subspace. The formal adjoint P ∗ with
respect to the sesquilinear pairing for some smooth positive density, ν

BT5 (6.17) 〈ϕ, ψ〉 =

∫

X

ϕψν ∀ ϕ, ψ ∈ C∞(X)

acts on Ċ∞(X):

BT6 (6.18) 〈P ∗ϕ, ψ〉 = 〈ϕPψ〉 ∀ ϕ ∈ Ċ∞(X) , ψ ∈ C∞(X), P ∗ : Ċ∞(X) −→ Ċ∞(X).

However, P ∗ ∈ Diffm(X) is fixed by its action over X◦. Thus we do have

BT7 (6.19) 〈P ∗ϕ, ψ〉 = 〈ϕ, Pψ〉 ∀ ϕ ∈ C∞(X) , ψ ∈ Ċ∞(X) .

We define the action of P by duality. In view of the possibility of confusion,
we denote P the action on C−∞(X) and by Ṗ the action on Ċ∞(X).

BT8 (6.20)

〈Pu , ϕ〉 = 〈u, P ∗ϕ〉 ∀ u ∈ C−∞(X) , ϕ ∈ Ċ∞(X), P : C−∞(X) −→ C−∞(X)

〈Ṗ u , ϕ〉 = 〈u, P ∗ϕ〉 ∀ u ∈ Ċ−∞(X) , ϕ ∈ C∞(X), Ṗ : Ċ−∞(X) −→ Ċ−∞(X).

It is of fundamental importance that (
BT7
6.19) does not hold for all ϕ, ψ ∈ C∞(X).

This failure is reflected in Green’s formula for the boundary terms, which appears
below as the ‘Jump formula’. This is a distributional formula for the difference

BT9 (6.21) Ṗ uc − (Pu)c ∈ Ċ−∞
∂X , u ∈ C∞(X) P ∈ Diffm(X) .

Recall that a product decomposition of C ⊂ X near ∂X is fixed by an inward
pointing vector field V. Let x ∈ C∞(X) be a corresponding boundary defining
function, with V x = 0 near ∂X , with χV : C → ∂X the projection onto the
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boundary from the product neighborhood C. Then Taylor’s formula for u ∈ C∞(X)
becomes

BT10 (6.22) u ∼
∑

k

1

k!
χ∗

V (V ku|∂x)xk .

It has the property that a finite sum

uN = ϕu− ϕ
N∑

k=0

1

k!
χ∗

V (V ku|∂X)xk

where ϕ ≡ 1 near ∂X , suppϕ ⊂ C, satisfies

BT11 (6.23) Ṗ (uN )c = (PuN )c , P ∈ Diffm(X) , m < N .

Since (1− ϕ)u ∈ Ċ∞(X) also satisfies this identity, the difference in (
BT9
6.21) can (of

course) only depend on the V ku|∂X for k ≤ m, in fact only for k < m.

Consider the Heaviside function 1c ∈ Ċ−∞(X), detained by cutting off the
identity function of the boundary. We define distributions

BT12 (6.24) δ(j)(x) = V j+11c ∈ Ċ−∞
∂X , j ≥ 0 .

Thus, δ(0)(x) = δ(x) is a ‘Dirac delta function’ at the boundary. Clearly supp δ(x) ⊂
∂X, so the same is true of δ(j)(x) for every j. If ψ ∈ C∞(∂X) we define

BT13 (6.25) ψ · δ(j)(x) = ϕ(X∗
V ψ) · δ(j)(x) ∈ Ċ−∞

∂X (X) .

This, by the support property of δ(j), is independent of the cut off ϕ used to define
it.

BT14 Proposition 6.5. For each P ∈ Diffm(X) there are differential operators on

the boundary Pij ∈ Diffm−i−j−1(∂X), i+ j < m, i, j ≥ 0, such that

BT15 (6.26) Ṗuc − (Pu)c =
∑

i,j

(Pij(V
j
u |∂X) · δ(j)(x), ∀ u ∈ C∞(X),

and P0m−1 = i−mσ(P, dx) ∈ C∞(∂X).

Proof. In the local product neighborhood C,

BT16 (6.27) P =
∑

0≤l≤m

PlV
l

where Pl is a differential operator of the order at most m− l, on X be depending on
x as a parameter. Thus the basic cases we need to analyze arise from the application
of V to powers of x :

BT17 (6.28) xl
(
V j+1(xp)c − (V j+1xp)c

)

=

{
0 l + p > j

p!(j−p)!
(j−p−l)! (−1)lδ(j−p−l) l + p ≤ j .

Taking the Taylor sense of the Pl,

Pl ∼
∑

r

xrPl,r

and applying P to (
BT10
6.22) gives

BT18 (6.29) Puc − (Pu)c =
∑

r+k<l

(−1)r(Pl,r(V
ku|∂x)) δ(l−1−r−k)(x) .
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This is of the form (
BT15
6.26). The only term with l − 1 − r − k = m − 1 arises from

l−m, k = r = 0 so is the operator Pm at x = 0. This is just i−mσ(P, dx). �

6.5. Sobolev spacesS.Sobolev.boun

As with C∞ functions we may define the standard (extendible) Sobolev spaces

by restriction or intrinsically. Thus, if X̃ is an extension of a compact manifold
with boundary, X, the we can define

11.6.1998.253 (6.30) Hm(X) = Hm
c (X̃)|X, ∀ m ∈ R;Hm(X) ⊂ C−∞(X).

That this is independent of the choice of X̃ follows from the standard properties
of the Sobolev spaces, particularly their localizability and invariance under diffeo-
morphisms. The norm in Hm(X) can be taken to be

11.6.1998.254 (6.31) ‖u‖m = inf
{
‖ũ‖Hm(X̃); ũ ∈ Hm(X̃), u = ũX

}
.

A more intrinsic defintion of these spaces is discussed in the problems.
There are also supported Sobolev spaces,

11.6.1998.255 (6.32) Ḣm(X) =
{
u ∈ Hm(X̃); supp(u) ⊂ X

}
⊂ Ċ−∞(X).

Sobolev space of sections of any vector bundle can be defined similarly.

11.6.1998.256 Proposition 6.6. For any m ∈ R and any compact manifold with boundary
X, Hm(X) is the dual of Ḣ−m(X ; Ω) with respect to the continuous extension of
the densely defined bilinear pairing

(u, v) =

∫

X

uv, u ∈ C∞(X), v ∈ Ċ∞(X ; Ω).

Both Hm(X) and Ḣm(X) are C∞(X)-modules and for any vector bundle over

X, Hm(X ;E) ≡ Hm(X) ⊗C∞(X) C∞(X ;E) and Ḣm(X ;E) ≡ Ḣm(X) ⊗C∞(X)

C∞(X ;E).

Essentially from the definition of the Sobolev spaces, any P ∈ Diffk(X ;E1, E2)
defines a continuous linear map

11.6.1998.257 (6.33) P : Hm(X ;E1) −→ Hm−k(X ;E2).

We write the dual (to P ∗ of course) action

11.6.1998.258 (6.34) Ṗ : Ḣm(X ;E1) −→ Ḣm−k(X ;E2).

These actions on Sobolev spaces are consistent with the corresponding actions on
distributions. Thus

C−∞(X ;E) =
⋃

m

Hm(X), C∞(X ;E) =
⋂

m

Hm(X),

Ċ−∞(X ;E) =
⋃

m

Ḣm(X), Ċ∞(X ;E) =
⋂

m

Ḣm(X).
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6.6. Dividing hypersurfacesS.Dividing.hypersurfaces

As already noted, the point of view we adopt for boundary problems is that
they provide a parametrization of the space of solutions of a differential opera-
tor on a space with boundary. In order to clearly indicate the method pioneered
by Calderòn, we shall initially consider the restrictive context of an operator of
Dirac type on a compact manifold without boundary with an embedded separating
hypersurface.

Thus, suppose initially that D is an elliptic first order differential operator act-
ing between sections of two (complex) vector bundles V1 and V2 over a compact
manifold without boundary, M. Suppose further that H ⊂ M is a dividing hyper-
surface. That is, H is an embedded hypersuface with oriented (i.e. trivial) normal
bundle and that M = M+ ∪M− where M± are compact manifolds with boundary
which intersect in their common boundary, H. The convention here is that M+ is
on the positive side of H with respect to the orientation.

In fact we shall make a further analytic assumption, that

11.4.1998.195 (6.35) D : C∞(M ;V1) −→ C∞(M ;V2) is an isomorphism.

As we already know, D is always Fredholm, so this implies the topological condi-
tion that the index vanish. However we only assume (

11.4.1998.195
6.35) to simplify the initial

discussion.
Our objective is to study the space of solutions on M+. Thus consider the map

11.4.1998.196 (6.36)
{
u ∈ C∞(M+;V1);Du = 0 in M◦

+

} bH−→ C∞(H ;V1), bHu = u|∂M+
.

The idea is to use the boundary values to parameterize the solutions and we can
see immediately that this is possible.

11.4.1998.197 Lemma 6.3. The assumption (
11.4.1998.195
6.35) imples that map bH in (

11.4.1998.196
6.36) is injective.

Proof. Consider the form of D in local coordinates near a point of H. Let the
coordinates be x, y1, . . . , yn−1 where x is a local defining function for H and assume
that the coordinate patch is so small that V1 and V2 are trivial over it. Then

D = A0Dx +

n−1∑

j=1

AjDyj
+A′

where the Aj and A′ are local smooth bundle maps from V1 to V2. In fact the
ellipticity of D implies that each of the Aj ’s is invertible. Thus the equation can
be written locally

Dxu = Bu, B = −
n−1∑

j=1

A−1
0 Dyj

−A−1
0 A′.

The differential operator B is tangent to H. By assumption u vanishes when re-
stricted to H so it follows that Dxu also vanishes at H. Differentiating the equation
with respect to x, it follows that all derivatives of u vanish at H. This in turn
implies that the global section of V1 over M

ũ =

{
u in M+

0 in M−

is smooth and satisfies Dũ = 0. Then assumption (
11.4.1998.195
6.35) implies that ũ = 0, so

u = 0 in M+ and bH is injective. �
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In the proof of this Lemma we have used the strong assumption (
11.4.1998.195
6.35). As

we show below, if it is assumed instead that D is of Dirac type then the Lemma
remains true without assuming (

11.4.1998.195
6.35). Now we can state the basic result in this

setting.

29.3.1998.187 Theorem 6.1. If M = M+ ∪ M− is a compact manifold without boundary
with separating hypersurface H as described above and D ∈ Diff 1(M ;V1, V2) is a
generalized Dirac operator then there is an element ΠC ∈ Ψ0(H ;V ), V = V1|H,
satisfying Π2

C = ΠC and such that

29.3.1998.193 (6.37) bH : {u ∈ C∞(M+;V1);Du = 0} −→ ΠCC∞(H ;V )

is an isomorphism. The projection ΠC can be chosen so that

11.4.1998.198 (6.38) bH : {u ∈ C∞(M−;V1);Du = 0} −→ (Id−ΠC)C∞(H ;V )

then ΠC is uniquely determined and is called the Calderòn projection.

This result remains true for a general elliptic operator of first order if (
11.4.1998.195
6.35)

is assumed, and even in a slightly weakened form without (
11.4.1998.195
6.35). Appropriate

modifications to the proofs below are consigned to problems.
For first order operators the jump formula discussed above takes the following

form.

11.4.1998.202 Lemma 6.4. Let D be an elliptic differential operator of first order on M, acting
between vector bundles V1 and V2. If u ∈ C∞(M+;V1) satisfies Du = 0 in M◦

+ then

11.4.1998.203 (6.39) Duc =
1

i
σ1(D)(dx)(bHu) · δ(x) ∈ C−∞(M ;V2).

Since the same result is true for M−, with an obvious change of sign, D defines
a linear operator

11.4.1998.205 (6.40) D :
{
u ∈ L1(M ;V1);u± = u|M± ∈ C∞(M±;V1), Du± = 0 in M◦

±

}
−→

1

i
σ(D)(dx)(bHu+ − bHu−) · δ(x) ∈ C∞(H ;V2) · δ(x).

To define the Calderòn projection we shall use the ‘inverse’ of this result.

11.4.1998.204 Proposition 6.7. If D ∈ Diff1(M ;V1, V2) is elliptic and satisfies (
11.4.1998.195
6.35) then

(
11.4.1998.205
6.40) is an isomorphism, with inverse ID, and

11.4.1998.206 (6.41) ΠCv = bH

(
ID

1

i
σ(D)(dx)v · δ(x)

)

+

, v ∈ C∞(H ;V1),

satisfies the conditions of Theorem
29.3.1998.187
6.1.

Proof. Observe that the map (
11.4.1998.205
6.40) is injective, since its null space consists

of solutions of Du = 0 globally on M ; such a solution must be smooth by elliptic
regularity and hence must vanish by the assumed invertibility of D. Thus the main
task is to show that D in (

11.4.1998.205
6.40) is surjective.

Since D is elliptic and, by assumption, an isomorphism on C∞ sections over
M it is also an isomorphism on distributional sections. Thus the inverse of (

11.4.1998.205
6.40)

must be given by D−1. To prove the surjectivity it is enough to show that

13.4.1998.207 (6.42) D−1(w · δ(x))|M± ∈ C∞(M±;V1) ∀ w ∈ C∞(H ;V2).

There can be no singular terms supported on H since w ·δ(x) ∈ H−1(M ;V2) implies
that u = D−1(w · δ(x)) ∈ L2(M ;V1).
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Now, recalling that D−1 ∈ Ψ−1(M ;V2, V1), certainly u is C∞ away from H.
At any point of H outside the support of w, u is also smooth. Since we may
decompose w using a partition of unity, it suffices to suppose that w has support in
a small coordinate patch, over which both V1 and V2 are trivial and to show that
u is smooth ‘up to H from both sides’ in the local coordinate patch. Discarding
smoothing terms from D−1 we may therefore replace D−1 by any local parametrix
Q for D and work in local coordinates and with components:

13.4.1998.208 (6.43)

Qij(wj(y) · δ(x)) = (2π)−n

∫
ei(x−x′)ξ+i(y−y′)·ηqij(x, y, ξ, η)w(y′)δ(x′)dx′dy′dξdη.

For a general pseudodifferential operator, even of order−1, the result we are seeking
is not true. We must use special properties of the symbol of Q, that is D−1.

6.7. Rational symbolsS.Rational.symbols

13.4.1998.209 Lemma 6.5. The left-reduced symbol of any local parametrix for a generalized
Dirac operator has an expansion of the form

13.4.1998.210 (6.44)

qij(z, ζ) =

∞∑

l=1

g(z, ζ)−2l+1pij,l(z, ζ) with pij,l a polynomial of degree 3l− 2 in ζ;

here g(z, ζ) is the metric in local coordinates; each of the terms in (
13.4.1998.210
6.44) is therefore

a symbol of order −l.
Proof. This follows by an inductive arument, of a now familiar type. First,

the assumption that D is a generalized Dirac operator means that its symbol
σ1(D)(z, ζ) has inverse g(z, ζ)−1σ1(D)∗(z, ζ); this is the princiapl symbol of Q.
Using Leibniz’ formula one concludes that for any polynomial rl of degree j

∂ζi

(
g(z, ζ)−2l+1rj(z, ζ)

)
= g(z, ζ)−2lr′j+1(z, ζ)

where rj+1 has degree (at most) j+1. Using this result repeatedly, and proceeding
by induction, we may suppose that q = q′k + q′′k+1 where q′k has an expansion up
to order k, and so may be taken to be such a sum, and q′′k+1 is of order at most
−k − 1. The composition formula for left-reduced symbols then shows that

σ1(D)q′′k+1 ≡ g−2kqk+1 mod S−k−1

where qk+1 is a polynomial of degree at most 3k. Inverting σ1(D)(ζ) as at the initial
step then shows that q′′k+1 is of the desired form, g−2k−1rk+1 with rk+1 of degree
3k + 1 = 3(k + 1) − 2, modulo terms of lower order. This completes the proof of
the lemma. �

With this form for the symbol of Q we proceed to the proof of Proposition
11.4.1998.204
6.7.

That is, we consider (
13.4.1998.208
6.43). Since we only need to consider each term, we shall

drop the indicies. A term of low order in the amplitude qN gives an operator with
kernel in CN−d. Such a kernel gives an operator

C∞(H ;V2) −→ CN−d(M ;V1)

with kernel in CN−d. The result we want will therefore follow if we show that each
term in the expansion of the symbol q gives an operator as in (

13.4.1998.207
6.42).

To be more precise, we can assume that the amplitude q is of the form

q = (1− φ)g−2lq′
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where q′ is a polynomial of degree 3l − 2 and φ = φ(ξ, η) is a function of compact
support which is identically one near the origin. The cutoff function is to remove
the singularity at ζ = (ξ, η) = 0. Using continuity in the symbol topology the
integrals in x′ and y′ can be carried out. By assumption w ∈ C∞c (Rn−1), so the
resulting integral is absolutely convergent in η. If l > 1 it is absolutely convergent
in ξ as well, so becomes

Q(w(y) · δ(x)) = (2π)−n

∫
eixξ+iy·ηq(x, y, ξ, η)ŵ(η)dξdη.

In |ξ| > 1 the amplitude is a rational function of ξ, decaying quadratically as
ξ →∞. If we assume that x > 0 then the exponential factor is bounded in the half
plane =ξ ≥ 0. This means that the limit as R → ∞ over the integral in =ξ ≥ 0
over the semicircle |ξ| = R tends to zero, and does so with uniform rapid decrease
in η. Cauchy’s theorem shows that, for R > 1 the real integral in ξ can be replaced
by the contour integral over γ(R), which is, forR >> |η| given by the real interval
[−R,R] together with the semicircle of radius R in the upper half plane. If |η| > 1
the integrand is meromorphic in the upper half plane with a possible pole at the

singular point g(x, y, ξ, η) = 0; this is at the point ξ = ir
1
2 (x, y, η) where r(x, y, η)

is a positive-definite quadratic form in η. Again applying Cauchy’s theorem

Q(w(y)δ(x) = (2π)−n+1i

∫
exr

1
2 (x,y,η)+iy·ηq′(x, y, η)ŵ(η)dη

where q′ is a symbol of order −k + 1 in η.

The product exr
1
2 (x,y,η)q′(x, y, η) is uniformly a symbol of order−k+1 in x > 1,

with x derivatives of order p being uniformly symbols of order −k+1+p. It follows
from the properties of pseudodifferential operators that Q(w · δ(x)) is a smooth
function in x > 0 with all derivatives locally uniformly bounded as x ↓ 0.

6.8. Proofs of Proposition
11.4.1998.204

6.7 and Theorem
29.3.1998.187

6.1S.Proofs.204.187

This completes the proof of (
13.4.1998.207
6.42), since a similar argument applies in x < 0,

with contour deformation into the lower half plane. Thus we have shown that
(
11.4.1998.205
6.40) is an isomorphism which is the first half of the statement of Proposition

(
11.4.1998.204
6.7). Furthermore we see that the limiting value from above is a pseudodifferential

operator on H :

13.4.1998.211 (6.45) Q0w = lim
x↓0

D−1(w · δ(x)), Q0 ∈ Ψ0(H ;V2, V1).

This in turn implies that ΠC , defined by (
11.4.1998.206
6.41) is an element of Ψ0(H ;V1), since it

is Q0 ◦ 1
i σ(D)(dx).

Next we check that ΠC is a projection, i.e. that Π2
C = ΠC . If w = ΠCv,

v ∈ C∞(H ;V1), then w = bHu, u = ID
1
i σ(D)(dx)v|M+ , so u ∈ C∞(M+;V1) satisfies

Du = 0 in M◦
+. In particular, by (

11.4.1998.203
6.39), Puc = 1

i σ1(D)(dx)w · δ(x), which means

that w = ΠCw so Π2
C = ΠC . This also shows that the range of ΠC is precisely the

range of bH as stated in (
29.3.1998.193
6.37). The same argument shows that this choice of the

projection gives (
11.4.1998.198
6.38). �

6.9. InversesS.Operators

Still for the case of a generalized Dirac operator on a compact manifold with
dividing hypersurface, consider what we have shown. The operator D defines a
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map in (
11.4.1998.203
6.39) with inverse

3.6.1998.221 (6.46) ID : {v ∈ C∞(H ;V1); ΠCv = v} −→ {u ∈ C∞(M+;V1);Du = 0 in M+}.
This operator is the ‘Poisson’ operator for the canonical boundary condition given
by the Calderòn operator, that is u = IDv is the unique solution of

3.6.1998.222 (6.47) Du = 0 in M+, u ∈ C∞(M+;V1), ΠCbHu = v.

We could discuss the regularity properties of ID but we shall postpone this until
after we have treated the ‘one-sided’ case of a genuine boundary problem.

As well as ID we have a natural right inverse for the operator D as a map from
C∞(M+;V1) to C∞(M−;V2). Namely

3.6.1998.223 Lemma 6.6. If f ∈ C∞(M+;V2) then u = D−1(fc)|M+ ∈ C∞(M+;V1) and the
map RD : f 7−→ u is a right inverse for D, i.e. D ◦RD = Id .

Proof. Certainly D(D−1(fc) = fc, so u = D−1(fc)|M+ ∈ C−∞(M+;V1) sat-
ifies Du = f in the sense of extendible distributions. Since f ∈ C∞(M+;V2) we
can solve the problem Du ≡ f in the sense of Taylor series at H, with the con-
stant term freely prescibable. Using Borel’s lemma, let u′ ∈ C∞(M+;V1) have the

appropriate Taylor series, with bHu
′ = 0.. Then D(u′c) − fc = g ∈ Ċ∞(M +; V2).

Thus u′′ = D−1g ∈ C∞(M ;V1). Since D(u′ − u′′) = fc, the uniqueness of solutions
implies that u = (u′ − u′′)|M+ ∈ C∞(M+;V1). �

Of course RD cannot be a two-sided inverse to D since it has a large null space,
described by ID .

3.6.1998.226 Problem 6.2. Show that, for D as in Theorem
29.3.1998.187
6.1 if f ∈ C∞(M+;V2) and v ∈

C∞(H ;V1) there exists a unique u ∈ C∞(M+;V2) such that Du = f in C∞(M+;V2)
and bHu = ΠCv.

6.10. Smoothing operatorsS.Smoothing.operators

The properties of smoothing operators on a compact manifold with boundary
are essentially the same as in the boundaryless case. Rather than simply point to
the earlier discussion we briefly repeat it here, but in an abstract setting.

Let H be a separable Hilbert space. In the present case this would be L2(X)
or L2(X ;E) for some vector bundle over X, or some space Hm(X ;E) of Sobolev
sections. Let B = B(H) be the algebra of bounded operators on H and K = K(H)
the ideal of compact operators. Where necessary the norm on B will be written
‖ ‖B; K is a closed subspace of B which is the closure of the ideal F = F(H) of
finite rank bounded operators.

We will consider a subspace J = J (H) ⊂ B with a stronger topology. Thus we
suppose that J is a Fréchet algebra. That is, it is a Fréchet space with countably
many norms ‖ ‖k such that for each k there exists k′ and Ck with

SO1 (6.48) ‖AB‖k ≤ Ck‖A‖k′‖B‖k′ ∀ A,B ∈ J .
In particular of course we are supposing that J is a subalgebra (but not an ideal)
in B. To make it a topological *-subalgebra we suppose that

SO2 (6.49) ‖A‖B ≤ C‖A‖k ∀ A ∈ J , ∗ : J −→ J .
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In fact we may suppose that k = 0 by renumbering the norms. The third condition
we impose on J implies that it is a subalgebra of K, namely we insist that

SO3 (6.50) F ∩ J is dense in J ,
in the Fréchet topology. Finally, we demand, in place of the ideal property, that J
be a bi-ideal in B (also called a ‘corner’) that is,

A1, A2 ∈ J , B ∈ B =⇒ A1BA2 ∈ J ,(6.51)

∀ k ∃ k′ such that ‖A1BA2‖k ≤ C‖A1‖k′‖B‖B‖A2‖k′ .

