next up previous
Next: About this document ...

Seventh assignment - Solutions

  1. Spivak, no. 4-23:

    For $ R>0,$ and $ n$ an integer, define the singular $ 1$-cube $ c_{R,n}:[0,1]\longrightarrow \mathbb{R}^2\setminus\{0\}$ by

    $\displaystyle c_{R,n}(t)=(R\cos{2\pi nt}, R\sin{2\pi nt}).$    

    Show that there is a singular $ 2$-cube $ c:[0,1]^2\longrightarrow
\mathbb{R}^2\setminus\{0\}$ such that $ c_{R_1,n}-c_{R_2,n}=\partial c.$

    Solution: Define $ c:[0,1]^2\longrightarrow \mathbb{R}^2$ by

    $\displaystyle c(t,s)=((sR_1+(1-s)R_2)\cos{2\pi nt}, (sR_1+(1-s)R_2)\sin{2\pi nt}).$    

    This looks simpler in complex notation for $ \mathbb{R}^2=\mathbb{C}$ as

    $\displaystyle c(t,s)=(sR_1+(1-s)R_2)e^{2\pi int}.$    

    Its boundary consists of four 1-cubes, up to sign. Namely:

    $\displaystyle \partial c(t)=c(1,t)-c(0,t)-c(t,1)+c(t,0)=c_{R_1,n}(t)-c_{R_2,n}(t)$    

    since the last two 1-cubes are actually the same.

  2. Spivak, no. 4-24:

    If $ c$ is a singular $ 1$-cube in $ \mathbb{R}\setminus\{0\}$ with $ c(0)=c(1),$ show that there is an integer $ n$ such that $ c-c_{1,n}=\partial c^{(2)}$ for some $ 2$-chain $ c^{(2)}.$ Hint: First partition $ [0,1]$ so that each $ c([t_{i-1},t_i])$ is contained on one side of some line through $ 0.$

    Solution: We define a continuous function $ \theta:[0,1]\longrightarrow
\mathbb{R}$ so that

    $\displaystyle c(t)=(\vert c(t)\vert\cos(2\pi \theta (t)),\vert c(t)\vert\sin(2\pi \theta (t)))  \forall t\in[0,1]. \in\mathbb{R}^2\setminus\{0\}.$ (1)

    To do so, let $ L$ be the line through the origin and $ c(0),$ then let $ L^\pm$ be the two halves of $ L\setminus\{0\}$ so that $ c(0)\in L^+.$ As the hint suggest we can choose $ t_0=0$ and then choose $ t_1$ to be the first point at which $ c(t)\in L^-,$ $ t_2$ the first later point at which $ c(t)\in
L^+$ and so on. At the last step, either $ t_{2N}=1$ or else $ t_{2N}<1$ and there is no later point at which $ c(t)\in L^-;$ in this case set $ t_{2N+1}=1.$ This gives a partition of $ [0,1]$ so that on $ [t_{2i},t_{2i+1})$ $ c(t)$ does not hit $ L^-$ whereas on $ [t_{2i+1},t_{2i+2})$ it does not hit $ L^+.$ Set

    $\displaystyle c(t_0)=(\vert c(t_0)\vert\cos(2\pi \theta_0),\vert c(t_0)\vert\sin(2\pi \theta_0))$    

    for some $ \theta _0\in[0,1).$ Now for each $ i$ there are unique continuous functions $ \tau_{i}:[t_{2i},t_{2i+1})\longrightarrow
[-\frac12,\frac12]$ and $ \tau'_{i}:[t_{2i+1},t_{2i+2})\longrightarrow (0,1)$ so that

    $\displaystyle c(t)=(\vert c(t)\vert\cos(2\pi(\theta_0+\tau _i(t))),\vert c(t_0)\vert\sin(2\pi (\theta_0+\tau _i(t)))) t\in[t_{2i},t_{2i+1}),$    
    $\displaystyle c(t)=(\vert c(t)\vert\cos(2\pi (\theta_0+\tau' _i(t))),\vert c(t_0)\vert\sin(2\pi (\theta_0+\tau '_i(t)))) t\in[t_{2i+1},t_{2i+2}).$    

