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10. LECTURE 7: SEMICLASSICAL QUANTIZATION
FriDAY, 19 SEPTEMBER, 2008

We will show that there is a way to directly ‘pass from’ S(R?) with its commutative
product to ¥, >°(R), which is the same space with the operator product. In fact
this will ‘work’ much more generally, but it should be understood at the outset
that this is not a map. It does define maps at various levels but ‘semiclassical
quantization’ in this sense is not itself a map.

Going back to the definition of ¥;_>°(R) recall that I just defined this directly in
terms of the operator product. We have already discussed smooth families of such
operators. For one parameter families this just corresponds to C*([0, 1]; S(R)). We
will give this space another family of products in which the product depends on the
parameter. Namely the ‘semiclassical operator product’ is initially only defined for
€ > 0 since the integrals look singular.

I will try to motivate it after writing it down. First let me change coordinates,
to “‘Weyl coordinates’ on R? which emphasize the diagonal

(10.1)  f(2,2") :F(%(z-{-z'),z—z’), F=W{f, F(t,s) :f(t+%s,t— %s)

Clearly, W is a linear isomorphism of S(R?).
Definition 3. A smooth family A € C>((0, 1]; ¥;,>°(R)) is said to be a semiclassical

iso
family of smoothing operators if it is of the form

(10.2) A.u(z) :e*l/RF(e,%(Hz'),

Note that as an operator A, only makes sense for ¢ > 0 but the kernel function F
is required to be smooth down to € = 0, thus the singularity at e = 0 is of a very
particular kind. Since F' is determined by its restriction to € > 0, it is actually
determined by the family of operators A..

Z_TZI)u(z')dz' with F € C([0, 1]; S(R?)).

Lemma 8. If A and B are semiclassical families of smoothing operators then so
1s the composite A, o B,.

Proof. Suppose A corresponds to the kernel function F' € C*°([0,1]; S(R?)) and B
to G in the sense of the definition above. The composite operator, for each € > 0
has kernel in the ordinary sense

(10.3) (A¢ o Bo)u(z) :/c(z,z')u(z')dz',

" "ot

R
clez#) = | Fle,s(z+2"), 7006 5 (" +#), =—)de".
R €

Thus the kernel function defined, H, defined from (10.2) by ¢ is

(104) H(e,t,s) = ec(e, et + %s,e_lt - %s) -

t 2 1 " 1 " 1
et /RF(e, §+%s+gz”, €2 t+ Es—%)G(e, %ZII+§t_€22’ %—C_Qt—l— is)dz”.

Changing variable of integration z” = er + e~'t this reduces to

(10.5) H(t)—/F( bt e s Gt = te)r+ Ls)d
. e,,s—R €, 5 1+ 58), 58 —1)G(e, 5 (1= 58),7 + 5s)dr.



BKLYO08 37

The absolute convergence, and rapid decay of the result, is clear for € > 0 and
for e small follows uniformly from fact that the integrand is bounded by

(10.6) On(1+|t+(r+s/2) NA+|r—s/2) NA+|t+ ;(r —s/2)) N
x (14 |r+ s/2|)’N
SCA+ )N+ )TN+ s

Derivatives can be estimated in the same way. Thus (10.6) defines a continuous
bilinear map

(10.7) C([0,1; S(R?)) x ([0, 1]; S(R?)) — ([0, 1]; S(R?)).
This shows that the semiclassical smoothing operators form an algebra. O

I will denote this algebra as \Ilslfso(]R), with the parameter suppressed into a
suffix — remember it is by no means simply a smooth parameter as € | 0.
Notice what the product looks like at € = 0. The limiting rescaled kernel of the

product is simply

(10.8) H(0,t,s) / F(0 s —-r)G(0,t,r + 1s)dr.

2
This is a product on S(R?) so we have found another one! However, notice that it is
commutative — changing variable from r to —r effectively reverses the product. Not
surprisingly this product can actually be reduced to the usual pointwise product
on S(R?) by the simple expedient of taking the Fourier transform in s. For any
semiclassical family, (10.2), we define the semiclassical symbol to be the Fourier
transform of the limit at e =0 :

(10.9) oa(A)(t,7) = / F(0,t,5)e *"ds.
Then for the product .

(10.10) oa(AB)(t,T) = / H(0,t,5s)e ""ds
and then (10.8) becomes -

(10.11) og(AB)(t,7) =

1 ) 1
// ~iths=n7 (0 s _T.)e*Z(%SJ”")TG(O,t,T’-F§S)d’l“ds:0'sl(A)Usl(B)'

Proposition 11. The algebra of semiclassical smoothing operators with symbol
homomorphism to the commutative algebra S(R?) gives a short ezact (and multiplicative)
sequence
(1012) 00— elIIsl 1so( )C—> ‘IJSIT:C)(R) - S(]R2) —0.

So, how do we get our (weak) homotopy equivalence? We simply ‘turn on’ the
non-commutativity.

Ezercise 5. (Will be done on Monday). Show that if a € S(R?; M (N, C)) is such
that (Id +a(t, 7)) ! exists for all (¢,7) € R? then if A € ¥ (R;CV) is a (matrix-

sl,iso

valued) semiclassical family with o4 (A) = a (which exists by (10.12)) then Id + A, €
G .2°(R; CN) for € > 0 small. This works uniformly on compact sets, so if f : X —s
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S(R?; M(N,C)) — G a2y then the quantized map f. : X — G7°° (where these
are different realizations of G—°°) for € > 0 small, is well defined up to homotopy.

This leads to the homotopy equivalence
(10.13) Qa1 (G o)) — ™ (GTF) VY,

SllS

which will prove Bott periodicity for us (with a bit more work).

Exzxercise 6. Consider the differential operators on R with polynomial coefficients

d

k J - i

(10.14) P= ;0 ckja" D], Dy = —i.

Give z and D, ‘homogeneity one’ and so filter these operators by the combined
order — this is the isotropic filtration.

Now, show that if A is a semiclassical family of smoothing operators then so is

eNPA if P has total order N in this sense. Compute the semiclassical symbol of

eNPA.

Exzercise 7. Show that the definition of semiclassical families of smoothing operators
extends directly to operators on R” simply by reinterpretation of the formulae.

Ezercise 8. In preparation for what I will do on Monday, if A and B are semiclassical
smoothing families as defined above, we have shown that the function H € C*°([0, 1].; S(R?))
fixing its kernel is determined by the corresponding functions F' and G for A and

B. Show that the Taylor series of H at € = 0 is determined by the Taylor series of

A and B and derive a formula for it — you will get a variant of the ‘Moyal product’
(although several differnt things go under this name). The most important thing

for us is the second term in the expansion (well, given that we already know the

first term!)