SO5 Proposition 6.8. The space of operators with smooth kernels acting on sec-
tions of a vector bundle over a compact manifold satisfies (

SO1
6.48)–(

SO4
6.52) with H =

Hm(X ;E) for any vector bundle E.

Proof. The smoothing operators on sections of a bundle E can be written as
integral operators

SO6 (6.52) Au(x) =

∫

E

A(x, y)u(y) , A(x, y) ∈ C∞(X2; Hom(E)⊗ ΩR) .

Thus J = C∞(X2; Hom(E)⊗ΩR) and we make this identification topological. The
norms are the Ck norms. If P1, . . . , pN(m) is a basis, on C∞(X2), for the differential
operators of order m on Hom(E)⊗ ΩL then we may take

SO7 (6.53) ‖A‖m = sup
j
‖PjA‖L∞

for some inner products on the bundles. In fact Hom(E) = π∗
LE ⊗ π∗

RE
∗ from it

which follows easily that this is a basis Pj = Pj,k ⊗ Pj,R decomposing as products.
From this (

SO1
6.48) follows easily since

SO8 (6.54) ‖AB‖m = sup
j
‖(PjLA) · (Pj,RB)‖∞‖AB‖L∞ ≤ C‖A‖L∞‖B‖L∞

by the compactnes of X . From this (
SO7
6.53) follows with k = 0.

The density (
SO3
6.50) is the density of the finite tensor product C∞(X ;E) ⊗ C∞

(X ;E∗ ⊗ ΩL) in C∞(X2; Hom(E) ⊗ ΩL). This follows from the boundaryless case
by doubling (or directly). Similarly the bi-ideal condition (

SO4
6.52) can be seen from

the regularity of the kernel. A more satisfying argument using distribution theory
follows from the next result.

�

SO9 Proposition 6.9. An operator A : Ċ∞(X ;E) → C−∞(X ;F ) is a smoothing

operator if and only if it extends by continuity to Ċ−∞(X ;E) and then has range
in C∞(X ;F ) ↪→ C−∞(X ;F ).

Proof. If A has the stated mapping property then compose with a Seeley
extension operator, then EA = Ã is a continuous linear map

Ã : Ċ−∞(X ;E)→ C∞(X̃ ; F̃ ) ,

for an extension of F to F̃ over the double X̃. Localizing in the domain to trivialize
E and testing with a moving delta function we recover the kernel of Ã as

Ã(x, y) = Ã · δy ∈ C∞(X̃ ; F̃ ) .

Thus it follows that Ã ∈ C∞(X̃ × X ; Hom(E, F̃ ) ⊗ ΩR). The converse is more
obvious.

�
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Returning to the general case of a bi-ideal as in (
SO1
6.48)–(

SO4
6.52) we may consider

the invertibility of Id +A, A ∈ J .

SO10 Proposition 6.10. If A ∈ J , satisfying (
SO1
6.48)–(

SO4
6.52), then Id +A has a gen-

eralized inverse of the form Id +B, B ∈ J , with

AB = Id−πR , BA = Id−πL ∈ J ∩ F
both finite rank self-adjoint projections.

Proof. Suppose first that A ∈ J and ‖A‖B < 1. Then Id +A is invertible in
B with inverse Id+B ∈ B,

SO11 (6.55) B =
∑

j≥1

(−1)jAj .

Not only does this Neumann series converge in B but also in J since for each k

SO12 (6.56) ‖Aj‖k ≤ Ck‖A‖k′‖Aj−2‖B‖A‖k′ ≤ C ′
k‖A‖j−2

B , j ≥ 2 .

Thus B ∈ J , since by assumption J is complete (being a Fréchet space). In this
case Id +B ∈ B is the unique two-sided inverse.

For general A ∈ J we use the assumed approximability in (
SO3
6.50). Then A =

A′ + A′′ when A′ ∈ F ∩ J and ‖A′′‖B ≤ C‖A′′‖k < 1 by appropriate choice. It
follows that Id +B′′ = (Id +A′′)−1 is the inverse for Id +A′′ and hence a parameterix
for Id +A:

(Id +B′′)(Id +A) = Id +A′ + B′′A′(6.57)

(Id +A)(Id +B′′) = Id +A′ + A′B′′

with both ‘error’ terms in F ∩ J . �Unfinished.

Lemma on

subprojec-

tions. 6.11. Left and right parametrices

Suppose that H1 and H2 are Hilbert spaces and A : H1 −→ H2 is a bounded
linear operator between them. Let J1 ⊂ B(H1) and J2 ⊂ B(H2) be bi-ideals as in
the previous section. A left parametrix for A, modulo J1, is a bounded linear map
BL : H2 −→ H1 such that

8.6.1998.243 (6.58) BL ◦A = Id +JL, JL ∈ J1.

Similarly a right parametrix for A, modulo J2 is a bounded linear map BR : H2 −→
H1 such that

8.6.1998.244 (6.59) A ◦BR = Id +JR, JR ∈ J2.

8.6.1998.245 Proposition 6.11. If a bounded linear operator A : H1 −→ H2 has a left
parametrix BL modulo a bi-ideal J1, satisfying (

SO1
6.48)–(

SO4
6.52), then A has closed

range, null space of finite dimension and there is a generalized left inverse, differing
from the original left parametrix by a term in J1, such that

8.6.1998.247 (6.60) BL ◦A = Id−πL, πL ∈ J1 ∩ F ,
with πL the self-adjoint projection onto the null space of A.
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Proof. Applying Proposition
SO10
6.10, Id +JL has a generalized inverse Id +J,

J ∈ J1, such that (Id +J)(Id +JL) = (Id−π′
L), π′

L ∈ J1 ∩ F . Replacing BL by

B̃L = (Id +J)BL gives a new left parametrix with error term π′
L ∈ J1 ∩ F . The

null space of A is contained in the null space of B′
L ◦ A and hence in the range

of FL; thus it is finite dimensional. Furthermore the self-dajoint projection πL

onto the null space is a subprojection of π′
L, so is also an element of J1 ∩ F .

The range of A is closed since it has finite codimension in Ran(A(Id−πL)) and
if fn ∈ Ran(A(Id−πL)) = Aun, un = (Id−πL)un, converges to f ∈ H2, then
un = BLfn converges to u ∈ H1 with A(Id−πL)u = f. �

8.6.1998.246 Proposition 6.12. If a bounded linear operator A : H1 −→ H2 has a right
parametrix BR modulo a bi-ideal J2, satisfying (

SO1
6.48)–(

SO4
6.52), then it has closed

range of finite codimension and there is a generalized right inverse, differing from
the original right parametrix by a term in J2, such that

8.6.1998.248 (6.61) A ◦BR = Id−πR, πR ∈ J2 ∩ F ,
with Id−πR the self-adjoint projection onto the range space of A.

Proof. The operator Id +JR has, by Proposition
SO10
6.10, a generalized inverse

Id +J with J ∈ J1. Thus B′
R = BR ◦ (Id +J) is a right parametrix with error term

Id−π′
R, π

′
R ∈ J1 ∩ F being a self-adjoint projection. Thus the range of A contains

the range of Id−π′
R and is therefore closed with a finite-dimensional complement.

Furthemore the self-adjoint projection onto the range of A is of the form Id−πR

where πR is a subprojection of π′
R, so also in J1 ∩ F . �

The two cases, of an operator with a right or a left parametrix are sometimes
combined in the term ‘semi-Fredholm.’ Thus an operator A : H1 −→ H2 is semi-
Fredholm if it has closed range and either the null space or the orthocomplement
to the range is finite dimensional. The existence of a right or left parametrix,
modulo the ideal of compact operators, is a necessary and sufficient condition for
an operator to be semi-Fredholm.

6.12. Right inverseS.Right.inverse

In treating the ‘general’ case of an elliptic operator on compact manifold
with boundary we shall start by constructing an analogue of the right inverse in
Lemma

3.6.1998.223
6.6. So now we assume that D ∈ Diff1(X ;V1, V2) is an operator of Dirac

type on a compact manifold with boundary.
To construct a right inverse for D we follow the procedure in the boundaryless

case. That is we use the construction of a pseudodifferential parametrix. In order
to make this possible we need to extend M and D ‘across the boundary.’ This
is certainly possible for X, since we may double it to a compact manifold without
boundary, 2X. Then there is not obstruction to extending D ‘a little way’ across the
boundary. We shall denote by M an open extension of X (of the same dimension)

so X ⊂M is a compact subset and by D̃ an extension of Dirac type to M.
The extension of D to D̃, being elliptic, has a parametrix Q̃. Consider the map

28.4.1998.214 (6.62) Q̃′ : L2(X ;V2) −→ H1(X ;V1), Q̃
′f = Q̃fc|X

where fc is the extension of f to be zero outside X. Then Q̃′ is a right parametrix,
DQ̃′ = Id +E where E is an operator on L2(X ;V2) with smooth kernel on X2.
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Following Proposition
8.6.1998.246
6.12, D has a generalized right inverse Q̃′′ = Q̃′(Id +E′) up

to finite rank smoothing and

28.4.1998.215 (6.63) D : H1(X ;V1)←→ L2(X ;V2)

has closed range with a finite dimensional complement in C∞(X ;V2).

28.4.1998.216 Proposition 6.13. The map (
28.4.1998.215
6.63) maps C∞(X ;V2) to C∞(X ;V1), it is sur-

jective if and only if the only solution of D∗u = 0, u ∈ Ċ∞(X ;V2) is the trivial
solution.

Proof. The regularity statement, that Q′C∞(X ;V ) ⊂ C∞(X ;V1) follows as
in the proof of Lemma

3.6.1998.223
6.6. Thus Q′ maps C∞(X ;V1) to C∞(X ;V2) if and only

if any paramatrix Q̃′ does so. Given f ∈ C∞(X ;V2) we may solve Du′ ≡ f in
Taylor series at the boundary, with u′ ∈ C∞(X ;V1) satisfying bHu

′ = 0. Then

D(u′)c − f ∈ Ċ∞(X ;V2) so it follows that Q′(fc)|X ∈ C∞(X ;V1).

Certainly any solution of D∗u = 0 with u ∈ Ċ∞(X ;V2) is orthogonal to the
range of (

28.4.1998.215
6.63) so the condition is necessary. So, suppose that (

28.4.1998.215
6.63) is not surjec-

tive. Let f ∈ L2(X ;V2) be in the orthocomplement to the range. Then Green’s
formula gives the pairing with any smooth section

(Dv, f)X = (Dṽ, fc)X̃ = (ṽ, D∗fc)X̃ = 0.

This means that D∗fc = 0 in X̃, that is as a supported distribution. Thus, f ∈
Ċ∞(X ;V2) satisfies D∗f = 0. �

As noted above we will proceed under the assumption that D∗f has no such
non-trivial solutions in Ċ∞(X ;V2). This condition is discussed in the next section.

28.4.1998.218 Theorem 6.2. If unique continuation holds for D∗ then D has a right inverse

28.4.1998.219 (6.64) Q : C∞(X : V2) −→ C∞(X ;V1), DQ = Id

where Q = Q̃′ + E, Q̃′f = Q̃f |X where Q̃ is a parametrix for an extension of D
across the boundary and E is a smoothing operator on X.

Proof. As just noted, unique continuation for D∗ implies that D in (
28.4.1998.215
6.63)

is surjective. Since the parametrix maps C∞(X ;V2) to C∞(X ;V1), D must be
surjective as a map from C∞(X ;V1) to C∞(X ;V2). The parametrix modulo finite
rank operators can therefore be corrected to a right inverse for D by the addition
of a smoothing operator of finite rank. �

6.13. Boundary mapS.Boundary.map

The map b from C∞(X ;E) to C∞(∂X ;E) is well defined, and hence is well
defined on the space of smooth solutions of D. We wish to show that it has closed
range. To do so we shall extend the defintion to the space of square-integrable
solutions. For any s ∈ R set

6.6.1998.230 (6.65) N s(D) = {u ∈ Hs(X ;E);Du = 0} .
Of course the equation Du = 0 is to hold in the sense of extendible distributions,
which just means in the interior of X. Thus N∞(D) is the space of solutions of D
smooth up to the boundary.
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6.6.1998.231 Lemma 6.7. If u ∈ N 0(D) then

6.6.1998.232 (6.66) Ḋuc = v · δ(x), v ∈ H− 1
2 (∂X ;E)

defines an injective bounded map b̃ : N 0(D) −→ H− 1
2 (∂X ;E) by b̃(u) = iσ(D)(dx)v

which is an extension of b : N∞(D) −→ C∞(∂X ;E) defined by restriction to the
boundary.

Proof. Certainly Ḋuc ⊂ Ċ∞∂X(X ;E) has support in the boundary, so is a sum
of products in any product decomposition of X near ∂X,

D(uc) =
∑

j

vj · δ(j)(x).

Since D is a first order operator and uc ∈ L2(X̃ ;E), for any local extension,

Ḋuc ∈ Ḣ−1(X ;E). Localizing so that E is trivial and the localized vj have compact
supports this means that

6.6.1998.233 (6.67) (1 + |η|2 + |ξ|2)− 1
2 v̂j(η)ξ

j ∈ L2(Rn).

If vj 6= 0 for some j > 0 this is not true even in some region |η| < C. Thus vj ≡ 0
for j > 0 and (

6.6.1998.232
6.66) must hold. Furthermore integration in ξ gives

6.6.1998.234 (6.68)

∫

R

(1 + |η|2 + |ξ|2)−1dξ = c(1 + |η|2)− 1
2 , c > 0, so

∫

Rn−1

(1 + |η|2)− 1
2 |v̂(η)|2dη < 0.

Thus v ∈ H− 1
2 (∂X ;E) and b̃ is well defined. The jumps formula shows it to

be an extension of b. The injectivity of b̃ follows from the assumed uniqueness of
solutions to Ḋu = 0 in X. �

Notice that (
6.6.1998.234
6.68) is actually reversible. That is if v ∈ H− 1

2 (∂X ;E) then
v · δ(x) ∈ H−1(X ;E). This is the basis of the construction of a left parametrix for

b̃, which then shows its range to be closed.

6.6.1998.235 Lemma 6.8. The boundary map b̃ in Lemma
6.6.1998.231
6.7 has a continuous left paramet-

rix ĨD : H− 1
2 (∂X ;E) −→ N 0(D), ID ◦ b̃ = Id +G, where G has smooth kernel on

X × ∂X, and the range of b̃ is therefore a closed subspace of H− 1
2 (∂X ;E).

Proof. The parametrix ĨD is given directly by the parametrix Q̃ for D̃, and
extension to X̃. Applying Q̃ to (

6.6.1998.232
6.66) gives

6.6.1998.239 (6.69) u = ĨDv +Ru, ĨD = RX ◦ Q̃ ◦
1

i
σ(D)(dx)

with R having smooth kernel. Since ĨD is bounded from H− 1
2 (∂X ;E) to L2(X ;E)

and R is smoothing it follows from Proposition
8.6.1998.245
6.11 that the range of b̃ is closed. �

6.14. Calderòn projectorS.Calderon.projector

Having shown that the range of b̃ in Lemma
6.6.1998.231
6.7 is closed in H− 1

2 (∂X ;E) we
now deduce that there is a pseudodifferential projection onto it. The discussion
above of the boundary values of the Q̃(w · δ(x)) is local, and so applies just as well
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in the present more general case. Since this is just the definition of the map ĨD in
Lemma

6.6.1998.235
6.8, we conclude directly that

6.6.1998.240 (6.70) Pv = lim
X◦

ĨDv, v ∈ C∞(∂X ;E)

defines P ∈ Ψ0(∂X ;E).

6.6.1998.241 Lemma 6.9. If P is defined by (
6.6.1998.240
6.70) then P 2 − P ∈ Ψ−∞(∂X ;E) and there

exist A, B ∈ Ψ−∞(∂X ;E) such that P − Id = A on Ran(b̃) and Ran(P + B) ⊂
Ran(b̃).

Proof needs

clarification.
Proof. That P 2 − P ∈ Ψ−∞(∂X ;E) follows, as above, from the fact that Q̃

is a two-sided parametrix on distributions supported in X. Similarly we may use
the right inverse of D to construct B. If v ∈ H− 1

2 (∂X ;E) then by construction,

DĨDv = R′v

where R′ has a smooth kernel on X × ∂X. Applying the right inverse Q it follows

that u′ = ĨDv−(Q◦R′)v ∈ N 0(D), where Q◦R′ also has smooth kernel on X×∂X.
Thus b̃(u′) = (P +B)v ∈ Ran(b̃) where B has kernel arising from the restriction of
the kernel of A ◦R′ to ∂X × ∂X, so B ∈ Ψ−∞(∂X ;E). �

Now we may apply Proposition
4.6.1998.227
5.6 with F = Ran(b̃) and s = − 1

2 to show the
existence of a Calderòn projector.

6.6.1998.242 Proposition 6.14. If D is a generalized Dirac operator on X then there is an

element ΠC ∈ Ψ0(∂X ;E) such that Π2
C = ΠC , Ran(ΠC) = Ran(b̃) on H− 1

2 (∂X ;E),
ΠC − P ∈ Ψ−∞(∂X ;E) where P is defined by (

6.6.1998.240
6.70) and Ran(ΠC) = Ran(b) on

C∞(∂X ;E).

Proof. The existence of psuedodifferential projection, ΠC , differing from P
by a smoothing operator and with range Ran(b̃) is a direct consequence of the

application of Proposition
4.6.1998.227
5.6. It follows that Ran(b̃) ∩ C∞(∂X ;E) is dense in

Ran(b̃) in the topology of H− 1
2 (∂X ;E). Furthermore, if follows that if v ∈ Ran(b̃)∩

C∞(∂X ;E) then u ∈ N 0(D) such that b̃u = v is actually in C∞(X ;E), i.e. it is in

N∞(D). Thus the range of b is just Ran(b̃) ∩ C∞(∂X ;E) so Ran(b) is the range of
ΠC acting on C∞(∂X ;E). �

In particular b̃ is just the continuous extension of b from N∞(D) to N 0(D), of
which it is a dense subset. Thus we no longer distinguish between these two maps
and set b̃ = b.

6.15. Poisson operatorS.Poisson.operator

6.16. Unique continuationS.Unique.continuation

6.17. Boundary regularityS.Boundary.regularity

6.18. Pseudodifferential boundary conditionsS.Pseudodifferential.boundary

The discussion above shows that for any operator of Dirac type the ‘Calderòn
realization’ of D,

28.4.1998.1 (6.71) DC : {u ∈ Hs(X ;E1); ΠCbu = 0} −→ Hs−1(X ;E2), s >
1

2
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is an isomorphism.
We may replace the Calderòn projector in (

28.4.1998.1
6.71) by a more general projection

Π, acting on C∞(∂X, V1), and consider the map

28.4.1998.2 (6.72) DΠ : {u ∈ C∞(X ;V1); Πbu = 0} −→ C∞(X ;V2).

In general this map will not be particularly well-behaved. We will be interested in
the case that Π ∈ Ψ0(∂X ;V1) is a pseudodifferential projection. Then a condition
for the map DΠ to be Fredholm can be given purely in terms of the relationship
between Π and the (any) Calderòn projector ΠC .

29.3.1998.188 Theorem 6.3. If D ∈ Diff1(X ;E1, E2) is of Dirac type and Pi ∈ Ψ0(∂X ;E1)
is a projection then the map

29.3.1998.189 (6.73) DΠ : {u ∈ C∞(X ;E1); Π(u∂X) = 0} D−→ C∞(X ;E2)

is Fredholm if and only if

29.3.1998.190 (6.74) Π ◦ΠC : Ran(ΠC) ∩ C∞(∂V1) −→ Ran(Π) ∩ C∞(∂E1) is Fredholm

and then the index of DΠ is equal to the relative index of ΠC and Π, that is the
index of (

29.3.1998.190
6.74).

Below we give a symbolic condition equivalent which implies the Fredholm con-
dition. If enough regularity conditions are imposed on the generalized inverse to
(
28.4.1998.1
6.71) then this symbolic is also necessary.

Proof. The null space of DΠ is easily analysed. Indeed Du = 0 implies that
u ∈ N , so the null space is isomorphic to its image under the boundary map:

{u ∈ N ; Πbu = 0} b−→ {v ∈ C; Πv = 0} .
Since C is the range of ΠC this gives the isomorphism

28.4.1998.6 (6.75) Nul(DΠ) ' Nul (Π ◦ΠC : C −→ Ran(Π)) .

In particular, the null space is finite dimensional if and only if the null space of
Π ◦ΠC is finite dimensional.

Similarly, consider the range of DΠ. We construct a map

28.4.1998.212 (6.76) τ : C∞(∂X ;V1) −→ C∞(X ;V2)/Ran(DΠ).

Indeed each v ∈ C∞(∂X ;V1) is the boundary value of some u ∈ C∞(X : V1), let
τ(v) be he class of DU. This is well-defined since any other extension u′ is such
that b(u−u′) = 0, so D(u−u′) ∈ Ran(DΠ). Furthermore, τ is surjective, since DC

is surjective. Consider the null space of τ. This certainly contains the null space of
Π. Thus consider the quotient map

τ̃ : Ran(Π) −→ C∞(X : V2)/Ran(DΠ),

which is still surjective. Then τ̃ (v) = 0 if and only if there exists v′ ∈ C such that
Π(v − v′) = 0. That is, τ̃ (v) = 0 if and only if Π(v) = Π ◦ΠC . This shows that the
finer quotient map

28.4.1998.213 (6.77) τ ′ : Ran(Π)/Ran(Π ◦ΠC)←→ C∞(X ;V2)/Ran(DΠ)

is an isomorphism. This shows that the range is closed and of finite codimension if
Π ◦ΠC is Fredholm.

The converse follows by reversing these arguments. �
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6.19. Gluing

Returning to the case of a compact manifold without boundary, M, with a
dividing hypersurface H we can now give a gluing result for the index.

29.3.1998.191 Theorem 6.4. If D ∈ Diff1(M ;E1, E2) is of Dirac type and M = M1 ∩M2 is
the union of two manifolds with boundary intersecting in their common boundary
∂M1 ∩ ∂M2 = H then

29.3.1998.192 (6.78) Ind(D) = Ind(Π1,C , Id−Π2,C) = Ind(Π2,C , Id−Π1,C)

where Πi,C , i = 1, 2, are the Calderòn projections for D acting over Mi.

6.20. Local boundary conditionsS.Local.boundary

6.21. Absolute and relative Hodge cohomologyS.Absolute.relative

6.22. Transmission conditionS.Transmission.condition
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Scattering calculusC.Scattering calculus
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CHAPTER 8

The wave kernelC.Wave.kernel

Let us return to the subject of “good distributions” as exemplified by Dirac
delta ‘functions’ and the Schwartz kernels of pseudodifferential operators. In fact
we shall associate a space of “conormal distributions” with any submanifold of a
manifold.

Thus let X be a C∞ manifold and Y ⊂ X a closed embedded submanifold –
we can easily drop the assumption that Y is closed and even replace embedded
by immersed, but let’s treat the simplest case first! To say that Y is embedded
means that each ȳ ∈ Y has a coordinate neighbourhood U, in X, with coordinate
x1, . . . , xn in terms of which ȳ = 0 and

16.1 (8.1) Y ∩ U = {x,= · · · = xk = 0}.
We want to define

16.2 (8.2) I∗(X,Y ; Ω
1
2 ) ⊂ C−∞(X ; Ω

1
2 )

to consist of distributions which are singular only at Y and small “along Y.”
So if u ∈ C−∞

c (U) then in local coordinates (
16.1
8.1) we can identify u with u′ ∈

C−∞
c (Rn) so u′ ∈ Hs

c (Rn) for some s ∈ R. To say that u is ‘smooth along Y ’ means
we want to have

16.3 (8.3) Dl1
xk+1

. . .Dln−k
xn

u′ ∈ Hs′

c (Rn) ∀ l1, . . . , ln−k

and a fixed s′, independent of l (but just possibly different from the initial s);
of course we can take s = s′. Now conditions like (

16.3
8.3) do not limit the singular

support of u′ at all! However we can add a requirement that multiplication by a
function which vanishes on Y makes u′ smooth, by one degree, i.e.

16.4 (8.4) xp1

1 . . . xpk

k u′ ∈ Hs+|p|(Rn), |p| = p1 + · · ·+ pk.

This last condition implies

16.5 (8.5) Dq1

1 . . .Dqk

k xp1

1 . . . xpk

k u′ ∈ Hs(Rn) if |q| ≤ |p|.
Consider what happens if we rearrange the order of differentiation and multi-

plication in (
16.5
8.5). Since we demand (

16.5
8.5) for all p, q with |q| ≤ |p| we can show in

tial that

16.105 (8.6) ∀ |q| ≤ |p| ≤ L

(8.7) =⇒

16.6 (8.8)

L∏

i=1

(xji
D`i

)u ∈ Hs(Rn) ∀ pairs, (ji,`i
) ∈ (1, . . . , k)2.

163
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Of course we can combine (
16.3
8.3) and (

16.6
8.8) and demand

16.7 (8.9)

L2∏

i=1

Dpi

L1∏

i=1

(xji
D`i

)u′ ∈ Hs
c (Rn)(jj , `i) ∈ (1, . . . , k)2

∀ L1, L2 pi ∈ (k + 1, . . . u).

Problem 8.1. Show that (
16.7
8.9) implies (

16.3
8.3) and (

16.4
8.4)

The point about (
16.7
8.9) is that it is easy to interpret in a coordinate indepen-

dent way. Notice that putting C∞ coefficients in front of all the terms makes no
difference.

16.8 Lemma 8.1. The space of all C∞ vector fields on Rn tangent to the submanifold
{x1 = · · · = xk = 0} is spanning over C∞(Rn) by

16.9 (8.10) xiDj , Dp i, j ≤ k, p > k.

Proof. A C∞ vector field is just a sum

(8.11) V =
∑

j≤k

ajDj +
∑

p>k

bpDp.

Notice that the Dp, for p > k, are tangent to {x1 = · · · = xk = 0}, so we can
assume bp = 0. Tangency is then given by the condition

(8.12) V x)i = 0 and {x1 = · · · = xk = 0}, i = 1, . . . , h

i.e. aj =
∑
`=1

aj`x`, 1 ≤ j ≤ h. Thus

(8.13) V =
∑

`=1

aj`x`Dj

which proves (
16.9
8.10). �

This allows us to write (
16.7
8.9) in the compact form

16.10 (8.14) V(Rn, Yk)pu′ ⊂ Hs
c (Rn) ∀ p

where V(Rn, Yk) is just the space of all C∞ vector fields tangent to Yk = {x1 =
· · · = xk = 0}. Of course the local coordinate just reduce vector fields tangent to Y
to vector fields tangent to Yk so the invariant version of (

16.10
8.14) is

16.11 (8.15) V(X,Y )pu ⊂ Hs(X ; Ω
1
2 ) ∀ p.

To interpret (
16.11
8.15) we only need recall the (Lie) action of vector fields on half-

densities. First for densities: The formal transpose of V is −V, so set

(8.16) LV φ(ψ) = φ(−V ψ)

if φ ∈ C∞(X ; Ω), ψ ∈ C∞(X). On Rn then becomes

16.12 (8.17)

∫
LV φ · ψ = −

∫
φ · V ψ

= −
∫
φ(x)V ψ · dx

=

∫
(V φ(x) + δV φ)ψ dx

δV =

n∑

i=1

Diai if V = ΣaiDi.
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i.e.

16.13 (8.18) LV (φ|dx|) = (V φ)|dx| + δV φ.

Given the tensorial properties of density, set

16.14 (8.19) LV (φ|dx|t) = V φ|dx|t + tδV φ.

This corresponds to the natural trivialization in local coordinates.

16.15 Definition 8.1. If Y ⊂ X is a closed embedded submanifold then

16.16 (8.20)

IHs
(
X,Y ; Ω

1
2

)
=
{
u ∈ Hs

(
X ; Ω

1
2

)
satisfying (11)}

I∗
(
X,Y ; Ω

1
2

)
=
⋃

s

IHs
(
X,Y ; Ω

1
2

)
.

Clearly

16.17 (8.21) u ∈ I∗(X,Y ; Ω
1
2 ) =⇒ u � X\Y ∈ C∞

(
X\Y ; Ω

1
2

)

and

16.18 (8.22)
⋂

s

IHs
(
X,Y ; Ω

1
2

)
= C∞

(
X ; Ω

1
2

)
.

Let us try to understand these distributions in some detail! To do so we start with
a very simple case, namely Y = {p} is a point; so we only have one coordinate
system. So construct p = 0 ∈ Rn.

16.19 (8.23)
u ∈ I∗c

(
Rn, {0}; Ω 1

2

)
=⇒ u = u′|dx| 12 when

xαDβ
xu

′ ∈ Hs
c (Rn), s fixed ∀ |α| ≥ |β|.

Again by a simple commutative argument this is equivalent to

16.20 (8.24) Dβ
xx

αu′ ∈ Hs
c (Rn) ∀ |α| ≥ |β|.

We can take the Fourier transform of (
16.20
8.24) and get

16.21 (8.25) ξβDα
ξ û

′ ∈ 〈ξ〉−sL2(Rn) ∀ |α| ≥ |β|.
In this form we can just replace ξβ by 〈ξ〉|β|, i.e. (

16.21
8.25) just says

16.22 (8.26) Dα
ξ û

′(ξ) ∈ 〈ξ〉−s−|β|L2(Rn) ∀ α.
Notice that this is very similar to a symbol estimate, which would say

16.23 (8.27) Dα
ξ û

′(ξ) ∈ 〈ξ〉m−|α|L∞(Rn) ∀ α.
16.24 Lemma 8.2. The estimate (

16.22
8.26) implies (

16.23
8.27) for any m > −s− n

2 ; conversely
(
16.23
8.27) implies (

16.22
8.26) for any s < −m− n

2 .

Proof. Let’s start with the simple derivative, (
16.23
8.27) implies (

16.22
8.26). This really

reduces to the case α = 0. Thus

(8.28) 〈ξ〉ML∞(Rn) ⊂ L2(Rn) =⇒M < −n
2

is the inequality

(8.29)

(∫
|u|2dξ

) 1
2

≤ sup〈ξ〉−M |u|
(∫
〈ξ〉2Mdξ

) 1
2
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and

(8.30)

∫
〈ξ〉2Mdξ =

∫ (
1 + |ξ|2

)M
dξ <∞ iff M < −n

2
.

To get (
16.23
8.27) we just show that (

16.23
8.27) implies

16.25 (8.31) 〈ξ〉s+|α|Dα
ξ û

′ ∈ 〈ξ〉m+sL∞ ⊂ L2 if m+ s < −n
2
.

The converse is a little trickier. To really see what is going on we can reduce (
16.22
8.26)

to a one dimensional version. Of course, near ξ = 0, (
16.22
8.26) just says û′ is C∞, so

we can assume that |ξ| > 1 on supp û′ and introduce polar coordinates:

16.26 (8.32) ξ = tw, w ∈ Sn−1t > 1.

Then
Exercise 2. Show that (

16.22
8.26) (or maybe better, (

16.21
8.25)) implies that

16.27 (8.33) Dk
t P û

′(tw) ∈ t−s−kL2(R+ × Sn−1; tn−1dtdw) ∀ k
for any C∞ differential operator on Sn−1. �

In particular we can take P to be elliptic of any order, so (
16.27
8.33) actually implies

16.28 (8.34) sup
w
Dk

t P û(t, w) ∈ t−s−kL2(R+; tn−1dt)

or, changing the meaning to dt,

16.29 (8.35) sup
w∈Sn−1

∣∣Dk
t P û(t, w)

∣∣ ∈ t−s−k− n−1
2 L2

(
R+, dt

)
.

So we are in the one dimensional case, with s replaced by s + n−1
2 . Now we can

rewrite (
16.29
8.35) as

16.30 (8.36) Dtt
qDk

t P û ∈ trL2, ∀ k, r − q = −s− k − n− 1

2
− 1.

Now, observe the simple case:

16.31 (8.37) f = 0t < 1, Dtf ∈ trL2 =⇒ f ∈ L∞ if r < −1

2

since

(8.38) sup |f | =
t∫

−∞

trg ≤
(∫
|g|2
) 1

2

·




t∫

−∞

t2r




1
2

.

Thus from (
16.30
8.36) we deduce ≤ (

∫
|g|2) 1

2

(8.39) Dk
t P û ∈ t−qL∞ if r < −1

2
, i.e. − q > −s− k − n

2
.

Finally this gives (
16.23
8.27) when we go back from polar coordinates, to prove the

lemma.

16.32 Definition 8.2. Set, for m ∈ R,
(8.40) Im

c (Rn, |[0}) = {u ∈ C−∞
c (Rn); û ∈ Sm−n

4 (Rn)}
with this definition,

16.33 (8.41) IHs(Rn, {0}) ⊂ Im
c (Rn, {0}) ⊂ Is′

c (Rn, {0})
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provided

(8.42) s > −m− n

4
> s′.

Exercise 3. Using Lemma 24, prove (
16.33
8.41) carefully.

So now what we want to do is to define Im
c (X, {p}; Ω 1

2 ) for any p ∈ X by

16.34 (8.43)
u ∈ Im

c (X, {p}; Ω 1
2 )⇐⇒ F ∗(φu) ∈ Im

c (Rn, {0}),
u � X\{p} ∈ C∞(X\{p}).

Here we have a little problem, namely we have to check that Im(Rn, {0}) is invariant
under coordinate changes. Fortunately we can do this using (

16.33
8.41).

17.7 Lemma 8.3. If F : Ω −→ Rn is a diffeomorphism of a neighbourhood of 0 onto
its range, with F (0) = 0, then

17.8 (8.44) F ∗{u ∈ Im
c (Rn, {0}; supp(u) ⊂ F (Ω)} ⊂ Im

c (Rn, {0}).

Proof. Start with a simple case, that F is linear. Then

(8.45) u = (2π)−n

∫
eixξa(ξ)dξ, a ∈ Sm−n

4 (Rn).

so

17.9 (8.46)

F ∗u = (2π)−n

∫
eiAx·ξa(ξ)dξ Fx = Ax

= (2π)−n

∫
iix·A

tξa(ξ)dξ

= (2π)−n

∫
eix·ηa((At)−1η)| detA|−1dη.

Since a((At)−1η)| detA|−1 ∈ Sm−n
4 Rn) we have proved the result for linear trans-

formations. We can always factorize F is

17.10 (8.47) F = G ·A, A = (F∗)

so that the differential of G at 0 is the identity, i.e.

17.11 (8.48) G(x) = x+O(|x|2).

Now (
17.11
8.48) allows us to use an homotopy method, i.e. set

17.12 (8.49) Gs(x) = x+ s(G(x) − x) s ∈ [0, 1)
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so that G0 = Id, Gs = G. Such a 1-parameter family is given by integration of a
vector field:

17.13 (8.50)

G∗
sφ =

s∫

0

d

ds
G∗

sφdx

=

∫

0

s
d

ds
φ(Gx(x))ds

=
∑

1

s∫

0

d

G

ξ

s,i
ds (∂xjφ) (Gδ(x)) ds

=

s∫

0

G∗
s (Vsφ) ds

when the coefficients of Vs are

17.14 (8.51) G∗
sVs,j =

d

ds
Gs,i.

Now by (
17.12
8.49) d

dsGs,i = Σxixja
s
ij(x), so the same is true of the Vs,i, again using

(
17.12
8.49).

We can apply (
17.13
8.50) to compute

17.15 (8.52) G∗u =

′∫

0

G∗
s (Vsu) ds

when u ∈ Im
c (Rn, {0}) has support near 0. Namely, by (

16.33
8.41), u ∈ IHs

c (Rn, {0}) ,
with s < −m− n

4 , but then

(8.53) Vsu ∈ IHs+1
c (Rn, {0})

since V =
n∑

i,j=1

bsij(x)xixjDj . Applying (
16.33
8.41) again gives

17.16 (8.54) G∗
s(Vsu) ∈ Im′

(Rn, {0}) , ∀ m′ > m− 1.

This proves the coordinates invariance. �

Last time we defined the space of conormal distributions associated to a closed
embedded submanifold Y ⊂ X :

17.1 (8.55)
IHs(X,Y ) = {u ∈ Hs(X);V(X,Y )ku ⊂ Hs(X) ∀ k}
IH∗(X,Y ) = I∗(X,Y ) =

⋃
sIHs(X,Y ).

Here V(X,Y ) is the space of C∞ vector fields on X tangent to Y. In the special case
of a point in Rn, say 0, we showed that

17.2 (8.56) u ∈ I∗c (Rn), {0})⇐⇒ u ∈ C−∞
c (Rn) and û ∈ SM (Rn),M = M(u).

In fact we then defined the “standard order filtration” by

17.3 (8.57) u ∈ Im
c (Rn, {0}) =

{
u ∈ C−∞

c (Rn); û ∈ Sm−n
4 (Rn)

}
,

and found that

17.4 (8.58) IHs
c (Rn, {0}) ⊂ I−s−n

4
c (Rn, {0}) ⊂ IHs′

c (Rn, {0}) ∀ s′ < s.
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Our next important task is to show that Im
c (Rn, {0}) is invariant under coordinate

changes. That is, if F : U1 −→ Rn is a diffeomorphism of a neighbourhood of 0 to
its range, with F (0) = 0, then we want to show that

17.5 (8.59) F ∗u ∈ Im
c (Rn, {0}) ∀ u ∈ Im

c (Rn, {0}), supp(u) ⊂ F (U1).

Notice that we already know the coordinate independence of the Sobolev-based
space, so using (

17.4
8.58), we deduce that

17.6 (8.60) F ∗u ∈ Im′

c (Rn, {0}) ∀ u ∈ Im
c (Rn, {0}), n′ > m, supp(u) ⊂ F (U1).

In fact we get quite a lot more for our efforts:

17.17 Lemma 8.4. There is a coordinate-independent symbol map:

17.18 (8.61) Im(X, {p}; Ω 1
2 )@ > σm

Y >> Sm+ n
4 −[J]

(
T ∗

pR
n; Ω

1
2

)

given by the local prescription

17.19 (8.62) σm
Y (u) = û(ξ)|dξ| 12

where u = v|dx| 12 is local coordinate based at 0, with ξ the dual coordinate in T ∗
pX.

Proof. Our definition of Im(X, {p}; Ω 1
2 ) is just that in any local coordinate

based at p

17.20 (8.63) u ∈ Im(X, {p}; Ω 1
2 ) =⇒ φu = v|dx| 12 , v ∈ Im

c (Rn, {0})
and u ∈ C∞(X\{p}; Ω 1

2 ). So the symbol map is clearly supposed to be

17.21 (8.64) σm(u)(ζ) ≡↓ v̂(ξ)|dξ|
1
2 ∈ Sm+ n

4 −[1](Rn; Ω
1
2 )

where ζ ∈ T ∗
pX is the 1-form ζ = ξ ·dx in the local coordinates. Of course we have to

show that (
17.21
8.64) is independent of the choice of coordinates. We already know that

a change of coordinates changes v̂ by a term of order m− n
4 −1, which disappears in

(
17.21
8.64) so the residue class is determined by the Jacobian of the change of variables.

From (
17.9
8.46) we see exactly how v̂ transforms under the Jacobian, namely as a

density on

T ∗
0R

n : A ∈ GL(n,R) =⇒ Â∗v(η)|dη| 12
= v̂((At)−1η)| detA|−1|dy|

so η = Atξ =⇒
17.22 (8.65) Â∗v(η)|dy| = v̂(ξ)|dξ|.

However recall from (
17.20
8.63) that u is a half-density, so actually in the new coordinates

v′ = A∗v · | detA| 12 . This shows that (
17.21
8.64) is well-defined.

Before going on to consider the general case let us note a few properties of
Im(X, {p},Ω 1

2 ) : �

Exercise: Prove that

17.23 (8.66)

If P ∈ Diffm(X ; Ω
1
2 ) then

P : Im(X, {p}; Ω 1
2 ) −→ Im+M (X, {p}; Ω 1

2 ) ∀ m
σm+M (Pu) = σM (P ) · σm(u).

To pass to the general case of Y ⊂ X we shall proceed in two steps. First let’s
consider a rather ‘linear’ case of X = V a vector bundle over Y. Then Y can be
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identified with the zero section of V. In fact V is locally trivial, i.e. each p ∈ y has
a neighbourhood U s.t.

17.24 (8.67) π−1(U) ' Rn
x × U ′

y′U ′ ⊂ Rp

by a fibre-linear diffeomorphism projecting to a coordinate system on this base. So
we want to define

(8.68) Im(V, Y ; Ω
1
2 ) = {u ∈ I∗(V, Y ; Ω

1
2 );

of φ ∈ C∞c (U) then under any trivialization (
17.24
8.67)

17.25 (8.69)
φu(x, y) ≡ (2π)−n

∫
eix·ξa(y, ξ)dξ|dx| 12 , mod C∞,

a ∈ Sm−n
2 − p

4 (Rp
y,R

n
ξ ).

Here p = dimY, p+n = dimV. Of course we have to check that (
17.25
8.69) is coordinate-

independent. We can write the order of the symbol, corresponding to u having order
m as

17.26 (8.70) m− dim V

4
+

dimY

2
= m+

dimV

4
− codimY

2
.

These additional shifts in the order are only put there to confuse you! Well, actually
they make life easier later.

Notice that we know that the space is invariant under any diffeomorphism of
the fibres of V, varying smoothly with the base point, it is also obvious that (

17.25
8.69)

in independent the choice of coordinates is U ′, since that just transforms these
variables. So a general change of variables preserving Y is

(8.71) (y, x) 7−→ (f(y, x), X(y, x)) X(y, 0) = 0.

In particular f is a local diffeomorphism, which just changes the base variables
in (

17.25
8.69), so we can assume f(y) ≡ y. Then X(y, x) = A(y) · x + O(x2). Since

x 7−→ A(y) ·x is a fibre-by-fibre transformation it leaves the space invariant too, So
we are reduced to considering

17.27 (8.72) G : (y, x) 7−→ (y, x+ Σaij(x, y)xixj)y + Σbi(x, y)xi.

To handle these transformations we can use the same homotopy method as before
i.e.

17.28 (8.73) Gs(x, y=(y + s)
∑

i

bi(x, y)xi, x+ s
∑

i,j

aij(x, y)xixj)

is a 1-parameter family of diffeomorphisms. Moreover

(8.74)
d

ds
G∗

su = G∗
sVsk

where

(8.75) Vs =
∑

i,`

βi,`(s, x, y)xi∂y`
+
∑

i,j,k

αi,j,k +
∑

i,j,k

αijk(α, y, s)`i, `j
∂

∂xk
.

So all we really have to show is that

17.29 (8.76) Vs : IM (U ′ × Rn, U ′ × {0}) −→ IM−1(U ′ × Rn, U ′ × {0}) ∀ M.

Again the spaces are C∞-modules so we only have to check the action of xi∂y`
and

xix+ j∂xk
. These change the symbol to

(8.77) Dξi
∂y`

a and iDξi
Dξj
· ξka
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respectively, all one order lower.
This shows that the definition (

17.25
8.69) is actually a reasonable one, i.e. as usual

it suffices to check it for any covering by coordinate partition.
Let us go back and see what the symbol showed before.

17.30 Lemma 8.5. If

(8.78) u ∈ Im(V, Y ; Ω
1
2 )u = v|dx| 12 |dξ| 12

defines an element

(8.79) σm(u) ∈ Sm+ n
4 + p

4−[1](V ∗; Ω
1
2 )

independent of choices.

Last time we discussed the invariant symbol for a conormal distribution asso-
ciated to the zero section of a vector bundle. It turns out that the general case
is not any more complicated thanks to the “tubular neighbourhood” or “normal
fibration” theorem. This compares Y ↪→ X, a closed embedded submanifold, to the
zero section of a vector bundle.

Thus at each point y ∈ Y consider the normal space:

18.1 (8.80) NyY = Ny{X,Y } = Tyx/TyY.

That is, a normal vector is just any tangent vector to X modulo tangent vectors to
Y. These spaces define a vector bundle over Y :

18.2 (8.81) NY = N{X ;Y } =
⊔

y∈Y

NyY

where smoothness of a section is inherited from smoothness of a section of TyX, i.e.

18.3 (8.82) NY = TyX/TyY.

Suppose Yi ⊂ Xi are C∞ submanifolds for i = 1, 2 and that F : X1 −→ X2 is a
C∞ map such that

18.4 (8.83) F (Y1) ⊂ Y2.

Then F∗ : TyX1 −→ TF (y)X2, must have the property

18.5 (8.84) F∗ : TyY1 −→ TF (y)Y2 ∀ y ∈ Y1.

This means that F∗ defines a map of the normal bundles

18.6 (8.85) F∗ : NY1
//

��

NY2

��

Y1
F

// Y2.

Notice the very special case that W −→ Y is a vector bundle, and we consider
Y ↪→ W as the zero section. Then

18.7 (8.86) Ny{W ;Y } ←→Wy ∀ y ∈ Y
since

18.8 (8.87) TyW = TyY ⊕ Ty(Wy) ∀ y ∈ W.
That is, the normal bundle to the zero section is naturally identified with the vector
bundle itself.
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So, suppose we consider C∞ maps

18.9 (8.88) f : B −→ N{X ;Y } = NY

where B ⊂ X is an open neighbourhood of the submanifold Y. We can demand
that

18.10 (8.89) f(y) = (y, 0) ∈ NyY ∀ y ∈ Y
which is to say that f induces the natural identification of Y with the zero section
of NY and moreover we can demand

18.11 (8.90) f∗ : NY −→ NY is the identity.

Here f∗ is the map (
18.6
8.85), so maps NY to the normal bundle to the zero section

of NY, which we have just observed is naturally just NY again.

18.12 Theorem 8.1. For any closed embedded submanifold Y ⊂ X there exists a
normal fibration, i.e. a diffeomorphism (onto its range) (

18.9
8.88) satisfing (

18.10
8.89) and

(
18.11
8.90); two such maps f1, f2 are such that g = f2 ◦ f−1

1 is a diffeomorphism near
the zero section of NY, inducing the identity on Y and inducing the identity (

18.11
8.90).

Proof. Not bad, but since it uses a little Riemannian geometry I will not
prove it, see [ ], [ ]. (For those who know a little Riemannian geometry, f−1 can be
taken as the exponential map near the zero section of NY, identified as a subbundle
of TYX using the metric.) Of course the uniqueness part is obvious. �

Actually we do not really need the global aspects of this theorem. Locally it is
immediate by using local coordinates in which Y = {x1 = · · · = xk = 0}.

Anyway using such a normal fibration of X near Y (or working locally) we can
simply define

18.13 (8.91)
Im(X,Y ; Ω

1
2 ) = {u ∈ C−∞(X ; Ω

1
2 );u is C∞ in X\Y and

(f−1)∗(φu) ∈ Im(NY, Y ; Ω
1
2 ) if φ ∈ C∞(X), supp(φ) ⊂ B}.

Naturally we should check that the definition doesn’t depend on the choice of f.

This means knowing that Im(NY, Y ; Ω
1
2 ) is invariant under g, as in the theorem,

but we have already checked this. In fact notice that g is exactly of the type of
(
17.27
8.72). Thus we actually know that

(8.92) σm(g∗u) = σm(u) in Sm+ n
4 + p

4−[1](N∗Y ; Ω
1
2 ).

So we have shown that there is a coordinate invariance symbol map

18.14 (8.93) σm : Im(X,Y ; Ω
1
2 ) −→ Sm+ n

4 + p
4−[1](N∗Y ; Ω

1
2 )

giving a short exact sequence
18.15 (8.94)

0 ↪→ Im−1(X,Y ; Ω
1
2 ) −→ Im(X,Y ; Ω

1
2 )@ > σm >> Sm+ n

4 + p
4−[1](N∗Y ; Ω

1
2 ) −→ 0

(8.95) where n = dimX − dim Y, p = dimY.

Asymptotic completeness carries over immediately. We also need to go back and
check the extension of (

17.23
8.66):
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18.16 Proposition 8.1. If Y ↪→ X is a closed embedded submanifold and A ∈
Ψm

c (X ; Ω
1
2 ) then

18.17 (8.96) A : IM (X,Y ; Ω
1
2 ) −→ IM+m(X,Y ; Ω

1
2 ) ∀ M

and

18.18 (8.97) σm+M (Au) = σm(A)σm(A) � N∗Y σM (u).

Notice that σm(A) ∈ Sm−[1](T ∗X) so the product here makes perfectly good sense.

Proof. Since everything in sight is coordinate-independent we can simply
work in local coordinates where

18.19 (8.98) X ∼ Rp
y × Rn

x , Y = {x = 0}.

Then u ∈ Im
c (X,Y ; Ω

1
2 ) means just

18.20 (8.99) u = (2π)−n

∫
eix·ξa(y, ξ)dξ · |dx| 12 , a ∈ Sm−n

4 + p
4 (Rp,Rn).

Similarly A can be written in the form

18.21 (8.100) A = (2π)−n−p

∫
ei(x−x′)·ξ+i(y−y′)·ηb(x, y, ξ, η)dξdη.

Using the invariance properties of the Sobolev based space if we write

(8.101) A = A0 + ΣxjBj , A0 = qL(b(0, y, ξ, η))

we see that Au ∈ Im+M (X,Y ; Ω
1
2 ) is equivalent to A0u ∈ Im+M (X,Y ; Ω

1
2 ). Then

(8.102) A0u = (2π)−n−p

∫
eix·ξ+i(y−y′)·ηb(0, y′, ξ, η)b(y′, ξ)dy′dηdξ,

where we have put A0 in right-reduced form. This means

(8.103) A0u = (2π)−n

∫
eix·ξc(y, ξ)dξ

where

(8.104) c(y, ξ) = (2π)−p

∫
ei(y−y′)·ηb(0, y′, ξ, η)a(y′, ξ)dy′dη.

Regarding ξ as a parameter, this is, before y′ integration, the kernel of a pseudo-
differential operator is y. It can therefore be written in left-reduced form, i.e.

18.22 (8.105) c(y, ξ) = (2π)−p

∫
ei(y−y′)ηe(y, ξ, η)dηdy′ = e(y, ξ, 0)

where e(y, ξ, η) = b(0, y, ξ, η)a(y, ξ) plus terms of order at most m+M − n
4 + p

4 −1.
This proves the formula (

18.18
8.97). �

Notice that if A is elliptic then Au ∈ C∞ implies u ∈ C∞, i.e. there are no
singular solutions. Suppose that P is say a differential operator which is not elliptic
and we look for solutions of

18.23 (8.106) Pu ∈ C∞(XΩ
1
2 ).

How can we find them? Well suppose we try

18.24 (8.107) u ∈ IM (X,Y ; Ω
1
2 )
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for some submanifold Y. To know that u is singular we will want to have

18.25 (8.108) σ(u) is elliptic on N∗Y

(which certainly implies that u /∈ C∞).
The simplest case would be Y a hypersurface. In any case from (

18.18
8.97) and

(
18.23
8.106) we deduce

18.26 (8.109) σm(P ) · σM (u) ≡ 0.

So if we assume (
18.25
8.108) then we must have

18.27 (8.110) σm(P ) � N∗Y = 0.

18.28 Definition 8.3. A submanifold is said to be characteristic for a given operator
P ∈ Diffm(X ; Ω

1
2 ) if (

18.27
8.110) holds.

Of course even if P is characteristic for y, and so (
18.26
8.109) holds we do not recover

(
18.23
8.106), just

18.29 (8.111) Pu ∈ Im+M−1(X,Y ; Ω
1
2 )

i.e., one order smoother than it “should be”. The task might seem hopeless, but
let us note that these are examples, and important ones at that!!

Consider the (flat) wave operator

18.30 (8.112) P = P 2
t −

n∑

i=1

D2
i = D2

t −∆ on Rn+1.

A hypersurface in Rn+1 looks like

18.31 (8.113) H =
{
h(t, x) = 0

}
, (dh 6= 0 on H) .

The symbol of P is

18.32 (8.114) σ2(P ) = τ2 − |ξ|2 = τ2 − ξ21 − · · · − ξ2n,
where τ, ξ are the dual variables to t, x. So consider (

18.27
8.110),

18.33 (8.115) N∗Y =
{
(t, x;λdh(t, y));h(t, x) = 0

}
.

Inserting this into (
18.32
8.114) we find:

18.34 (8.116)

(
λ
∂h

∂t

)2

−
(
λ
∂h

∂x1

)2

− · · · −
(
λ
∂h

∂xn

)2

= 0 on h = 0

i.e. simply:

18.35 (8.117)

(
∂h

∂t

)2

= |dxh|2 on h(t, x) = 0.

This is the “eikonal equation” for h (and hence H).
Solutions to (

18.35
8.117) are easy to find – we shall actually find all of them (locally)

next time. Examples are given by taking h to be linear:

18.36 (8.118) H =
{
h = at+ b · x = 0

}
is characteristic for P ⇐⇒ a2 = |b|2.

Since h/a defines the same surface, all the linear solutions correspond to planes

18.37 (8.119) t = ω · x, ω ∈ Sn−1.



8.1. HAMILTON-JACOBI THEORY 175

So, do solutions of Pu ∈ C∞ which are conormal with respect to such hyper-
surfaces exist? Simply take

18.38 (8.120) u = v(t− ω · x) v ∈ I∗(R, {0}; Ω 1
2 ).

Then

18.39 (8.121) Pu = 0, u ∈ I∗(Rn+1, H ; Ω
1
2 ).

For example v(s) = δ(s), u = δ(t− ω · x) is a “travelling wave”.

8.1. Hamilton-Jacobi theory

Let X be a C∞ manifold and suppose p ∈ C∞(T ∗X\0) is homogeneous of
degree m. We want to find characteristic hypersurfaces for p, namely hypersurfaces
(locally) through x̄ ∈ X

19.1 (8.122) H = {f(x) = 0} h ∈ C∞(x)h(x̄) = 0, dh(x̄) 6= 0

such that

19.2 (8.123) p(x, dh(x)) = 0.

Here we demand that (
19.2
8.123) hold near x̄, not just on H itself. To solve (

19.2
8.123) we

need to impose some additional conditions, we shall demand

19.3 (8.124) p is real-valued

and

19.4 (8.125) dfibrep 6= 0 or Σ(p) = {p = 0} ⊂ T ∗X\0.
This second condition is actually stronger than really needed (as we shall see) but
in any case it implies that

19.5 (8.126) Σ(P ) ⊂ T ∗X\0 is a C∞ conic hypersurface

by the implicit function theorem.
The strategy for solving (

19.2
8.123) is a geometric one. Notice that

19.6 (8.127) Λh = {(x, dh(x)) ∈ T ∗X\0}
actually determines h up to an additive constant. The first question we ask is –
precisely which submanifold Λ ⊂ T ∗X\0 corresponds to graphs of differentials of
C∞ functions? The answer to this involves the tautologous contact form.

19.7 (8.128)
α : T ∗X −→ T ∗(T ∗X) 6⊂ π̃ ◦ α = Id

α(x, ξ) = π̃∗ξ ∈ T ∗
(x,ξ)(T

∗X).

Here π̃ : T ∗(T ∗X) −→ T ∗X is the projection. Notice that if x1, . . . , xn are local
coordinates in X then x1, . . . , xn, ξ1, . . . , ξn are local coordinates T ∗X, where ξ ∈
T ∗

xX is written

19.8 (8.129) ξ =

n∑

i=1

ξidxi.

Since x1, . . . , xn, ξ1, . . . , ξn are local coordinates in T ∗X they together with the dual
coordinates Ξ1, . . . ,Ξn, X1, . . . , Xn are local coordinates in T ∗(T ∗X) where

19.9 (8.130) ζ ∈ T ∗
(x,ξ)(T

∗X) =⇒ ζ =

n∑

j=1

Ξjdxj +

n∑

j=1

Xjdξj .
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In these local coordinates

19.10 (8.131) α =

n∑

j=1

ξjdxj !

The first point is that α is independent of the original choice of coordinates, as is
evident from (

19.7
8.128).

19.11 Lemma 8.6. A submanifold Λ ⊂ T ∗X\0 is, near (x̄, ξ̄) ∈ Λ, of the form (
19.6
8.127)

for some h ∈ C∞(X), if

19.12 (8.132) π : Λ −→ X is a local diffeomorphism

and

19.13 (8.133) α restricted to Λ is exact.

Proof. The first condition, (
19.12
8.132), means that Λ is locally the image of a

section of T ∗X :

(8.134) Λ = {(x, ζ(x)), ζ ∈ C∞(X ;T ∗X)}.
Thus the section ζ gives an inverse Z to π in (

19.12
8.132). It follows from (

19.7
8.128) that

(8.135) Z∗α = ζ.

Thus if α is exact on Λ then ζ is exact on X, ζ = dh as required. �

Of course if we are only working locally near some point (x̄, ξ̄) ∈ Λ then (
19.13
8.133)

can be replaced by the condition

19.14 (8.136) ω = dα = 0 on X.

Here ω = dα is the symplectic form on T ∗X :

19.15 (8.137) ω =

n∑

j=1

dξj ∧ dxj .

19.16 Definition 8.4. A submanifold Λ ⊂ T ∗X of dimension equal to that of X is
said to be Lagrangian if the fundamental 2-form, ω, vanishes when pulled back to
Λ.

By definition a symplectic manifold is a C∞ manifold S with a C∞ 2-form
ω ∈ C∞(S; Λ2) fixed satisfying two constraints

19.17 (8.138) dω = 0

19.18 (8.139) ω ∧ · · · ∧
n factors

ω 6= 0 dimS = 2n.

A particularly simple example of a symplectic manifold is a real vector space, nec-
essarily of even dimension, with a non-degenerate antisymmetric 2-form:

19.19 (8.140)

{
ω : E ×E −→ R

ω̃ : E ←→ E∗.

Here ω̃(v)(w) = ω(v, w) ∀ w ∈ E. Now (
19.17
8.138) is trivially true if we think of ω as

a translation-invariant 2-form on E, thought of as a manifold.
Then a subspace V ⊂ E is Lagrangian if

19.20 (8.141)
ω(v, w) = 0 ∀ v, w ∈ V
2 dimV = dimE.
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Of course the point of looking at symplectic vector spaces and Lagrangian subspaces
is:

19.21 Lemma 8.7. If S is a symplectic manifold then TzS is a symplectic vector space
for each z ∈ S. A submanifold Λ ⊂ S is Lagrangian iff TzΛ ⊂ TzS is a Lagrangian
subspace ∀ z ∈ Λ.

We can treat ω, the antisymmetric 2-form on E, as though it were a Euclidean
inner product, at least in some regards! Thus if W ⊂ E is any subspace set

19.22 (8.142) W ω = {v ∈ E;ω(v, w) = 0 ∀ w ∈ W}.
19.23 Lemma 8.8. If W ⊂ E is a linear subspace of a symplectic vector space then

dimWω + dimW = dimE; W is Lagrangian if and only if

19.24 (8.143) W ω = W.

Proof. Let W 0 ⊂ E∗ be the usual annihilator:

(8.144) W 0 = {α ∈ E∗;α(v) = 0 ∀ v ∈W}.
Then dimW 0 = dimE − dimW. Observe that

19.25 (8.145) ω̃ : W ω ←→W 0.

Indeed if α ∈W 0 and ω̃(v) = α then

(8.146) α(w) = ω̃(v)(w) = ω(v, w) = 0 ∀ w ∈ W
implies that v ∈ Wω. Conversely if v ∈ W ω then α = ω̃(v) ∈ W 0. Thus dimWω +
dimW = dimE.

Now if W is Lagrangian then α = ω̃(w), w ∈W implies

(8.147) α(v) = ω̃(w)(v) = ω(w, v) = 0 ∀ v ∈ w.
Thus ω̃(W ) ⊂ W 0 =⇒ W ⊂ Wω, by (

19.25
8.145), and since dimW = dimW ω, (

19.24
8.143)

holds. The converse follows similarly. �

The “lifting” isomorphism ω̃ : E ←→ E∗ for a symplectic vector space is like the
Euclidean identification of vectors and covectors, but “twisted”. It is of fundamental
importance, so we give it several names! Suppose that S is a symplectic manifold.
Then

19.26 (8.148) ω̃z : TzS ←→ T ∗
z S ∀ z ∈ S.

This means that we can associate (by the inverse of (
19.26
8.148)) a vector field with

each 1-form. We write this relation as

19.27 (8.149)
Hγ ∈ C∞(S;TS) if γ ∈ C∞(S;T ∗S) and

ω̃z(Hγ) = γ ∀ z ∈ S.
Of particular importance is the case γ = df, f ∈ C∞(S). Then Hdf is written

Hf and called the Hamilton vector field of f. From (
19.27
8.149)

19.28 (8.150) ω(Hf , v) = df(v) = vf ∀ v ∈ TzS, ∀ z ∈ S.
The identity (

19.28
8.150) implies one important thing immediately:

19.29 (8.151) Hff ≡ 0 ∀ f ∈ C∞(S)

since

(8.152) Hff = df(Hf ) = ω(Hf , Hf ) = 0
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by the antisymmetry of ω. We need a generalization of this:

19.30 Lemma 8.9. Suppose L ⊂ S is a Lagrangian submanifold of a symplectic man-
ifold then for each f ∈ I(S) = {f ∈ C∞(X); f � {s = 0}, Hf is tangent to Λ.

Proof. Hf tangent to Λ means Hf (z) ∈ TzΛ ∀ z ∈ Λ. If f = 0 on Λ then
df = 0 on TzΛ, i.e. df(z) ∈ (TzΛ)0 ⊂ (TzS) ∀ z ∈ Λ. By (

19.24
8.143) the assumption

that Λ is Lagrangian means ω̃z(df(z)) ∈ TzΛ, i.e. Hf (z) ∈ TζΛ as desired. �

This lemma gives us a necessary condition for our construction of a Lagrangian
submanifold

19.31 (8.153) Λ ⊂ Σ(P ).

Namely Hp must be tangent to Λ! We use this to construct Λ as a union of integral
curves of Hp. Before thinking about this seriously, let’s look for a moment at the
conditions we imposed on p, (

19.3
8.124) and (

19.4
8.125). If p is real then Hp is real (since

ω is real). Notice that

19.32 (8.154) If S = T ∗X then each fibre T ∗
xX ⊂ T ∗X is Lagrangian .

Remember that on T ∗X,ω = dα, α = ξ ·dx the canonical 1-form. Thus T ∗
xX is just

x = const, so dx = 0, so α = 0 on T ∗
xX and hence in particular ω = 0, proving

(
19.32
8.154). This allows us to interpret (

19.4
8.125) in terms of Hp as

19.33 (8.155) (
19.4
8.125)←→ Hp is everywhere transversal to the fibres T ∗

xX.

Now we want to construct a little piece of Lagrangian manifold satisfying
(
19.31
8.153). Suppose z ∈ Σ(P ) ⊂ T ∗X\0 and we want to construct a piece of Λ

through z. Since π∗(Hp(z)) 6= 0 we can choose a local coordinate, t ∈ C∞(X), such
that

19.34 (8.156) π∗(Hp(z))t 6= 0, i.e. Hp(π
∗t)(z) 6= 0.

Consider the hypersurface through π(z) ∈ X,
19.35 (8.157) H = {t = t(z)} =⇒ π(z) ∈ H.

Suppose f ∈ C∞(H), df(π(z)) = 0. In fact we can choose f so that

19.36 (8.158) f = f ′ � H, f ′ ∈ C∞(X), df ′(π(z)) = z

where z ∈ Ξ(P ) was our chosen base point.

19.37 Theorem 8.2. (Hamilton-Jacobi) Suppose p ∈ C∞(T ∗X\0) satisfies (
19.3
8.124)

and (
19.4
8.125) near z ∈ T ∗X\0, H is a hypersurface through π(z) as in (

19.34
8.156), (

19.31
8.153)

and f ∈ C∞(H) satisfies (
19.36
8.158), then there exists f̃ ∈ C∞(X) such that

19.38 (8.159)

Λ = graph (df̃) ⊂ Σ(P ) near z

f̃ � H = f near π(z)

df̃(π(z)) = z

and any other such solution, f̃ ′, is equal to f̃ in a neighbourhood of π(z).

Proof. We need to do a bit more work to prove this important theorem, but
let us start with the strategy. First notice that Λ ∩ π−1(H) is already determined,
near π(z).

To see this we have to understand the relationship between df(h) ∈ T ∗H and

df̃(h) ∈ T ∗X, h ∈ H, f̃ � H = f. Observe that H = {t = 0} lifts to T ∗
HX ⊂ T ∗X a
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hypersurface. By (
19.29
8.151), Ht is tangent to T ∗

HX and non-zero. In local coordinates
t, x, . . . , xn−1, the x’s in H,

(8.160) Ht = − ∂

∂τ

where τ, ξ1, . . . , ξn are the dual coordinates. Thus we see that

19.39 (8.161) πH : T ∗
HX −→ T ∗H πH(β)(v) = β(v), v ∈ ThH ⊂ ThX,

is projection along ∂τ . Now starting from f ∈ C∞(H) we have

(8.162) Λf ⊂ T ∗H.

Notice that if f̃ ∈ C∞(X), f̃
∣∣H = f then

19.40 (8.163) Λf̃ ∩ T ∗
HX has dimension n− 1

and

19.41 (8.164) πH (Λf̃ ∩ T ∗
HX) = Λf .

The first follows from the fact that Λf̃ is a graph over X and the second from the

definition, (
19.39
8.161). So we find �

19.42 Lemma 8.10. If z ∈ Σ(P ) and H is a hypersurface through π(z) satisfying
(
19.34
8.156) and (

19.35
8.157) then πP

H : (Σ(P )∩T ∗
HX) −→ T ∗H is a local diffeomorphism in

a neighbourhood z; if (
19.36
8.158) is to hold then

19.43 (8.165) Λf̃ ∩ T ∗
HX = (πP

H )−1(Λf ) near z.

Proof. We know that Hp is tangent to Σ(P ) but, by assumption (
19.36
8.158) is not

tangent to T ∗
HX at z. Then Σ(P )∩T ∗

HX does have dimension 2n−1−1 = 2(n−1).
Moreover πH is projection along ∂τ which cannot be tangent to Σ(P )∩ T ∗

HX (since
it would be tangent to Σ(P )). Thus πP

H has injective differential, hence is a local
isomorphism.

So this is our strategy:
Start with f ∈ C∞(H), look at Λf ⊂ T ∗H, lift to Λ ∩ T ∗

HX ⊂ Σ(P ) by πP
H .

Now let

(8.166) Λ =
⋃
{Hp − curves through (πP

H)−1(Λf )}.

This we will show to be Lagrangian and of the form Λf̃ , it follows that

19.44 (8.167) p(x, df̃ ) = 0, f̃ � H = f.

�

8.2. Riemann metrics and quantization

Metrics, geodesic flow, Riemannian normal form, Riemann-Weyl quantization.
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8.3. Transport equation

The first thing we need to do is to finish the construction of characteristic
hypersurfaces using Hamilton-Jacobi theory, i.e. prove Theorem XIX.37. We have
already defined the submanifold Λ as follows:

1) We choose z ∈ Σ(P ) and t ∈ C∞(X) s.t. Hpπ
∗(t) 6= 0 at dz, then selected

f ∈ C∞(H), H = {t = 0} ∩ Ω,Ω 3 πz s.t.

20.1 (8.168) z(v) = df(v) ∀ v ∈ TπzH.

Then we consider

20.2 (8.169) Λf = graph{df} = {(x, df(x)), x ∈ H} ⊂ T ∗H

as our “initial data” for Λ. To move it into Σ(P ) we noted that the map

20.3 (8.170) Σ(P ) ∩ T ∗
HX
‖

{t=0 in T∗X}

−→ T ∗H

is a local diffeomorphism near z, df(π(z)) by (
20.1
8.168). The inverse image of Λf in

(
20.3
8.170) is therefore a submanifold Λ̃f ⊂ Σ(p) ∩ T ∗

HX of dimension dimX − 1 =
dimH. We define

20.4 (8.171) Λ =
⋃{

Hp − curves of length ε starting on Λ̃f

}
.

So we already know:

20.5 (8.172) Λ ⊂ Σ(P ) is a manifold of dimension n,

and

20.6 (8.173) π : Λ −→ X is a local diffeomorphism near n,

What we need to know most of all is that

20.7 (8.174) Λ is Lagrangian.

That is, we need to show that the symplectic two form vanishes identically on
Tz′Λ, ∀ z′ ∈ Λ (at least near z). First we check this at z itself! Now

20.8 (8.175) TzΛ = TzΛ̃f + sp(Hp).

Suppose v ∈ TzΛ̃f , then

20.9 (8.176) ω(v,Hp) = −dp(v) = 0 since Λ̃f ⊂ Σ(P ).

Of course ω(Hp, Hp) = 0 so it is enough to consider

20.10 (8.177) ω|(TzΛ̃f × TzΛ̃f ).

Recall from our discussion of the projection (
20.3
8.170) that we can write it as projection

along ∂τ . Thus

20.11 (8.178)
ωX(v, w) = ωH(v′, w′) if v, w ∈ Tz(THX),

(c∗H)∗v = v′(c∗H)∗w = w′ ∈ Tz(T
∗H)

where z = df(π(z)). Thus the form (
20.10
8.177) vanishes identically because Λf is La-

grangian.
In fact the same argument applies at every point of the initial surface Λ̃f ⊂ Λ :

20.12 (8.179) Tz′Λ is Lagrangian ∀ z′ ∈ Λ̃f .
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To extend this result out into Λ we need to use a little more differential geometry.
Consider the local diffeomorphisms obtained by exponentiating Hp :

20.13 (8.180) exp(εHp)(Λ ∩ Ω) ⊂ Λ ∀ ε small, Ω 3 z small.

This indeed is really the definition of Λj more precisely,

20.14 (8.181) Λ =
⋃

ε small

exp(εHp)(Λ̃f ).

The main thing to observe is that, on T ∗H, the local diffeomorphisms exp(εHp) are
symplectic:

20.15 (8.182) exp(εHp)
∗ωX = ωX .

Clearly (
20.15
8.182), (

20.13
8.180) and (

20.12
8.179) prove (

20.7
8.174). The most elegant wary to prove

(
20.15
8.182) is to use Cartan’s identity (valid for Hp any vector field, ω any form)

20.16 (8.183)
d

dε
exp(εHp)

∗ω = exp(εHp)
∗(LHp

ω)

where the Lie derivative is given explicitly by

20.17 (8.184) LV = d ◦ ιV + ιV ◦ d,
cV being contradiction with V (i.e. α(·, ·, . . . ) −→ α(V, ·, ·, . . . )). Thus

20.18 (8.185) LHp
ω = d(ω(Hp, ·)) + ιV (dω)

‖

0

= d(dp) = 0.

Thus from (
20.5
8.172), (

20.6
8.173) and (

20.7
8.174) we know that

20.19 (8.186) Λ = graph(df̃), f̃ ∈ C∞(X), near π(z),

must satisfy the eikonal equation

20.20 (8.187) p(x, df̃(x)) = 0 near π(z), Hf̃ � H = f

where we may actually have to add a constant to f̃ to get the initial condition –
since we only have df̃ = df on TH.

So now we can return to the construction of travelling waves: We want to find

20.21 (8.188) u ∈ I∗(X,G; Ω
1
2 ) G = {f = 0}

such that u is elliptic at z ∈ Σ(p) and

20.22 (8.189) Pu ∈ C∞(X).

So far we have noticed that

20.23 (8.190) σm+M (Pu) = σm(P ) � N∗G · σ(u)

so that

20.24 (8.191) N∗G ⊂ Σ(p)⇐⇒ p(x, df) = 0 on f = 0

implies

20.25 (8.192) Pu ∈ Im+M−1(X,G; Ω
1
2 ) near π(z)

which is one order smoother than without (
20.24
8.191).

It is now clear, I hope, that we need to make the “next symbol” vanish as well,
i.e. we want

20.26 (8.193) σm+M−1(Pu) = 0.
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Of course to arrange this it helps to know what the symbol is!

20.27 Proposition 8.2. Suppose P ∈ Ψm(X ; Ω
1
2 ) and G ⊂ X is a C∞ hypersurface

characteristic for P (i.e. N∗G ⊂ Σ(P )) then ∀ u ∈ IM (X,G; Ω
1
2 )

20.28 (8.194) σm+M−1(Pu) = (−iHp + a)σm(u)

where a ∈ Sm−1(N∗G) and Hp is the Hamilton vector field of p = σm(P ).

Proof. Observe first that the formula makes sense since Λ = N ∗G is La-
grangian, Λ ⊂ Σ(p) implies Hp is tangent to Λ and if p is homogeneous of degree
m (which we are implicitly assuming) then

20.29 (8.195) LHp
: Sr(Λ; Ω

1
2 ) −→ Sr+m−1(Λ; Ω

1
2 ) ∀ m

where one can ignore the half-density terms. So suppose G = {x1 = 0} locally,
which we can always arrange by choice of coordinates. Then

(8.196) X = N∗G = {(0, x′, ξ1, 0) ∈ T ∗X}.
To say N∗G ⊂ Σ(p) means p = 0 on Λ, i.e.

20.30 (8.197) p = x1q(x, ξ) +
∑

j>1

ξjpj(x, ξ) near z

with q homogeneous of degree m and the pj homogeneous of degree m−1. Working

microlocally we can choose Q ∈ Ψm(X,Ω
1
2 ), Pj ∈ Ψm−1(X,Ω

1
2 ) with

20.31 (8.198) σm(Q) = q, σm−1(Pj) = pj near z.

Then, from (
20.30
8.197)

20.32 (8.199)

P = x1Q+Dxj
Pj +R+ P ′, R ∈ Ψm−1(X ; Ω

1
2 )z /∈WF ′(P ′), P ′ ∈ Ψm(X,Ω

1
2 ).

Of course P ′ does not affect the symbol near z so we only need observe that

20.33 (8.200)

σr−1(x, u) = −dξ1σr(u)

∀ u ∈ Ir(X,G; Ω
1
2 )

σr(Dxj
u) = Dxj

σr(u).

This follows from the local expression

20.34 (8.201) u(x) = (2π)−1

∫
eix1ξ1a(x′, ξ1)dξ1.

Then from (
20.32
8.199) we get

20.35 (8.202)

σm+M−1(Pu) = −Dξ1(qσM (u)) +
∑

j

Dxj
(pjσM (u)) + r · σm(u)

= −i


∑

j>1

pj � Λ
∂

∂xj
− q � Λ

∂

∂ξi


σM (u) + a′σM (u).

Observe from (
20.30
8.197) that the Hamilton vector field of p, at x1 = ξ′ = 0 is just the

expression in parenthesis. This proves (
20.28
8.194). �
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So, now we can solve (
20.26
8.193). We just set

20.36 (8.203) σM (u)(exp(εHp)z
′) = eiεA exp(εHp)

∗[b] ∀ z′ ∈ Λ̃f = Λ ∩ {t = 0}.
where A is the solution of

20.37 (8.204) HpA = a, A � t = 0 = 0 on Λ0

and b ∈ Sr(Λ0) is a symbol defined on Λ0 = Λ ∩ {t = 0} near z.

20.38 Proposition 8.3. Suppose P ∈ Ψm(X ; Ω
1
2 ) has homogeneous principal symbol

of degree m satisfying

20.39 (8.205) p = σm(P ) is real

20.40 (8.206) d fibre p 6= 0 on p = 0

and z ∈ Σ(p) is fixed. Then if H 3 π(z) is a hypersurface such that π∗(Hp) ∩ H
and G ⊂ H is an hypersurface in H s.t.

(8.207) z̄ = c∗H(z) ∈ H∗
πzG

there exist a characteristic hypersurface G̃ ⊂ X for P such that G̃ ∩ H = G near
π(z), z ∈ N∗

πzG̃. For each

20.41 (8.208) u0 ∈ Im+ 1
4 (H,G; Ω

1
2 ) with WF (u0) ⊂ γ,

γ a fixed small conic neighbourhood of z̄ n T ∗H there exists

20.42 (8.209) u ∈ I(X, G̃; Ω
1
2 ) satisfying

20.43 (8.210) u � G = u0 near πz ∈ H

20.44 (8.211) Pu ∈ C∞ near πz ∈ X.
Proof. All the stuff about G and G̃ is just Hamilton-Jacobi theory. We can

take the symbol of u0 to be the b in (
20.36
8.203), once we think a little about half-

densities, and thereby expect (
20.43
8.210) and (

20.44
8.211) to hold, modulo certain singular-

ities. Indeed, we would get

20.45 (8.212) u1 � G− u0 ∈ Ir+ 1
4−1(H,G; Ω

1
2 ) near πz ∈ H

20.46 (8.213) Pu ∈ Ir+m−2(X, G̃; Ω
1
2 ) near πz ∈ X.

So we have to work a little to remove lower order terms. Let me do this informally,
without worrying too much about (

20.43
8.210) for a moment. In fact I will put (

20.45
8.212)

into the exercises!
All we really have to observe to improve (

20.46
8.213) to (

20.44
8.211) is that

20.47 (8.214)
g ∈ Ir(X, G̃; Ω

1
2 ) =⇒ ∃ u ∈ Ir+m−1(X ; G̃; Ω

1
2 )

s.t. Pu− g ∈ Ir−1(X, G̃; Ω
1
2 )

which we can then iterate and asymptotically sum. In fact we can choose the
solution so u � H ∈ C∞, near πz̄. To solve (

20.47
8.214) we just have to be able to solve

20.48 (8.215) −i(Hp + a)σ(u) = σ(g)

which we can do by integration (duHamel’s principle). �
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The equation (
20.48
8.215) for the symbol of the solution is the transport equation.

We shall use this construction next time to produce a microlocal parametrix for P !

8.4. Problems

20.49 Problem 8.2. Let X be a C∞ manifold, G ⊂ X on C∞ hypersurface and
t ∈ C∞(X) a real-valued function such that

T (8.216) dt 6= 0 on TpG ∀ p ∈ L = G ∩ {t = 0}.
Show that the transversality condition (

T
8.216) ensures that H = {t = 0} and

L = H ∩G are both C∞ submanifolds.

20.50 Problem 8.3. Assuming (
T
8.216) show that dt gives an isomorphism of line

bundles

(8.217) Ω
1
2 (H) ≡ Ω

1
2

H(X) ∼ Ω
1
2

H(X)/|dt| 12
and hence one can define a restriction map,

(8.218) C∞(X ; Ω
1
2 ) −→ C∞(H ; Ω

1
2 ).

20.51 Problem 8.4. Assuming 1 and 2, make sense of the restriction formula

(8.219) � H : Im
(
X,G; Ω

1
2

)
−→ Im+ 1

4

(
H,L; Ω

1
2

)

and prove it, and the corresponding symbolic formula

(8.220) σm+ 1
4

(u � H) = (ι∗H )∗ (σm(u) � N∗
LG)

/
|dτ | 12 .

NB. Start from local coordinates and try to understand restriction at that
level before going after the symbol formula!

8.5. The wave equation

We shall use the construction of travelling wave solutions to produce a para-
metrix, and then a fundamental solution, for the wave equation. Suppose X is a
Riemannian manifold, e.g. Rn with a ‘scattering’ metrice:

21.1 (8.221) g =

n∑

i,j=1

gij(x)dx
idxj , gij = δij |x|R.

Then the associates Laplacian, on functions, i.e.

21.2 (8.222) ∆u = −
n∑

i,j=1

1√
g

∂

∂xj
(δggij(x))

∂

∂xi
u

where gij(x) = (gij(x))
−1 and g = det gij . We are interested in the wave equation

21.3 (8.223) Pu = (D2
t −∆)u = f on R×X

For simplicity we assume X is either compact, or X = Rn with a metric of the form
(
21.1
8.221).

The cotangent bundle of R×X is

(8.224) T ∗(R×X) ' T ∗R× T ∗X

with canonical coordinates (t, x, τ, ξ). In terms of this

21.4 (8.225) σ(P ) = τ 2 − |ξ|2|ξ| =
n∑

i,j=1

gij(x)ξiξj .
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Thus we certainly have an operator satisfying the conditions of (
21.3
8.223) and (

21.4
8.225),

since

(8.226) d fibre p =

(
∂p

∂τ
,
∂p

∂ξ

)
= 0 =⇒ τ = 0 and gij(x)ξi = 0 =⇒ ξ = 0.

As initial surface we consider the obvious hypersurface {t = 0} (although it will
be convenient to consider others). We are after the two theorems, one local and
global, the other microlocal, although made to look global.

21.5 Theorem 8.3. If X is a Riemannian manifold, as above, then for every f ∈
C−∞

c (R×X) ∃! u ∈ C−∞(R×X) satisfying

21.6 (8.227) Pu = f, u = 0 in t < inf{t̄; ∃(t̄, x) ∈ supp(f)}.
21.7 Theorem 8.4. If X is a Riemannian manifold, as above, then for every u ∈

C−∞(R×X),

21.8 (8.228) WF (u)\WF (Pu) ⊂ Σ(P )\WF (Pu)

is a union of maximally extended Ho-curves in the open subset Σ(P )\WF (Pu) of
Σ(P ).

Let us think about Theorem
21.5
8.3 first. Suppose x̄X is fixed on δx̄ ∈ C−∞(X ; Ω)

is the Dirac delta (g measure) at x̄. Ignoring, for a moment, the fact that this is not
quite a generalized function we can look for the “forward fundamental solution” of
P with pole at (0, x̄) :

21.9 (8.229)
PEx̄(t, x) = δ(t)δx̄(x)

Ex̄ = 0 in t < 0.

Theorem
21.5
8.3 asserts its existence and uniqueness. Conversely if we can construct

Ex̄ for each x̄, and get reasonable dependence on x̄ (continuity is almost certain
once we prove uniqueness) then

21.10 (8.230) K(t, x; t̄, x̄) = Ex̄(t− t̄, x)
is the kernel of the operator f 7→ u solving (

21.6
8.227).

So, we want to solve (
21.9
8.229). First we convert it (without worrying about

rigour) to an initial value problem. Namely, suppose we can solve instead

21.11 (8.231)
PGx̄(t, x) = 0 in R×X

Gx̄(0, x) = 0, DtGx̄(0, x) = δx̄(x) in X.

Note that

21.12 (8.232) (g(t, x, τ, 0) /∈ Σ(P ) =⇒ (t, x; τ, 0) /∈WF (G).

This means the restriction maps, to t = 0, in (
21.11
8.231) are well-defined. In fact so is

the product map:

21.13 (8.233) Ex̄(t, x) = H(t)Gx̄(t, x).

Then if G satisfied (
21.11
8.231) a simple computation shows that Ex̄ satisfies (

21.9
8.229).

Thus we want to solve (
21.11
8.231).

Now (
21.11
8.231) seems very promising. The initial data, δx̄, is certainly conormal to

the point {x̄}, so we might try to use our construction of travelling wave solutions.
However there is a serious problem. We already noted that, for the wave equation,
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there cannot be any smooth characteristic surface other than a hypersurface. The
point is that if H has codimension k then

(8.234) N∗
x̄H ⊂ T ∗

x̄ (R×X) has dimension k.

To be characteristic we must have

21.14 (8.235) N∗
x̄H ⊂ Σ(P ) =⇒ k = 1

Since the only linear space contained in a (proper) cone is a line.
However we can easily ‘guess’ what the characteristic surface corresponding to

the point (x, x̄) is – it is the cone through that point:
This certainly takes us beyond our conormal theory. Fortunately there is a way

around the problem, namely the possibility of superposition of conormal solutions.
To see where this comes from consider the representation in terms of the Fourier

transform:

21.15 (8.236) δ(x) = (2π)−n

∫
eixξdξ.

The integral of course is not quite a proper one! However introduce polar coordi-
nates ξ = rω to get, at least formally

21.16 (8.237) δ(x) = (2π)−n

∞∫

0

∫

Sn−1

eirx·ωrn−1dr dω.

In odd dimensions rn−1 is even so we can write

21.17 (8.238) δ(x) =
1

2(2π)n

∫

Sn−1

∞∫

−∞

eirx·ωrn−1dr dω, n odd .

Now we can interpret the r integral as a 1-dimensional inverse Fourier transform
so that, always formally,

21.18 (8.239)

δ(x) =
1

2(2π)n−1

∫

Sn−1

fn(x · ω)dω

n odd

fn(s) =
1

(2π)

∫
eirsγn−1dr.

In even dimensions we get the same formula with

21.19 (8.240) fn(s) =
1

2π

∫
eirs|r|n−1dr.

These formulas show that

21.20 (8.241) fn(s) = |Ds|n−1δ(s).

Here |Ss|n−1 is a pseudodifferential operator for n even or differential operator
(= Dn−1

s ) if n is odd. In any case

21.21 (8.242) fn ∈ In−1+ 1
4 (R, {0})!

Now consider the map

21.22 (8.243) Rn × Sn−1 3 (x, ω) 7→ x · ω ∈ R.
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Thus C∞ has different

(8.244) ω · dx+ x · dω 6= 0 or x · ω = 0

So the inverse image of {0} is a smooth hypersurface R.

21.23 Lemma 8.11. For each n ≥ 2

21.24 (8.245) fn(x, ω) =
1

2π

∫
ei(x·ω)r|r|n−1dr ∈ I n

4 − 1
4

(
R× Sn−1, R

)
.

Proof. Replacing |r|n−1 by ρ(r)|r|n−1 + (1 − ρ(r))|r|n−1 , where ρ(r) = 0 n
r < 1

2 , ρ(r) = 1 in r > 1, expresses fn as a sum of a C∞ term and a conormal
distribution. Check the order yourself! �

21.25 Proposition 8.4. (Radon inversion formula). Under pushforward correspond-
ing to Rn × Sn−1@ > π1 >> Rn

21.26 (8.246)
(π1)∗f

′
n = 2(2π)n−1δ(x),

f ′
n = fn|dω||dx|.

Proof. Pair with a test function φ ∈ S(Rn) :

(8.247) (π1)∗f
′
n =

∫∫
fn(x · ω)φ(x)dx dω

by the Fourier inversion formula. �

So now we have a superposition formula expressing δ(x) as an integral:

21.27 (8.248) δ(x) =
1

2(2π)n−1

∫

Sn−1

fn(x · ω)dω

where for each fixed ω fn(x ·ω) is conormal with respect to x ·ω = 0. This gives us
a strategy to solve (

21.11
8.231).

21.28 Proposition 8.5. Each x̄ ∈ X has a neighbourhood, Ux̄, such that for t̄ > 0
(independent of x̄) there are two characteristic hypersurfaces for each ω ∈ Sn−1

(8.249) H±
x̄,ω) ⊂ (−t̄, t̄)× Ux̄

depending on x̄, ω, and there exists

(8.250) u±(t, x; x̄, ω) ∈ I∗((−t̄|t̄| × Ux̄, H
±
(x̄,ω))

such that

21.29 (8.251) Pu± ∈ C∞

21.30 (8.252)

{
u+ + ū � t = 0 = δx̄(x · ω) in Ux̄

Dt(u
+ + u−) � {t = 0} = 0 in Ux̄.

Proof. The characteristic surfaces are constructed through Hamilton-Jacobi
theory:

(8.253)
N∗H± ⊂ Σ(P ),

H0 = H± ∩ {t = 0} = {x · ω = 0}.
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There are two or three because the conormal direction to H0 at 0; ωdx, has two
Σ(P ) :

21.31 (8.254) τ = ±1, (τ, ω) ∈ T ∗
0 (R×X).

With each of these two surfaces we can associate a microlocally unique conormal
solution

21.32 (8.255)
Pu± = 0, u± � {t = 0} = u±0

u±0 ∈ I∗(Rn, {x · ω = 0})
Now, it is easy to see that there are unique choices

21.33 (8.256)
u+

δ + u−0 = δ(x · ω)

Dtu
+ +Dtu

− � {t = 0} = 0.

(See exercise 2.) This solves (
21.30
8.252) and proves the proposition (modulo a fair bit

of hard work!).
�

So now we can use the superposition principle. Actually it is better to add the
variables ω to the problem and see that

21.34 (8.257)
u±(t, x;ω, x̄) ∈ I∗(R× Rn × Sn−1 × Rn;H±)

H± ⊂ R× Rn × Sn−1 × Rn

being fixed by the condition that

(8.258) H± ∩ R× Rn × {ω} × {x̄} = H±
x̄,ω.

Then we set

21.35 (8.259) G′
x̄(t, x) =

∫

Sn−1

(u+ + u−)(x, x;ω, x̄).

This satisfies (
21.11
8.231) locally near x̄ and modulo C∞. i.e.

21.36 (8.260)





PG′
x̄ ∈ C∞((−t̄(t̄))× Ux̄)

G′
x̄ � {t = 0} = xv,

vi ∈ C∞
DtG

′
x̄ = δx̄(x) + v2

Let us finish off by doing a calculation. We have (more or less) shown that
u± are conormal with respect to the hypersurfaces H±. A serious question then
is, what is (a bound one) the wavefront set of G′

x̄? This is fairly easy provided we
understand the geometry. First, since u± are conormal,

(8.261) WF (u±) ⊂ N∗H±.

Then the push-forward theorem says

21.37 (8.262)

WF (G±) ⊂ {(t, x, τ, ξ); ∃ (t, x, τ, ξ, ω, w) ∈ WF (u±)}

G± = (π1)∗u
± =

∫

Sn−1

u±(t, s;ω, x̄)dω

so here

(8.263) (t, x, τ, ξ, ω, w) ∈ T ∗(R× Rn × Sn−1) = T ∗(R× Rn)× T ∗Sn−1.
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We claim that the singularities of G′
x̄ lie on a cone:

(8.264) WF (G′
x̄) ⊂ Λx̄ ⊂ T ∗(R× Rn)

where Λx̄ is the conormal bundle to a cone:

21.38 (8.265)
Λx̄ = cl{(t, x; τ, ξ); t 6= 0, D(x, x̄) = ±t,

(τ, ξ) = τ(1,∓dxD(x, x̄))

where D(x, x̄) is the Riemannian distance from x to x̄.

8.6. Forward fundamental solution

Last time we constructed a local parametrix for the Cauchy problem:

22.1 (8.266)





PG′
x̄ = f ∈ C∞(Ω) (0, x̄) ∈ Ω ⊂ R×X

G′
x̄ � t = 0 = u′

DtG
′
x̄ � {t = 0} = δx̄(x) + u′′ u′, u′′ ∈ C∞(Ω0)

where P = D2
t − ∆ is the wave operator for a Riemann metric on X. We also

computed the wavefront set, and hence singular support of Gx̄ and deduced that

22.2 (8.267) sing · supp .(Gx̄) ⊂ {(t, x); d(x, x̄) = |t|}
in terms of the Riemannian distance.

22.3 (8.268)

This allows us to improve (
22.1
8.266) in a very significant way. First we can chop

Gx̄ off by replacing it by

22.4 (8.269) φ

(
t2 − d2(x, x̄)

ε2

)
.

where φ ∈ C∞(R) has support near 0 and is identically equal to 1 in some neigh-
bourhood of 0. This gives (

22.1
8.266) again, with G′

x̄ now supported in say d2 < t2 +ε2.

22.5 (8.270)

Next we can improve (
22.1
8.266) a little bit by arranging that

22.6 (8.271) u′ = u′′ = 0, Dk
t f
∣∣

t=0
= 0 ∀ k.

This just requires adding to G′ a C∞, v, function, so that

22.7 (8.272) v
∣∣
t=0

= u′, Dtv
∣∣

t=0
= −u′′, Dk

t (Pu)
∣∣
t=0

= −Dk
t f
∣∣
t=0

k > 0.

Once we have done this we consider

(8.273) E′
x̄ = iH(t)G′

x̄

which now satisfies

22.8 (8.274)
PE′

x̄ = δ(t)δt̄(x) + Fx̄, Fx̄ ∈ C∞(Ωx̄)

supp(E′
x) ⊂ {d2(x, x̄) ≤ t2 + ε2} ∩ {t ≥ 0}.

Here F vanishes in t < 0, so vanishes to infinite order at t = 0.
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Next we remark that we can actually do all this with smooth dependence of x̄.
This should really be examined properly, but I will not do so to save time. Thus
we actually have

22.9 (8.275)





E′(t, x, x̄) ∈ C−∞(P (−∞, ε)×X ×X)

PE′ = δ(t)σx̄(x) + F

suppE′ ⊂ {d2(x, x̄) ≥ t2 + ε2} ∩ {t ≥ 0}.
We can, and later shall, estimate the wavefront set of E. In case X = Rn we can
take E to be the exact forward fundamental solution where |x| or x̄ ≥ R, so

22.10 (8.276)
supp(F ) ⊂ {t ≥ 0} ∩ {|x|, |x̄| ≤ R} ∩ {d2 ≤ t2 + ε2}

F ∈ C∞((−∞, ε)×X ×X).

Of course we want to remove F, the error term. We can do this because it is
a Valterra operator, very similar to an upper triangular metric. Observe first that
the operators of the form (

22.10
8.276) form an algebra under t-convolution:

22.11 (8.277) F = F1 ◦ F1, F (t, x, x̄) =

t∫

0

∫
F1(t,−t′, x, x′)F2(t

1, x1, x̄)dx′dt′.

In fact if one takes the iterates of a fixed operator

(8.278) F (k) = F (k−1) ◦ F
One finds exponential convergence:

22.12 (8.279)
∣∣Dα

xD
p
t F

(k)(t, x, x̄)
∣∣ ≤ Ck+1N, δ

k!
|t|N in t < ε− δ ∀ N.

Thus if F is as in (
22.10
8.276) then Id+ F has inverse Id+ F̃ ,

22.13 (8.280) F̃ =
∑

j≥1

(−1)jF (j)

again of this form.
Next note that the composition of E ′ with F̃ is again of the form (

22.10
8.276), with

R increased. Thus

22.14 (8.281) E = E ′ +E′ ◦ F
is a forward fundamental solution, satisfying (

22.9
8.275) with F ≡ 0.

In fact E is also a left parametrix, in an appropriate sense:

22.15 Proposition 8.6. Suppose u ∈ C−∞((−∞, ε)×X) is such that

22.16 (8.282) supp(u) ∩ [−T, τ ]×X is compact ∀ T and for τ < ε

then Pu = 0 =⇒ u = 0.

Proof. The trick is to make sense of the formula

22.17 (8.283) 0 = E · Pu = u.

In fact the operators G with kernel G(t, x, x̄), defined in t < ε and such that
G ∗ φ ⊂ C∞ ∀ φ ∈ C∞ and

22.18 (8.284) {t ≥ 0} ∩ {d(x, x̄) ≤ R} ⊃ supp(G)

act on the space (
22.16
8.282) as t-convolution operators. For this algebra E ∗ P = Id so

(
22.17
8.283) holds! �



8.6. FORWARD FUNDAMENTAL SOLUTION 191

We can use this proposition to prove that E itself is unique. Actually we want
to do more.

22.19 Theorem 8.5. If X is either a compact Riemann manifold or Rn with a scat-
tering metric then P has a unique forward fundamental solution, ω.

22.20 (8.285) supp(E) ⊂ {t ≥ 0}, PE = Id

and

22.21 (8.286) supp(E) ⊂ {(t, x, x̄) ∈ R×X ×X ; d(x, x̄) ≤ t}

and further

22.22 (8.287) WF ′(E) ⊂ Id∪F+

where F+ is the forward bicharacteristic relation on T ∗(R×X)

22.23 (8.288)

ζ = (t, x, τ, ξ) /∈ Σ(P ) =⇒ F+(ζ) = ∅
ζ = (t, x, τ, ξ) ∈ Σ(P ) =⇒ F+(ζ) = {ζ ′ = (t′, x′, τ ′, ξ′)

t′ ≥ t× ζ ′ = exp(THp)ζ for some T}.

Proof. (1) Use E1 defined in (−∞, ε×X to continue E globally.
(2) Use the freedom of choice of {t = 0} and uniqueness of E to show that

(
22.21
8.286)can be arranged for small, and hence all,

(3) Then get (
22.23
8.288) by checking the wavefront set of G.

�

As corollary we get proofs of (
22.5
8.270) and (

22.6
8.271).

Proof of Theorem XXI.5.

(8.289) u(t, x) =

∫
E(t− t′, x, x′)f(t′, x′)dx′dt′.

�

Proof of Theorem XXI.6. We have to show that if both WF(Pu) 63 z and
WF(u) 63 z then exp(δHp)z /∈WF (u) for small δ. The general case that follows from
the (assumed) connectedness of Hp curves. This involves microlocal uniqueness of
solutions of Pu = f. Thus if φ ∈ C∞(R) has support in t > −δ, for δ > 0 small
enough, π∗t(z) = t̄

(8.290) P (φ(t− t̄)u) = g has z /∈WF (g),

and vanishes in t < δ. Then

(8.291)
φ(t− t̄)u = E × g

=⇒ exp(τHp)(z) /∈WF (u) for small τ.

�
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8.7. Operations on conormal distributions

I want to review and refine the push-forward theorem, in the general case,
to give rather precise results in the conormal setting. Thus, suppose we have a
projection

23.1 (8.292) X × Y@ > x >> X

where we can view X × Y as compact manifolds or Euclidean spaces as desired,
since we actually work locally. Suppose

23.2 (8.293) Q ⊂ X × Y is an embeded submanifold.

Then we know how to define and examine the conormal distribution associated to
Q. If

23.3 (8.294) u ∈ Im(X × Y,Q; Ω)

when is π∗(u) ∈ C−∞(X ; Ω) conormal? The obvious thing we ned is a submanifold
with respect to what it should be conormal! From our earlier theorem we know
that

23.4 (8.295) WF (π∗(u)) ⊂ {(x, ξ); ∃ (x, ξ, y, 0) ∈WF (u) ⊂ N∗Q}.
So suppose Q = {qj(x, y) = 0, j = 1, . . . , k}, k = codimQ. Then we see that

23.5 (8.296) (x̄, ξ̄, ȳ, 0) ∈ N∗Q⇐⇒ (x̄, ȳ) ∈ Q, ξ̄ =

k∑

j=1

τjdxqj ,

k∑

j=1

τjdyqj = 0.

Suppose for a moment that Q has a hypersurface, i.e. k = 1, and that

23.6 (8.297) Q −→ π(Q) is a fibration

then we expect

23.7 Theorem 8.6. π∗ : Im(X × Y,Q,Ω) −→ Im′

(X, π(Q)).

Proof. Choose local coordinates so that

Q = {x1 = 0}(8.298)

u =
1

2π

∫
eix1ξ1a(x′, y, ξ1)dξ1(8.299)

π∗u =
1

2π

∫
eix1ξ1b(x′, ξ1)dξ1(8.300)

b =

∫
a(x′, y, ξ)dy.(8.301)

�

Next consider the case of restriction to a submanifold. Again let us suppose
Q ⊂ X is a hypersurface and Y ⊂ X is an embedded submanifold transversal to
Q :

23.8 (8.302)

Q t Y = QY

i.e. TqQ+ TqY = TqX ∀ q ∈ Qy
=⇒ Qy is a hypersurface in X.

Indeed locally we can take coordinates in which

23.9 (8.303) Q = {x1 = 0}, Y = {x′′ = 0}, x = (x1, x
′, x′′).
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23.10 Theorem 8.7.

(8.304) C∗
Y : Im(X,Q) −→ Im+ k

4 (Y,QY )k = codimY in X.

Proof. In local coordinates as in (
23.9
8.303)

(8.305)

u =
1

2π

∫
eix1ξ1a(x(x′, x′′, ξ1))dξ,

c∗u =
1

2π

∫
eix1ξ1a(x′, 0, ξ1)dξ1.

Now let’s apply this to the fundamental solution of the wave equation. Well rather
consider the solution of the initial value problem

23.11 (8.306)





PG(t, x, x̄) = 0

G(0, x, x̄) = 0

DtG(0, x, x̄) = δx̄(x).

We know that G exists for all time and that for short time it is

23.12 (8.307) G−
∫

Sn−1

(u+(t, x, x̄;ω) + u−(t, x, x̄;ω))dω + C∞

where u± are conormal for the term characteristic hypersurfaces Hp satisfying

23.13 (8.308)
N∗H± ⊂ Σ(P )

H± ∩ {t = 0} = {(x− x̄) · ω = 0}
Consider the 2× 2 matrix of distribution

23.14 (8.309) U(t) =

(
DtG G
D2

tG DtG

)
.

Since WFU ⊂ Σ(P ), in polar τ 6= 0 we can consider this as a smooth function of
t, with values in distribution on X ×X. �

23.15 Theorem 8.8. For each t ∈ R U(t) is a boundary operator on L2(X)⊕H ′(X)
such that

23.16 (8.310) U(t)

(
u0

u1

)
=

(
u(t)
Dtu(t)

)

where u(t, x) is the unique solution of

23.17 (8.311)

(D2
t −∆)u(t) = 0

u(0) = u0

Dt + u(0) = u1.

Proof. Just check it! �

Consider again the formula (
23.12
8.307). First notice that at x = x̄, t = 0, dH± =

dt± d(x − x̄)ω) (by construction). so

23.18 (8.312) H± t {x = x̄} = {t = 0} ⊂ R×X ↪→ R×X × Y × Sn−1.

Moreover the projection

23.19 (8.313) R×X × Sn−1 −→ R
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clearly fibres {t = 0} over {t = 0} ∈= {0} ⊂ R. Then we can apply the two
theorems, on push-forward and pull-back, above to conclude that

23.20 (8.314) T (t) =

∫

X

G(t, x, x̄) � x = x̄dx ∈ C−∞(R)

is conormal near t = 0 i.e. C∞ in (−ε, ε)\{0} for some ε > 0 and conormal at 0.
Moreover, we can, at least in principle, work at the symbol of T (t) at t = 0. We
return to this point next time.

For the moment let us think of a more ‘fundamental analytic’ interpretation of
(
23.20
8.314). By this I mean

23.21 (8.315) T (t) = trU(t).

Remark 8.1. Trace class operators ∆λ; Smoother operators are trace order,
tr =

∫
K(x, x)

(8.316)

∫
U(t)φ(t) is smoothing

(8.317) 〈T (t), φ(t)〉 = tr〈U(t), φ(t)〉.

8.8. Weyl asymptotics

Let us summarize what we showed last time, and a little more, concerning the
trace of the wave group

24.1 Proposition 8.7. Let X be a compact Riemann manifold and U(t) the wave
group, so

(8.318) U(t) : C∞(X)×C∞(X) 3 (u0, u1) 7→ (u, (t), D+ tu(t)) ∈ C∞(X)×C∞(X)

where u is the solution to

24.2 (8.319)

(D2
t −∆)u(t) = 0

u(0) = u0

Dtu(0) = u1.

The trace of the wave group, T ∈ S ′(R), is well-defined by

24.3 (8.320) T (φ) = TrU(φ), U(φ) =

∫
U(t)φ(t)dt ∀ φ ∈ S(R)

and satisfies

24.4 (8.321) T = Y (


1 +

∞∑

j=1

2 cos(tλj)




(8.322) where 0 = λ0 < λ2
1 ≤ λ2

2 . . . λj ≥ 0

is the spectrum of the Laplacian repeated with multiplicity

24.5 (8.323) sing . supp(T ) ⊂ L ∪ {0} ∪ −L
where L is the set of lengthes of closed geodesics of X and

24.6 (8.324)

if ψ ∈ C∞c (R), ψ(t) = 0 if |t| ≥ inf L − ε, ε > 0,

ψT ∈ I(R, {0})
σ(ψT ) =
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Proof. We have already discussed (
24.4
8.321) and the first part of (

24.6
8.324) (given

(
24.5
8.323)). Thus we need to show (

24.5
8.323), the Poisson relation, and compute the

symbol of T as a cononormal distribution at 0 .
Let us recall that if G is the solution to

24.7 (8.325)

(D2
t = ∆)G(t, x, x̄) = 0

G(0, x, x̄) = 0

DtG(0, x, x̄) = δx̄(x)

then

24.8 (8.326) T = π∗(ι
∗
∆2DtG),

where

24.9 (8.327) ι∆ : R×X ↪→ R×X ×X
is the embedding of the diagonal and

24.10 (8.328) π : R×X −→ R

is projective. We also know about the wavefront set of G. That is,

24.11 (8.329)
WF (G) ⊂ {(t, x, x̄, τ, ξ, ξ̄); τ2 = |ξ|2 = |ξ̄|2,
exp(sHp)(0, x̄, τ, ξ̄) = (t, x, τ, ξ), some s}.

Let us see what (
24.11
8.329) says about the wavefront set of T. First under the

restriction map to R×∆

24.12 (8.330)
WF (ι∗∆DtG) ⊂ {(t, y, τ, η); ∃

(t, x, y, τ, ξ, ξ̄); η = ξ − ξ̄}.
Then integration gives

24.13 (8.331) WF (T ) ⊂ {(t, τ); ∃ (t, y, τ, 0) ∈ WF (DtG)}.
Combining (

24.12
8.330) and (

24.13
8.331) we see

24.14 (8.332)

t ∈ sing . supp(T ) =⇒ ∃ (t, τ) ∈ WF (T )

=⇒ ∃ (t, x, x, τ, ξ, ξ) ∈WF (DtG)

=⇒ ∃ s s.t. exp(sHp)(0, x, τ, ξ) = (t, x, τ, ξ).

Now

(8.333) p = τ2 − |ξ|2, so Hp = 2τ∂t −Hg , g = |ξ|2,
Hg being a vector field on T ∗X. Since WF is conic we can take |ξ| = 1 in the last
condition in (

24.14
8.332). Then it says

24.15 (8.334) s = 2τt, exp(tH 1
2 g)(x, ξ) = (x, ξ),

since τ2 = 1.
The curves in X with the property that their tangent vectors have unit length

and the lift to T ∗X is an integral curve of H 1
2 g are by definition geodesic, parame-

terized by arclength. Thus (
24.15
8.334) is the statement that |t| is the length of a closed

geodesic. This proves (
24.5
8.323).
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So now we have to compute the symbol of T at 0. We use, of course, our local
representation of G in terms of conormal distributions. Namely

24.16 (8.335) G =
∑

j

φjGj , φj ∈ C∞(X),

where the φj has support in coordinate particles in which

24.17 (8.336)

Gj(t, x, x̄) =

∫

Sn−1

(u+(t, x, x̄;ω) + u−(t, x, x̄;ω)) dω,

upm =
1

2π

∫

ξ

eih±(t,x,x̄,ω)ξa±(x, x̄, ξ, ω)dξ.

Here h± are solutions of the eikonal equation (i.e. are characteristic for P )

24.18 (8.337)

|∂th±|2 = |h±|2

h±
∣∣
t=0

= (x− x̄) · ω
±∂th± > 0,

which fixes them locally uniquely. The a± are chosen so that

24.19 (8.338) (u+ + u±
∣∣
t=0

= 0, (Dtu+Dtu−)
∣∣
t=0

δ((x − x̄) · ω)Pu± ∈ C∞.
Now, from (

24.17
8.336)

(8.339) u+ + u−
∣∣
t=0

=
1

2π

∫
e((x−xx̄)·ω)ξ(a+ + a−)(x, x̄, ξ, ω)dξ = 0

so a+ − a−. Similarly

24.20 (8.340)

Dtu+ +Dtu−
∣∣

t=0
=

1

2π

∫
ei((x−x̄)·ω)ξ

[
(Dth+)a+ + (Dth−)a−

]
dξ

=
1

2(2π)n−1
fn((x − x̄) · ω)

From (
24.18
8.337) we know that Dth± = ∓i|dx(x − x̄) · ω| = ∓i|ω| where the length is

with respect to the Riemann measure. We can compute the symbols or both sides
in (

24.20
8.340) and consider that

24.21 (8.341) −2i|ω|a+ ≡
1

2(2π)n−1
|ξ|n−1 = Dth+a+ +Dth−a−

∣∣
t=0

is necessary to get (
24.19
8.338). Then

24.22 (8.342)

T (t) = 2π∗(ι
∗
∆DtG)

=
1

2π

∑

j,±

2

∫

X

∫

Sn−1

eih±(t,x,x,ω)ξ(Dth±a±)(x, x̄, ω, ξ)dξdωdx.

Here dx is really the Riemann measure on X. From (
24.21
8.341) the leading part of this

is

(8.343)
2

2π

∑

j±

∫

X

∫

Sn−1

eih±(t,x,x,ω)ξ 1

4(2π)n−1
|ξ|n−1dξdωdx

since any term vanishes at t contributes a weaker singularity. Now

(8.344) h± = ±|ω|t+ (x− x̄) · ω + 0(t2).
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From which we deduce that

24.23 (8.345)
ψ(t)T (t) =

1

2π

∫
eitτa(τ)dτ

a(τ) ∼ Cn Vol(X)|τ |n−1Cn =

where Cn is a universal constant depending only on dimension. Notice that if n is
odd this is a “little” function.

The final thing I want to do is to show how this can be used to describe the
asymptotic behaviour of the eigenvalue of ∆ : �

24.24 Proposition 8.8. (“Weyl estimates with optimal remainder”.) If N(λ) is the
number of eigenvalues at ∆ satisfying λ2

1 ≤ λ, counted with multiplicity, the

24.25 (8.346) N(λ) = Cn Vol(X)λn + o(λn−1)

The estimate of the remainder terms is the here – weaker estimates are easier
to get.

Proof. (Tauberian theorem). Note that

(8.347) T = F(µ) where N(λ) =

λ∫

0

µ(λ),

µ(λ) being the measure

(8.348) µ(λ) =
∑

λ2
j
∈spec(∆)

δ(λ− λj).

Now suppose ρ ∈ S(R) is even and
∫
ρ = 1, ρ ≥ 0. Then Nρ(λ) =

∫
(λ′)ρ(λ− λ′) is

a C∞ function. Moreover

24.26 (8.349)
d̂

dλ
Nρ(λ) = µ̂ · ρ̂.

Suppose we can choose ρ so that

24.27 (8.350) ρ ≥ 0,

∫
ρ = 1, ρ ∈ S, ρ̂(t) = 0, |t| > ε

for a given ε > 0. Then we know µ̂ρ̂ is conormal and indeed

24.28 (8.351)

d

dλ
Nρ(λ) ∼ C Vol(X)λn−1 + . . .

=⇒ Nρ(λ) ∼ C ′ Vol(X)λn + lots.

So what we need to do is look at the difference

24.29 (8.352) Nρ(λ) −N(λ) =

∫
N(λ− λ′)ρ(λ′)−N(λ)ρ(λ′).

It follows that a bound for N

24.30 (8.353) |N(λ+ µ)−N(λ)| ≤ ((1 + |λ|+ |µ|)n−1(1 + |λ|)
gives

(8.354) N(λ) −Nρ(λ) ≤ Cλn−1

which is what we want. Now (
24.31
8.355) follows if we have

24.31 (8.355) N(λ+ 1)−N(λ) ≤ C(1 + |λ|) t/λ.
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This in turn follows from the positivity of ρ, since

24.32 (8.356)

∫
ρ(λ− λ′)µ(λ′) ≤ C(1 + |λ|)n−1.

Finally then we need to check the existence of ρ as in (
24.27
8.350). If φ is real and

even so is φ̂. Take φ with support in (− ε
2 ,

ε
2 ) and construct φ∗φ, real and even with

φ. �

8.9. Problems

19.45 Problem 8.5. Show that if E is a symplectic vector space, with non-degenerate
bilinear form ω, then there is a basis v1, . . . , vn, w1, . . . , wn of E such that in terms
of the dual basis of E∗

D (8.357) ω =
∑

j

v∗j ∧ w∗
j .

Hint: Construct the wj , vj successive. Choose v1 6= 0. Then choose w1 so that
ω(v1, w1) = 1. Then choose v2 so ω(v1, v2) = ω(w1, v2) = 0 (why is this possible?)
and w2 so ω(v2, w2) = 1, ω(v1, w2) = ψ(w1, w2) = 0. Then proceed and conclude
that (

D
8.357) must hold.

Deduce that there is a linear transformation T : E −→ R2n so that ω = T ∗ωD,
with ωD given by (

19.15
8.137).

19.46 Problem 8.6. Extend problem
19.45
8.5 to show that T can be chosen to map a

given Lagrangian plane V ⊂ E to

(8.358) {x = 0} ⊂ R2n

Hint: Construct the basis choosing vj ∈ V ∀ j!
19.47 Problem 8.7. Suppose S is a symplectic manifold. Show that the Poisson

bracket

(8.359) {f, g} = Hfg

makes C∞(S) into a Lie algebra.
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CHAPTER 10

Hochschild homology

10.1. Formal Hochschild homology

The Hochschild homology is defined, formally, for any associative algebra. Thus
if A is the algebra then the space of formal k-chains, for k ∈ N0 is the (k + 1)-fold
tensor product

(10.1) A⊗(k+1) = A⊗A⊗ · · · ⊗ A.

The ‘formal’ here refers to the fact that for the ‘large’ topological algebras we shall
consider it is wise to replace this tensor product by an appropriate completion,
usually the ‘projective’ tensor product. At the formal level the differential defining
the cohomolgy is given in terms of the product, ?, by

HHdifferential (10.2)

b(a0 ⊗ a1 ⊗ · · · ⊗ ak) = b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) + (−1)k(a0 ? ak)⊗ a1 ⊗ · · · ⊗ ak−1,

b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) =
k−1∑

j=0

(−1)ja0 ⊗ · · · ⊗ aj−1 ⊗ aj+1 ? aj ⊗ aj+2 ⊗ · · · ⊗ ak.

Lemma 10.1. Both the partial map, b′, and the full map, b, are differentials,
that is

(10.3) (b′)2 = 0 and b2 = 0.

Proof. This is just a direct computation. From (
HHdifferential
10.2) it follows that

(10.4) (b′)2(a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ am)

=
m−1∑

j=2

j−2∑

p=0

(−1)j(−1)p(· · · ⊗ ap+1 ? ap ⊗ · · · ⊗ aj−1 ⊗ aj+1 ? aj ⊗ aj+2 ⊗ · · · ⊗ am)

−
m−1∑

j=1

(· · · ⊗ aj+1 ? aj ? aj−1 ⊗ · · · )−
m−2∑

j=0

(· · · ⊗ aj+21 ? aj+1 ? aj ?⊗ · · · )

+

m−3∑

j=0

m−1∑

p=j+2

(−1)j(−1)p−1(a0⊗· · ·⊗aj−1⊗aj+1?aj⊗aj+2⊗· · ·⊗ap+1?ap⊗· · · ) = 0.

201
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Similarly, direct computation shows that

(b− b′)b′(a0 ⊗ · · · ⊗ am) = (−1)m−1(a1 ? a0 ? am ⊗ · · · am−1)

+

m−2∑

i=1

(−1)i+m−1(a0 ? am ⊗ · · · ⊗ ai+1 ? ai ⊗ · · · ) + (a0 ? am ? am−1 ⊗ · · · ),

b′(b− b′)(a0 ⊗ · · · ⊗ am) = (−1)m(a1 ? a0 ? am ⊗ · · ·am−1)

+

m−2∑

i=1

(−1)i+m(a0 ? am ⊗ · · · ⊗ ai+1 ? ai ⊗ · · · ) and

(b− b′)2(a0 ⊗ · · · ⊗ am) = −(a0 ? am ? am−1 ⊗ · · · )
so

(10.5) (b− b′)b′ + b′(b− b′) = −(b− b′)2.
�

The difference between these two differentials is fundamental, roughly speaking
b′ is ‘trivial’.

24.89 Lemma 10.2. For any algebra with identity the differential b′ is acyclic, since
it satifies

b′s+ sb′ = Idwhere(10.6)

s(a0 ⊗ · · · ⊗ am) = Id⊗a0 ⊗ · · · ⊗ am.(10.7)

Proof. This follows from the observation that

(10.8) b′(Id⊗a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ am +
m∑

i=1

(−1)i(Id⊗ · · ·ai ? ai−2 ⊗ · · · ).

�

Definition 10.1. An associative algebra is said to be H-unital if its b′ complex
is acyclic.

Thus the preceeding lemma just says that every unital algebra is H-unital.

10.2. Hochschild homology of polynomial algebras

Consider the algebra C[x] of polynomials in n variables1, x ∈ Rn (or x ∈ Cn it
makes little difference). This is not a finite dimensional algebra but it is filtered by
the finite dimensional subspaces, Pm[x], of polynomials of degree at most m;

C[x] =

∞⋃

m=0

Pm[x], Pm[x] ⊂ Pm+1[x].

Furthermore, the Hochschild differential does not increase the total degree so it is
enough to consider the formal Hochschild homology.

The chain spaces, given by the tensor product, just consist of polynomials in
n(k + 1) variables

(C[x])
⊗̂(k+1)

= C[x0, x1, . . . , xk], xj ∈ Rn.

1The method used here to compute the homology of a polynomial algebra is due to Sergiu
Moroianu; thanks Sergiu.



10.2. HOCHSCHILD HOMOLOGY OF POLYNOMIAL ALGEBRAS 203

Furthermore composition acts on the tensor product by

p(x0)q(x1) = p⊗ q 7−→ p(x0)q(x0)

which is just restriction to x0 = x1. Thus the Hochschild differential can be written

b : C[x0, . . . , xk] −→ C[x0, . . . , xk−1],

(bq)(x0, x1, . . . , xk−1) =

k−1∑

j=0

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0).

One of the fundamental results on Hochschild homology is

Theorem 10.1. The Hochschild homology of the polynomail algebra in n vari-
ables is

24.91 (10.9) HHk(C[x]) = C[x]⊗ Λk(Cn),

with the identification given by the map from the chain spaces

C[x0, . . . , xk] 3 q −→
∑

1≤ji≤n

∂

∂xj1
1

. . .
∂

∂xjk

k

p
∣∣
x=x0=x1=···=xk

dxj1
1 ∧ · · · ∧ dxjk

k .

Note that the appearance of the original algebra C[x] on the left in (
24.91
10.9) is

not surprising, since the differential commutes with multilplication by polynomails
in the first variable, x0

b(r(x0)q(x0, . . . , xk)) = r(x0)(bq(x0, . . . , xk)).

Thus the Hochschild homology is certainly a module over C[x].

Proof. Consider first the cases of small k. If k = 0 then b is identically 0. If
k = 1 then again

(bq)(x0) = q(x0, x0)− q(x0, x0) = 0

vanishes identically. Thus the homology in dimension 0 is indeed C[x].
Suppose that k > 1 and consider the subspace of C[x0, x1, . . . , xk] consisting of

the elements which are independent of x1. Then the first two terms in the definition
of b cancel and

(bq)(x0, x1, . . . , xk−1) =
k−1∑

j=2

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0), ∂x1q ≡ 0.

It follows that bq is also independent of x1. Thus there is a well-defined subcomplex
on polynomails independend of x1 given by

C[x0, x2, . . . , xk] 3 q 7−→ (b̃q)(x0, x2, . . . , xk−1)

=

k−1∑

j=2

(−1)jp(x0, x2, x2, x3 . . . , xk−1) +

k−1∑

j=3

(−1)j

p(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1) + (−1)kq(x0, x2, . . . , xk−1, x0)

The reordering of variables (x0, x2, x3, . . . , xk) −→ (x2, x3, . . . , xk, x0) for each k,

transforms b̃ to the reduced Hochschild differential b′ acting in k variables. Thus b̃
is acyclic.
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Similarly consider the subspace of C[x0, x1, . . . , xk] consisting of the polynomi-
als which vanish at x1 = x0. Then the first term in the definition of b vanishes and
the action of the differential becomes

24.92 (10.10) (bq)(x0, x1, . . . , xk−1) = p(x0, x1, x1, x2, . . . , xk−1)+

k−1∑

j=2

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0), if b(x0, x0, x2, . . . ) ≡ 0.

It follows that bq also vanishes at x1 = x0.
By Taylor’s theorem any polynomial can be written uniquely as a sum

q(x0, x1, x2, . . . , xk) = q′1(x0, x1, x2, . . . , xk) + q′′(x0, x2, . . . , xk)

of a polynomial which vanishes at x1 = x0 and a polynomial which is independent
of x1. From the discussion above, this splits the complex into a sum of two sub-
complexes, the second one of which is acyclic. Thus the Hochschild homology is
the same as the homology of b, which is then given by (

24.92
10.10), acting on the spaces

24.93 (10.11) {q ∈ C[x0, x1, . . . , xk]; q(x0, x1, . . . ) = 0} .
This argument can be extended iteratively. Thus, if k > 2 then b maps the

subspace of (
24.93
10.11) of functions independent of x2 to functions independent of x2

and on these subspaces acts as b′ in k−2 variables; it is therefore acyclic. Similar it
acts on the complementary spaces given by the functions which vanish on x2 = x1.
Repeating this argument shows that the Hochschild homology is the same as the
homology of b acting on the smaller subspaces

24.94 (10.12)
{q ∈ C[x0, x1, . . . , xk]; q(. . . , xj−1, xj , . . . ) = 0, j = 1, . . . , k} ,

(bq)(x0, x1, . . . , xk−1) = (−1)kq(x0, x1, . . . , xk−1, x0).

Note that one cannot proceed further directly, in the sense that one cannot reduce
to the subspace of functions vanishing on xk = x0 as well, since this subspace is
not linearly independent of the previous ones2

xk − x0 =

k−1∑

j=0

(xj1 − xj).

It is precisely this ‘non-transversality’ of the remaining restriction map in (
24.94
10.12)

which remains to be analysed.
Now, let us we make the following change of variable in each of these reduced

chain spaces setting

y0 = x0, y1 = xj − xj−1, for j = 1, . . . , k.

Then the differential can be written in terms of the pull-back operation

EP : Rnk ↪→ Rn(k+1), EP (y0, y1, . . . , yk−1) = (y0, y1, . . . , yk−1,−
k−1∑

j=1

yj),

bq = (−1)kE∗
P q,

2Hence Taylor’s theorem cannot be applied.
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The variable x0 = y0 is a pure parameter, so can be dropped from the notation (and
restored at the end as the factor C[x] in (

24.91
10.9)). Also, as already noted, the degree

of a polynomial (in all variables) does not increase under any of these pull-back
operations, in fact they all preserve the total degree of homogeneity so it suffices to
consider the differential b acting on the spaces of homogeneous polynomials which
vanish at the origin in each factor

Qm
k = {q ∈ Cm[y1, . . . , yk]; q(sy) = smq(y), q(y1, . . . , yj−1, 0, yj+1, . . . , yk) = 0}

b : Qm
k −→ Qm

k−1, bq = (−1)∗E∗
P q.

To analyse this non-transversality further, let Ji ⊂ C[y1, . . . , yk] be the ideal
generated by the n monomials yl

i, l = 1, . . . , n. Thus, by Taylor’s theorem,

Ji = {q ∈ C[y1, . . . , yk]; q(y1, y2, . . . , yj−1, 0, yj , yk) = 0.

Similary set

JP = {q ∈ C[y1, . . . , yk]; q(y1, . . . ,−
k−1∑

j=1

yj) = 0)

For any two ideals I and J, let I · J be the span of the products. Thus for these
particular ideals an element of the product is a sum of terms each of which has a
factor vanishing on the corresponding linear subspace. For each k there are k + 1
ideals and, by Taylor’s theorem, the intersection of any k of them is equal to the
span of the product of those k ideals. For the k coordinate ideals this is Taylor’s
theorem as used in the reduction above. The general case of any k of the ideals
can be reduced to this case by linear change of coordinates. The question then, is
structure of the intersection of all k+1 ideals. The proof of the theorem is therefore
completed by the following result. �

Lemma 10.3. The intersection Qm
k ∩ JP = Qm · JP for every m 6= k and

24.95 (10.13) Qk
k ∩ JP = Λk(Cn).

Proof. When m < k the ideal Qm
k vanishes, so the result is trivial.

Consider the case in (
24.95
10.13), when m = k. A homogeneous polynomial of

degree k in k variables (each in Rn) which vanishes at the origin in each variable is
necessarily linear in each variable, i.e. is just a k-multilinear function. Given such
a multilinear function q(y1, . . . , yk) the condition that bq = 0 is just that

24.96 (10.14) q(y1, . . . , yk−1,−y1 − y2 − · · · − yk−1) ≡ 0.

Using the linearity in the last variable the left side can be expanded as a sum of
k − 1 functions each quadratic in one variables yj and linear in the rest. Thus the
vanishing of the sum implies the vanishing of each, so

q(y1, . . . , yk−1, yj) ≡ 0 ∀ j = 1, . . . , k − 1.

This is the statement that the multlinear function q is antisymmetric between the
jth and kth variables for each j < k. Since these exchange maps generate the
permutation group, q is necessarily totally antisymmetric. This proves the isomor-
phism (

24.95
10.13) since Λk(Cn) is the space of complex-valued totally antisymmetric

k-linear forms.3

Thus it remains to consider the case m ≥ k+1. Consider a general element q ∈
Qm

k ∩JP . To show that it is in Qm
k ·JP we manipulate it, working modulo Qm

k ∩JP ,

3Really on the dual but that does not matter at this stage.
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and use induction over k. Decompose q as a sum of terms ql, each homogeneous in
the first variable, y1, of degree l. Since q vanishes at y1 = 0 the first term is q1,
linear in y1. The condition bq = 0, i.e. q ∈ JP , is again just (

24.96
10.14). Expanding in

the last variable shows that the only term in bq which is linear in y1 is

q1(y1, . . . , yk−1,−y2 − · · · − yk−1).

Thus the coefficient of y1,i, the ith component of y1 in q1, is an element of Qm−1
k−1

which is in the ideal JP (Rk−1), i.e. for k − 1 variables. This ideal is generated by
the components of y2 + · · ·+ yk. So we can proceed by induction and suppose that
the result is true for less than k variables for all degrees of homogeneity. Writing
y2 + · · · + yk = (y1 + y2 + · · · + yk) − y1 It follows that, modulo Qm

k · JP , q1 can
be replaced by a term of one higher homogeneity in y1. Thus we can assume that
qi = 0 for i < 2. The same argument now applies to q2; expanded as a polynomial
in y1 the coefficients must be elements of Qm−2

k−1 ∩ JP . Thus, unless m− 2 = k − 1,

i.e. m = k + 1, they are, by the inductive hypothesis, in Qm−2
k−1 · JP (Rk−1) and

hence, modulo Qm
k · JP , q2 can be absorbed in q3. This argument can be continued

to arrange that qi ≡ 0 for i < m − k + 1. In fact qi ≡ 0 for i > m − k + 1 by the
assumption that q ∈ Qm

k .
Thus we are reduced to the assumption that q = qm−k+1 ∈ Qm

k ∩JP is homoge-
neous of degree m−k+1 in the first variable. It follows that it is multilinear in the
last k−1 variables. The vanishing of bq shows that it is indeed totally antisymmet-
ric in these last k− 1 variables. Now for each non-zero monomial consider the map
J : {1, 2, . . . , n} −→ N0 such that J(i) is the number of times a variable yl,i occurs
for some 1 ≤ l ≤ k. The decomposition into the sum of terms for each fixed J is
preserved by b. It follows that we can assume that q has only terms corresponding
to a fixed map J. If J(i) > 1 for any i then a factor y1,i must be present in q, since
it is antisymmetric in the other k− 1 variables. In this case it can be written y1,iq

′

where bq′ = 0. Since q′ is necessarily in the product of the indeals J2 · . . . Jk · JP it
follows that q′ ∈ Qm · JP . Thus we may assume that J(i) = 0 or 1 for all i. Since
the extra variables now play no rôle we may assume that n = m is the degree of
homogeneity and each index i occurs exactly once.

For convenience let us rotate the last k−1 variables so the last is moved to the
first position. Polarizing q in the first variable, it can be represented uniquely as
an n-multilinear function on Rn which is symmetric in the first n− k+ 1 variables,
totally antisymmetric in the last k − 1 and has no monomial with repeated index.
Let Mk−1(n) be the set of such multilinear funtions. The vanishing of bq now
corresponds to the vanishing of the symmetrization of q in the first n−k+2 variables.
By the antisymmetry in the second group of variables this gives a complex

Mn(n)
bn

// Mn−1(n)
bn−1

// . . . b2
// M1(n)

b1
// M0

b0
// 0.

The remaining step is to show that this is exact.
Observe that dim(Mk(n)) =

(
n
k

)
since there is a basis of Mk(n) with elements

labelled by the subsets I ⊂ {1, . . . , n} with k elements. Indeed let ω be a non-
trivial k-multilinear function of k variables and let ωI be this function on Rk ⊂ Rn

identified as the set of variables indexed by I. Then if a ∈ M0(n− k) is a basis of
this 1-dimensional space and aI is this function on the complementary Rn−k the
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tensor products aIωI give a basis. Thus there is an isomorphism

Mk 3 q =
∑

I⊂{1,...,n},|I|=k

cIaI ⊗ ωI 7−→
∑

I⊂{1,...,n},|I|=k

cI ⊗ ωI ∈ Λk(Rn).

Transfered to the exterior algebra by this isomorphism the differential b is
just contraction with the vector e1 + e2 + · · · + en (in the first slot). A linear
transformation reducing this vector to e1 shows immediately that this (Koszul)
complex is exact, with the null space of bk on Λk(Rn) being spanned by those ωI

with 1 ∈ I and the range of bk+1 spanned by those with 1 /∈ I. The exactness of
this complex completes the proof of the lemma. �

10.3. Hochschild homology of C∞(X)

The first example of Hochschild homology that we shall examine is for the
commutative algebra C∞(X) where X is any C∞ manifold (compact or not). As
noted above we need to replace the tensor product by some completion. In the
present case observe that for any two manifolds X and Y

(10.15) C∞(X)⊗ C∞(Y ) ⊂ C∞(X × Y )

is dense in the C∞ topology. Thus we simply declare the space of k-chains for
Hochschild homology to be C∞(Xk+1), which can be viewed as a natural comple-
tion4 of C∞(X)⊗(k+1). Notice that the product of two functions can be written in
terms of the tensor product as

(10.16) a · b = D∗(a⊗ b), a, b ∈ C∞(X), D : X 3 z 7−→ (z, z) ∈ X2.

The variables in Xk+1 will generally be denoted z0, z1, . . . , zk. Consider the
‘diagonal’ submanifolds

(10.17) Di,j = {(z0, z1, . . . , zk); zi = zj}, i, j = 0, . . . ,m, i 6= j.

We shall use the same notation for the natural embedding of Xk as each of these
submanifolds, at least for j = i+ 1 and i = 0, j = m,

Di,i+1(x0, . . . , zm−1) = (z0, . . . , zi, zi, zi+1, . . . , zm−1) ∈ Di,i+1, i = 0, . . . ,m− 1

Dm,0(z0, . . . , zm−1) = (z0, . . . , zm−1, z0).

Then the action of b′ and b on the tensor products, and hence on all chains, can be
written

b′α =

m−1∑

i=0

(−1)iD∗
i,i+1α, bα = b′α+ (−1)mD∗

m,0α.(10.18)

4One way to justify this is to use results on smoothing operators. For finite dimensional
linear spaces V and W the tensor product can be realized as

V ⊗ W = hom(W ′, V )

the space of linear maps from the dual of W to V. Identifying the topological dual of C∞(X)

with C−∞

c (X; Ω), the space of distributions of compact support, with the weak topology, we can
identify the projective tensor product C∞(X)⊗̂C∞(X) as the space of continuous linear maps from

C−∞

c (X; Ω) to C∞(X). These are precisely the smoothing operators, corresponding to kernels in
C∞(X × X).
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HH.ciX Theorem 10.2. The differential b′ is acyclic and the homology5 of the complex

(10.19) . . .
b−→ C∞(Xk+1)

b−→ C∞(Xk)
b−→ . . .

is naturally isomorphic to C∞(X ; Λ∗).

Before proceeding to the proof proper we note two simple lemmas.

HL.ciX Lemma 10.4. 6For any j = 0, . . . ,m − 1, each function α ∈ C∞(Xk+1) which
vanishes on Di,i+1 for each i ≤ j can be written uniquely in the form

α = α′ + α′′, α′, α′′ ∈ C∞(Xk+1)

where α′′ vanishes on Di,i+1 for all i ≤ j + 1 and α′ is independent of zj+1.

Proof. Set α′ = π∗
j+1(D

∗
j,j+1α) where πj : Xk+1 −→ Xk is projection off the

jth factor. Thus, essentially by definition, α′ is independent of zj+1. Moreover,
πj+1Dj,j+1 = Id so D∗

j,j+1α
′ = D∗

j,j+1α and hence D∗
j,j+1α

′′ = 0. The decomposi-
tion is clearly unique, and for i < j,

(10.20) Dj,j+1 ◦ πj+1 ◦Di,i+1 = Di,i+1 ◦ Fi,j

for a smooth map Fi,j , so α′ vanishes on Di,i+1 if α vanishes there. �

24.33 Lemma 10.5. For any finite dimensional vector space, V, the k-fold exterior
power of the dual, ΛkV ∗, can be naturally identified with the space of functions

(10.21){
u ∈ C∞(V k);u(sv) = skv, s ≥ 0, u � (V i×{0}×V k−i−1) = 0 for i = 0, . . . , k−1

and u � G = 0, G = {(v1, . . . , vk) ∈ V k; v1 + · · ·+ vk = 0}
}
.

Proof. The homogeneity of the smooth function, u, on V k implies that it is a
homogeneous polynomial of degree k. The fact that it vanishes at 0 in each variable
then implies that it is multlinear, i.e. is linear in each variable. The vanishing on
G implies that for any j and any vi ∈ V, i 6= j,

(10.22)
∑

i6=j

u(v1, . . . , vj−1, vi, vj+1, . . . , vk) = 0.

Since each of these terms is quadratic (and homogeneous) in the corresponding
variable vi, they must each vanish identically. Thus, u vanishes on vi = vj for each
i 6= j; it is therefore totally antisymmetric as a multlinear form, i.e. is an element
of ΛkV ∗. The converse is immediate, so the lemma is proved. �

Proof of Theorem
HH.ciX
10.2. The H-unitality7 of C∞(X) follows from the proof

of Lemma
24.69
10.61 which carries over verbatim to the larger chain spaces.

By definition the Hochschild homology in degree k is the quotient

(10.23) HHk(C∞(X)) =
{
u ∈ C∞(Xk+1); bu = 0

}/
bC∞(Xk+2).

The first stage in identifying this quotient is to apply Lemma
HL.ciX
10.4 repeatedly. Let

us carry through the first step separately, and then do the general case.

5This homology is properly referred to as the continuous Hochschild homology of the topo-
logical algebra C∞(X).

6As pointed out to me by Maciej Zworski, this is a form of Hadamard’s lemma.
7Meaning here the continuous H-unitality, that is the acyclicity of b′ on the chain spaces

C∞(Xk+1).
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For j = 0, consider the decomposition of u ∈ C∞(Xk+1) given by Lemma
HL.ciX
10.4,

thus
24.37 (10.24)

u = u0 + u(1), u0 ∈ π∗
1C∞(Xk), u(1) ∈ J (k)

1 =
{
u ∈ C∞(Xk+1);u � D0,1 = 0

}
.

Now each of these subspaces of C∞(Xk+1) is mapped into the corresponding sub-
space of C∞(Xk) by b; i.e. they define subcomplexes. Indeed,

u ∈ π∗
1C∞(Xk) =⇒ D∗

0,1u = D∗
1,2u so

u = π∗
1v =⇒ bu = π∗

1Bv, B
∗v = −

k−1∑

i=1

(−1)iD∗
i,i+1u+ (−1)kD∗

k−1,0v.

For the other term

24.36 (10.25) bu(1) =

k−1∑

i=1

(−1)iD∗
i,i+1u(1) + (−1)kD∗

k,0u(1) =⇒ bu(1) ∈ J (k−1)
1 .

Thus, bu = 0 is equivalent to bu0 = 0 and bu(1) = 0. From (
24.35
10.3), defining an

isomorphism by

(10.26) E(k−1) : C∞(Xk) −→ C∞(Xk), E(k−1)v(z1, . . . , zk) = v(z2, . . . , zk, z1),

it follows that

24.41 (10.27) B = −E−1
(k−1)b

′E(k−1)

is conjugate to b′. Thus B is acyclic so in terms of (
24.37
10.24)

24.39 (10.28) bu = 0 =⇒ u− u(1) = bw, w = π∗
1v

′.

As already noted this is the first step in an inductive procedure, the induction
being over 1 ≤ j ≤ k in Lemma

HL.ciX
10.4. Thus we show inductively that

24.38 (10.29) bu = 0 =⇒ u− u(j) = bw,

u(j) ∈ J (k)
j =

{
u ∈ C∞(Xk+1);u � Di,i+1 = 0, 0 ≤ i ≤ j − 1

}
.

For j = 1 this is (
24.39
10.28). Proceeding inductively we may suppose that u = u(j) and

take the decomposition of Lemma
HL.ciX
10.4, so

24.40 (10.30) u(j) = u′ + u(j+1), u(j+1) ∈ J (k)
j+1, u

′ = π∗
j+1v ∈ J (k)

j .

Then, as before, bu(j) = 0 implies that bu′ = 0. Furthermore, acting on the space

π∗
j+1C∞(Xk) ∩ Jk

(j), b is conjugate to b′ acting in k + 1 − j variables. Thus, it is

again acyclic, so u(j) and u(j+1) are homologous as Hochschild k-cycles.
The end point of this inductive procedure is that each k-cycle is homologous

to an element of

24.42 (10.31) J (k) = J
(k)
k =

{
u ∈ C∞(Xk+1);D∗

i,i+1u = 0, i ≤ i ≤ k − 1
}
.

Acting on this space bu = (−1)kD∗
k,0u, so we have shown that

24.43 (10.32)

HHk(C∞(X)) = M (k)/
(
M (k) ∩ bC∞(Xk+1)

)
, M (k) =

{
u ∈ J (k);D∗

k,ou = 0
}
.
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Now consider the subspace

24.44 (10.33) M̃ (k) =
{
u ∈ C∞(Xk+1);

u =
∑

finite, 0≤j≤k−1

(f(zj)− f(zj+1))uf,j , uf,j ∈M (k), f ∈ C∞(X).
}
.

If u = (f(zj)− f(zj+1))v, with v ∈M (k) set

24.45 (10.34) w(z0, z1, . . . , zj , zj+1, zj+2, . . . , zk+1)

= (−1)j(f(zj)− f(zj+1))v(z0, . . . , zj , zj+2, zj+3, . . . , zk).

Then, using the assumed vanishing of v, bw = u.8 Thus all the elements of M̃ (k)

are exact.
Let us next compute the quotient M (k)/M̃ (k). Linearizing in each factor of X

around the submanifold z0 = z1 = · · · = zk in V k defines a map

24.47 (10.35) µ : M (k) 3 u −→ u′ ∈ C∞(X ;TX ⊗ · · · ⊗ T ∗X).

The map is defined by taking the term of homogeneity k in a normal expansion
around the submanifold. The range space is therefore precisely the space of sections
of the k-fold tensor product bundle which vanish on the subbundle defined in each
fibre by v1 + · · ·+ vk = 0. Thus, by Lemma

24.33
10.5, µ actually defines a sequence

24.48 (10.36) 0 −→ M̃ (k) ↪→M (k) µ−→ C∞(X ; ΛkX) −→ 0.

24.90 Lemma 10.6. For any k, (
24.48
10.36) is a short exact sequence.

Proof. So far I have a rather nasty proof by induction of this result, there
should be a reasonably elementary argument. Any offers? �

From this the desired identification, induced by µ,

24.49 (10.37) HHk(C∞(X)) = C∞(X ; ΛkX)

follows, once is is shown that no element u ∈ M (k) with µ(u) 6= 0 can be exact.
This follows by a similar argument. Namely if u ∈M (k) is exact then write u = bv,
v ∈ C∞(Xk) and apply the decomposition of Lemma

HL.ciX
10.4 to get v = v0 +v(1). Since

u = 0 on D1,0 it follows that bv0 = 0 and hence u = bv1). Proceeding inductively

we conculde that u = bv with v ∈M (k+1). Now, µ(bv) = 0 by inspection. �

10.4. Commutative formal symbol algebra

As a first step towards the computation of the Hochschild homology of the
algebra A = ΨZ(X)/Ψ−∞(X) we consider the formal algebra of symbols with
commutative product. Thus,

24.50 (10.38) A =
{
(aj)

∞
j=−∞; aj ∈ C∞(S∗X ;P (j)), aj = 0 for j >> 0

}
.

Here P (k) is the line bundle over S∗X with sections consisting of the homogeneous
functions of degree k on T ∗X \ 0. The multiplication is as functions on T ∗X \ 0, so

(aj) · (bj) = (cj), cj =

∞∑

k=−∞

aj−kbk

8Notice that v(z0 , . . . , zj , zj+2, . . . , zk+1) vanishes on zi+1 = zi for i < j and i > j + 1 and

also on z0 + z1 + · · · + zk+1 = 0 (since it is independent of zj+1 and bv = 0.
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using the fact that P (l) ⊗ P (k) ≡ P (l+k). We take the completion of the tensor
product to be

Hochchains (10.39) B(k) =
{
u ∈ C∞((T ∗X \ 0)k+1);u =

∑

finite

uI ,

uI ∈ C∞(S∗X ;P (I0) ⊗ P (I1) ⊗ · · · ⊗ P (Ik)), |I | = k
}
.

That is, an element of B(k) is a finite sum of functions on the (k + 1)-fold product
of T ∗X \ 0 which are homogeneous of degree Ij on the jth factor, with the sum
of the homogeneities being k. Then the Hochschild homology is the cohomology of
the subcomplex of the complex for C∞(T ∗X)

24.54 (10.40) · · · b−→ B(k) b−→ B(k−1) b−→ · · ·
24.53 Theorem 10.3. The cohomology of the complex (

24.54
10.40) for the commutative

product on A is

24.55 (10.41) HHk(A) ≡
{
α ∈ C∞(T ∗X \ 0; Λk(T ∗X);α is homogeneous of degree k

}
.

10.5. Hochschild chains

The completion of the tensor product that we take to define the Hochschild
homology of the ‘full symbol algebra’ is the same space as in (

Hochchains
10.39) but with the

non-commutative product derived from the quantization map for some Riemann
metric on X. Since the product is given as a formal sum of bilinear differential
operators it can be take to act on an pair of factors.

HH.psi (10.42) . . .
b(?)

−→ B(k) b(?)

−→ B(k−1) b(?)

−→ . . .

The next, and major, task of this chapter is to describe the cohomology of this
complex.

24.56 Theorem 10.4. The Hochschild homolgy of the algebra, ΨZ

phg(X)/Ψ−∞
phg (X),

of formal symbols of pseudodifferential operators of integral order, identified as the
cohomology of the complex (

HH.psi
10.42), is naturally identified with two copies of the

cohomology of S∗X9

24.58 (10.43) HHk(A; ◦) ≡ H2n−k(S∗X)⊕H2n−1−k(S∗X).

10.6. Semi-classical limit and spectral sequence

The ‘classical limit’ in physics, especially quantuum mechanics, is the limit in
which physical variables become commutative, i.e. the non-commutative coupling
between position and momentum variables vanishes in the limit. Formally this
typically involves the replacement of Planck’s constant by a parameter h → 0. A
phenomenon is ‘semi-classical’ if it can be understood at least in Taylor series in
this parameter. In this sense the Hochschild homology of the full symbol algebra
is semi-classical and (following

Brylinski-Getzler1
[2]) this is how we shall compute it.

The parameter h is introduced directly as an isomorphism of the space A
Lh : A −→ A, Lh(aj)

∗
j=−∞ = (hjaj)

∗
j=−∞, h > 0.

9In particular the Hochschild homology vanishes for k > 2 dim X. For a precise form of the
identification in (

24.58
10.43) see (

HHcoId
11.1).
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Clearly Lh ◦ Lh′ = Lhh′ . For h 6= 1, Lh is not an algebra morphism, so induces a
1-parameter family of products

24.59 (10.44) α ?h β = (L−1
h )(Lhα ? Lhβ).

In terms of the differential operators, associated to quantization by a particular
choice of Riemann metric on X this product can be written

24.60 (10.45) α ?h β = (cj)
∗
j=−∞, cj =

∗∑

k=0

∗∑

l=−∗

hkPk(aj−l−k , bl).

It is important to note here that the Pk, as differential operators on functions on
T ∗X, do only depend on k, which is the difference of homogeneity between the
product aj−l+kbl, which has degree j + k and cj , which has degree j.

Since A with product ?h is a 1-parameter family of algebras, i.e. a deformation
of the algebra A with product ? = ?1, the Hochschild homology is ‘constant’ in h.
More precisely the map Lh induces a canonical isomorphism

L∗
h : HHk(A; ?h) ≡ HHk(A; ?).

The dependence of the product on h is smooth, so it is reasonable to expect the
cycles to have smooth representatives as h→ 0. To investigate the consider Taylor
series in h and define

Fp,k =
{
α ∈ B(k); ∃ α(h) ∈ C∞([0, 1)h;B(k)) with α(0) = α and

bhα ∈ hpC∞([0, 1)h;Bk−1)
}
,

(10.46)

Gp,k =
{
α ∈ B(k); ∃ β(h) ∈ C∞([0, 1)h;B(k+1)) with

bhβ(h) ∈ hp−1C∞([0, 1)h;B(k) and (t−p+1bhβ)(0) = α
}
.

24.61 (10.47)

Here bh is the differential defined by the product ?h.
Notice that the Fp,k decrease with increasing p, since the condition becomes

stronger, while Gp,k increases with p, the condition becoming weaker.10 We define
the ‘spectral sequence’ corresponding to this filtration by

Ep,k = Fp,k/Gp,k.

These can also be defined successively, in the sense that if

F ′
p,k =

{
u ∈ Ep−1,k;u = [u′], u′ ∈ Fp,k

}

G′
p,k =

{
e ∈ Ep−1,k;u = [u′], ]u′ ∈ Gp,k

}

then Ep,k ≡ F ′
p,k/G

′
p,k.

The basic idea11 of a spectral sequence is that each Ep =
⊕

k Ep,k, has defined
on it a differential such that the next spaces, forming Ep+1, are the cohomology
space for the complex. This is easily seen from the definitions of Fp,k as follows.
If α ∈ Fp,k let β(t) be a 1-parameter family of chains as in the defintion. Then
consider

24.62 (10.48) γ(t−pbhβ)(0) ∈ B(k−1).

10If α ∈ Gp,k and β(h) is the 1-parameter family of chains whose existence is required for
the definition then β′(h) = hβ(h) satisfies the same condition with p increased to show that
α ∈ Gp+1,k.

11Of Leray I suppose, but I am not really sure.
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This depends on the choice of β, but only up to a term in Gp,k−1. Indeed,
let β′(t) is another choice of extension of α satisfying the condition that bhβ

′ ∈
hpC∞([0, 1);B(k−1) and let γ′ be defined by (

24.62
10.48) with β replaced by β′. Then

δ(t) = t−1(β(h) − β′(h)) satisfies the requirements in the definition of Gp,k−1, i.e.
the difference γ′ − γ ∈ Gp,k−1. Similarly, if α ∈ Gp,k then γ ∈ Gp,k.

12 The map so
defined is a differential

b(p) : Ep,k −→ Ep,k−1, b
2
(p) = 0.

This follows from the fact that if µ = b(p)α then, by definition, µ = (t−pbhβ)(0),

where α = β(0). Taking λ(t) = t−pbhβ(t) as the extension of µ it follows that
bhλ = 0, so b(p)µ = 0.

Now, it follows directly from the definition that F0,k = E0,k = B(k) since
G0,k = {0}. Furthermore, the differential b(0) induced on E0 is just the Hochschild
differential for the limiting product, ?0, which is the commutative product on the
algebra. Thus, Theorem

24.53
10.3 just states that

E1,k =
∗⊕

k=−∞

{
u ∈ C∞(T ∗X \ 0; Λk);u is homogeneous of degree k

}
.

To complete the proof of Theorem
24.56
10.4 it therefore suffices to show that

E2,k ≡ H2n−k(S∗X)⊕H2n−1−k(S∗X),24.63 (10.49)

Ep,k = E2,k, ∀ p ≥ 2, and24.64 (10.50)

HHk(ΨZ

phg(X)/Ψ−∞
phg (X)) = lim

p→∞
Ep,k.24.65 (10.51)

The second and third of these results are usually described, respectively, as the
‘degeneration’ of the spectral sequence (in this case at the ‘E2 term’) and the
‘convergence’ of the spectral sequence to the desired cohomology space.

10.7. The E2 term

As already noted, the E1,k term in the spectral sequence consists of the formal
sums of k-forms, on T ∗X \0, which are homogeneous under the R+ action. The E2

term is the cohomology of the complex formed by these spaces with the differential
b(1), which we proceed to compute. For simplicity of notation, consider the formal

tensor prodoct rather than its completion. As already noted, for any α ∈ B(k) the
function bhα is smooth in h and from the definition of b,

24.66 (10.52)
d

dh
bhα(0) =

k−1∑

i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ P1(ai+1, ai)⊗ ai+2 ⊗ · · · ⊗ ak

+ (−1)kP1(a0, ak)⊗ a1 ⊗ · · · ⊗ ak−1, α = a0 ⊗ · · · ⊗ ak.

The general case is only more difficult to write, not different.13 This certainly
determines b1α if α is a superposition of such terms with b0α = 0. Although (

24.66
10.52)

is explicit, it is not given directly in terms of the representation of α, assumed to
satisfy b0α = 0 as a form on T ∗X \ 0.

12Indeed, α is then the value at h = 0 of β(t) = t−p+1bhφ(t) which is by hypothesis smooth;
clearly bhβ ≡ 0.

13If you feel it necessary to do so, resort to an argument by continuity towards the end of
this discussion.
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To get such an explicit formula we shall use the symplectic analogue of the
Hodge isomorphism. Recall that in any local coordinates on X, xi, i = 1, . . . , n,
induce local coordinates xi, ξi in the part of T ∗X lying above the coordinate patch.
In these canonical coordinates the symplectic form (which determines the Poisson
bracket) is given by

24.73 (10.53) ω =

n∑

k=1

dξk ∧ dxk .

This 2-form is non-degenerate, i.e. the n-fold wedge product ωn 6= 0. In fact this
volume form fixes an orientation on T ∗X. The symplectic form can be viewed as
a non-degenerate antisymmetric bilinear form on Tq(T

∗X) at each point q ∈ T ∗X,
and hence by duality as a bilineear form on T ∗

q (T ∗X). We denote this form in the
same way as the Poisson bracket, since with the convention

{a, b}(q) = {da, db}q
they are indeed the same. As a non-degenerate bilinear form on T ∗Y, Y = T ∗X
this also induces a bilinear form on the tensor algebra, by setting

{e1 ⊗ · · · ⊗ ek, f1 ⊗ · · · ⊗ fk, } =
∏

j

{ej , fj}.

These bilinear forms are all antisymmetric and non-degenerate and restrict to be
non-degnerate on the antisymmetric part, ΛkY, of the tensor algebra. Thus each of
the form bundles has a bilinear form defined on it, so there is a natural isomorhism

24.72 (10.54) Wω : Λk
qY −→ Λ2n−k

q Y, α ∧Wωβ = {α, β}ωn, α, β ∈ C∞(Y,ΛkY ),

for each k.

24.74 Lemma 10.7. In canonical coordinates, as in (
24.73
10.53), consider the basis of k-

forms given by all increasing subsequences of length k,

I : {1, 2, . . . , k} −→ {1, 2, . . . , 2n},
and setting

24.76 (10.55) αI = dzI(1) ∧ dzI(2) ∧ · · · ∧ dzI(k),

(z1, z2, . . . , z2n) = (x1, ξ1, x2, ξ2, . . . , xn, ξn).

In terms of this ordering of the coordinates

24.75 (10.56) Wω(αI ) = (−1)N(I)αW (I)

where W (I) is obtained from I by considering each pair (2p−1, 2p) for p = 1, . . . , n,
erasing it if it occurs in the image of I, inserting it into I if neither 2p− 1 nor 2p
occurs in the range of I and if exactly one of 2p− 1 and 2p occurs then leaving it
unchanged; N(I) is the number of times 2p appears in the range of I without 2p−1.

Proof. The Poisson bracket pairing gives, on 1-forms,

−{dxj , dξj} = 1 = {dξj , dxj}
with all other pairings zero. Extending this to k-forms gives

{αI , αJ} = 0 unless (I(j), J(j)) = (2p− 1, 2p) or (2p, 2p− 1) ∀ j and

{αI , αJ} = (−1)N , if (I(j), J(j)) = (2p− 1, 2p) for N values of j

and (I(j), J(j)) = (2p− 1, 2p) for N − k values of j.
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From this, and (
24.72
10.54), (

24.75
10.56) follows. �

From this proof if also follows that N(W (I)) = N(I), so W 2
ω = Id . We shall

let

24.77 (10.57) δω = Wω ◦ d ◦Wω

denote the differential operator obtained from d by conjugation,

δω : C∞(T ∗X \ 0; Λk) −→ C∞(T ∗X \ 0,Λk−1).

By construction δ2ω = 0. The exterior algebra of a symplectic manifold with this
differential is called the Koszul complex.14 All the αI are closed so

24.79 (10.58)

δω(aαI ) = Wω

(∑

j

∂a

∂zj
dzj

)
∧ (−1)N(I)αW (I)

=
∑

j

∂a

∂zj
(−1)N(I)Wω(dzj ∧ αW (I)),

Observe that15

Wω

(
dz2p−1 ∧ αW (I)

)
= ι∂/∂z2p

αI

Wω

(
dz2p ∧ αW (I)

)
= ι∂/∂z2p−1

αI ,

where, ιv denotes contraction with the vector field v. We therefore deduce the
following formula for the action of the Koszul differential

24.81 (10.59) δω(aαI) =

2n∑

i=1

(
Hzi

a
)
ι∂/∂zi

αI .

24.67 Lemma 10.8. With E1 identified with the formal sums of homogeneous forms
on T ∗X \ 0, the induced differential is

24.68 (10.60) b(1) =
1

i
δω.

Proof. We know that the bilinear differential operator 2iP1 is the Poisson
bracket of functions on T ∗X. Thus (

24.66
10.52) can be written

24.69 (10.61) 2ib1α =
k−1∑

i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ {ai+1, ai} ⊗ ai+2 ⊗ · · · ⊗ ak

+ (−1)k{a0, ak} ⊗ a1 ⊗ · · · ⊗ ak−1, α = a0 ⊗ · · · ⊗ ak.

The form to which this maps under the identification of E2 is just

24.70 (10.62) 21b1α =
k−1∑

i=0

(−1)ia0 ∧ dai−1 ∧ · · · ∧ d{ai+1, ai} ∧ dai+2 ∧ ak

+ (−1)k{a0, ak} ∧ da1 ∧ · · · ∧ dak−1

14Up to various sign conventions of course!
15Check this case by case, as the range of I meets the pair {2p − 1, 2p} in {2p − 1, 2p},

{2p − 1}, {2p} or ∅. Both sides of the first equation are zero in the second and fourth case as are
both sides of the second equation in the third and fourth cases. In the remaining four individual
cases it is a matter of checking signs.
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Consider the basis elements αI for k-forms. These arise as the images of the
corresponding functions in local coordinates on Xk+1

α̃I(z0, z1, . . . , zk) =
∑

σ

(−1)sgn σ(z1,σI(1) − z0,σI(1))

× z2,σI(1) − z1,σI(1)) . . . (z1,σI(m) − z0,σI(m−1)).

Since these functions are defined in local coordinates they are not globally
defined on (T ∗X\0)k+1. Nevertheless they can be localized away from z0 = · · · = zm

and then, with a coefficient (aj(z0))
∗
j=−∞, aj ∈ C∞(T ∗X \ 0) homogeneous of

degree j with support in the coordinate patch, unambiguously define elements of
E1 which we can simply denote as a(z0)α̃I ∈ E1. These elements, superimposed
over a coordinate cover, span E1. Consider b(1)α̃ given by (

24.70
10.62). In the sum, the

terms with P1 contracting between indices other than 0, 1 or m, 0 must give zero
because the Poisson bracket is constant in the ‘middle’ variable. Futhermore, by
the antisymmetry of α̃, the two remaining terms are equal so

ib(1)
(
aα̃I

)
=
∑

σ∈Pk

(
HzσI(1)

a
)
(−1)sgn(σ)dzσI(2) ∧ · · · ∧ dzσI(k)

=
∑

i

(
Hzi

a
)
ι∂/∂i

αI .

Since this is just (
24.81
10.59) the lemma follows. �

With this lemma we have identified the differential on the E1 term in the spec-
tral sequence with the exterior differential operator. To complete the identification
(
24.63
10.49) we need to compute the corresponding deRham groups.

24.82 Proposition 10.1. The cohomology of the complex

. . .
d−→

∗∑

j=−∞

C∞hom(j)(T
∗X \ 0; Λk)

d−→
∗∑

j=−∞

C∞hom(j)(T
∗X \ 0; Λk+1)

d−→ . . .

in dimension k is naturally isomorphic to Hk(S∗X)⊕Hk−1(S∗X).

Proof. Choose a metric on X and let R = |ξ| denote the corresponding length
function on T ∗X \ 0. Thus, identifying the quotient S∗X = (T ∗X \ 0)/R+ with
{R = 1} gives an isomorphism T ∗X \ 0 ≡ S∗X × (0,∞). Under this map the
smooth forms on T ∗X \0 which are homogeneous of degree j are identified as sums

C∞hom(j)(T
∗X \ 0,Λk) 3 αj

= Rj
(
α′

j + α′′
j ∧

dR

R

)
, α′

j ∈ C∞(S∗X ; Λk), α′′
j ∈ C∞(S∗X ; Λk−1).

24.86 (10.63)

The action of the exterior derivative is then easily computed

dαj = βj , βj = Rj
(
β′

j + βj −′′ ∧dR
R

)
,

β′
j = dα′

j , β
′′
j = dα′′

j + j(−1)k−1α′
j .

Thus a k-form (αj)
∗
j=−∞ is closed precisely if it satisfies

24.84 (10.64) jα′
j = (−1)kdα′′

j , dα
′
j = 0∀ j.

It is exact if there exists a (k − 1)-form (γj)
∗
j=−∞ such that

24.85 (10.65) α′
j = dγ′j , α

′′
j = dγ′′j + j(−1)kγ′j .
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Since the differential preserves homogeneity it is only necessary to analyze these
equations for each integral j. For j 6= 0, the second equation in (

24.84
10.64) follows

from the first and (
24.85
10.65) then holds with γ ′j = 1

j (−1)kα′′
j and γ′′j = 0. Thus the

cohomology lies only in the subcomplex of homogeneous forms of degree 0. Then
(
24.84
10.64) and (

24.85
10.65) become

dα′
0 = 0, dα′′

0 = 0 and α′
0 = dγ′0, α

′′
0 = dγ′′0

respectively. This gives exactly the direct sum of Hk(S∗X) and Hk−1(S∗X) as the
cohomology in degree k. The resulting isomorphism is independent of the choice of
the radial function R, since another choice replaces R by Ra, where a is a smooth
positive function on S∗X. In the decomposition (

24.86
10.63), for j = 0, α′′

0 is unchanged
whereas α′

0 is replaced by α′
0 +α′′

0 ∧ d log a. Since the extra term is exact whenever
α′′

0 is closed it has no effect on the identification of the cohomology. �

Combining Proposition
24.82
10.1 and Lemma

24.67
10.8 completes the proof of (

24.63
10.49).

We make the identification a little more precise by locating the terms in E2.

24.87 Proposition 10.2. Under the identification of E1 with the sums of homoge-
neous forms on T ∗X \ 0, E2, identified as the cohomology of δω, has a basis of
homogeneous forms with the homogeneity degree j and the form degree k confined
to

24.88 (10.66) k − j = dimX, − dimX ≤ j ≤ dimX, dimX ≥ 2.

Proof. Provided dimX ≥ 2, the cohomology of S∗X is isomorphic to two
copies of the cohomology of X, one in the same degree and one shifted by dimX −
1.16 The classes in the first copy can be taken to be the lifts of deRham classes from
X, while the second is spanned by the wedge of these same classes with the Todd
class of S∗X. This latter, n − 1, class restricts to each fibre to be non-vanishing.
Thus in local representations the first forms involve only the base variable and
in the second each terms has the maximum number, n − 1, of fibre forms. The
cohomology of the complex in Proposition

24.82
10.1 therefore consists of four copies of

H∗(X) consisting of these forms and the same forms wedged with dR/R.
With this decomoposition of the cohomology consider the effect on it of the map

Wω. In each case the image forms are again homogeneous. A deRham class on X in
degree l therefore has four images in E2. One is a form of degree k1 = 2n− l which
is homogeneous of degree j1 = n− l. The second is a form of degree k2 = 2n− l− 1
which is homogeneous of degree j2 = n − l − 1. The third image is of form degree
k3 = n− l+1 and homogeneous of degree j3 = −l+1 and the final image is of form
degree k4 = n − l and is homogeneous of degree j4 = −l. This gives the relations
(
24.88
10.66). �

10.8. Degeneration and convergence

Now that the E2 term in the spectral sequence has been explicitly computed,
consider the induced differential, b(2) on it. Any homogeneous form representing a
class in E2 can be represented by a Hochshild chain α of the same homogeneity.
Thus an element of E2 in degree k corresponds to a function on C∞((T ∗X)\)k+1)
which is separately homogeneous in each variable and of total homogeneity k − n.
Furthermore it has an extension β(t) as a function of the parameter h, of the same

16That is, just as though S∗X = Sn−1 × X, where n = dimX.
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homogeneity, such that btβ(t) = t2γ(t). Then b(2)α = [γ(0)], the class of γ(0) in E2.
Noting that the differential operator, Pj , which is the jth term in the Taylor series
of the product ?h reduces homogeneity by j and that bh depends multilinearly on
?h it follows tha b(r) must decrease homogeneity by r. Thus if the class [γ(0)] must
vanish in E2 by (

24.88
10.66). We have therefore shown that b(2) ≡ 0, so E3 = E2. The

same argument applies to the higher differentials, defining the Er ≡ E2 for r ≥ 2,
proving the ‘degeneration’ of the spectral sequence, (

24.64
10.50).

The ‘convergence’ of the spectral sequence, (
24.65
10.51), follows from the same anal-

ysis of homogneities. Thus, we shall define a map from E2 to the Hochschild ho-
mology and show that it is an isomorphism.

10.9. Explicit cohomology maps

10.10. Hochschild holomology of Ψ−∞(X)

10.11. Hochschild holomology of ΨZ(X)

10.12. Morita equivalence



CHAPTER 11

The index formula

HHcoId (11.1)
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APPENDIX A

Bounded operators on Hilbert space

Some of the main properties of bounded operators on a complex Hilbert space,
H, are recalled here; they are assumed at various points in the text.

(1) Boundedness equals continuity, B(H).
(2) ‖AB‖ ≤ ‖A‖ ‖B‖
(3) (A− λ)−1 ∈ B(H) if |λ| ≥ ‖A‖.
(4) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2.
(5) Compact operators, defined by requiring the closure of the image of the

unit ball to be compact, form the norm closure of the operators of finite
rank.

(6) Fredholm operators have parametrices up to compact errors.
(7) Fredholm operators have generalized inverses.
(8) Fredholm operators for an open subalgebra.
(9) Hilbert-Schmidt operators?

(10) Operators of trace class?
(11) General Schatten class?
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