    It follows that

    $\displaystyle \lim_{t\uparrow t_{2i+1}}=\tau'_i(t_{2i+1})+n_i$ and $\displaystyle \lim_{t\uparrow t_{2i+1}}=\tau_{i+1}(t_{2(i+1)})+n_i$    
    with $\displaystyle n_i, n'_i\in\mathbb{Z}.$    

    Now the function $ \theta:[0,1]\longrightarrow
\mathbb{R}$ can be defined by insisting that $ \theta =\theta_0+\tau_0$ on $ [0,t_1)$ and that only later intervals $ \theta(t)=\theta_0+\tau _i+q_i$ or $ \theta (t)=\theta_0+\tau
_i+q'_i$ for some integers $ q_i,$ $ q;_i$ and that it be be continuous at each $ t_i.$ Necessarily $ \theta(1)=\theta(0)+n,$ $ n\in\mathbb{Z}.$ Clearly (2) holds.

    Now define a 2-cube by

    \begin{multline*}
d(t,s)=((s\vert c(t)\vert+(1-s))\cos(2\pi(s\theta(t)+(1-s)nt))...
...1-s))\sin(2\pi(s\theta(t)+(1-s)nt))), (s,t)\in[0,1]\times[0,1].
\end{multline*}

    This $ 2$-cube takes values in $ \mathbb{R}^2\setminus\{0\}$ and

    $\displaystyle \partial d=c_{1,n}(t)-c(t)$    

    since the two terms from $ t=0$ and $ t=1$ cancel. Thus $ c^{(2)}=-d$ has the desired property

    [Notice this actually gives a cube $ d(t,-s),$ with boundary $ c-c_{1,n};$ you were only asked for a chain $ c^{(2)}$ so you could do it in pieces.]

  3. Spivak, no. 4-25:

    (Independence of parameterization.) Let $ c$ be a singular $ k$-cube and $ p:[0,1]^k\longrightarrow [0,1]^k$ a $ 1$-$ 1$ function such that $ p([0,1]^k)=[0,1]^k$ and $ \det p'(x)\ge0$ for all $ x\in[0,1]^k.$ If $ \omega$ is a $ k$-form, show that

    $\displaystyle \int_c\omega =\int_{c\circ p}\omega .$    

    Solution: By definition

    $\displaystyle \int_c\omega=\int_{[0,1]^k}c^*\omega=\int{[0,1]^k}f, c^*\omega=f(x)dx^1\wedge\cdots\wedge dx^k$    

    and similarly

    \begin{multline*}
\int_{c\circ p}\omega=\int_{[0,1]^k}(c\circ p)^*\omega=\int_{[...
...f(x)dx^1\wedge\cdots\wedge dx^k)
=gdx^1\wedge\cdots\wedge dx^k.
\end{multline*}

    Thus

    $\displaystyle g=(f\circ p)\vert\det p'\vert=(f\circ p)\det p'$    

    since $ \det p'\ge0$ by assumption. Now, since $ p$ is $ 1$-$ 1$ it follows from the change of variable formula that

    $\displaystyle \int_{[0,1]^k}g=\int_{[0,1]^k}(f\circ p)\vert\det p'\vert=\int_{[0,1]^k}f.$    

  4. Spivak, no. 4-26:

    Show that $ \int{c_{R,n}}d\theta=2\pi n$ and use Stokes' theorem to conclude that $ c_{R,n}\not=\partial c$ for any $ 2$-chain in $ \mathbb{R}^2\setminus\{0\}.$ Here

    $\displaystyle d\theta=\frac{-y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy$    

    is a smooth $ 1$-form on $ \mathbb{R}\setminus\{0\}$ which, despite the notation, is not exact.

    Solution: If we substitute the definition of $ c_{R,n},$ $ x=R\cos{2\pi nt},$ $ y=R\sin{2\pi nt}$ we find that

    $\displaystyle c_{R,n}^*d\theta=-\sin(2\pi nt)\frac{d\cos{2\pi nt}}{dt}+ \cos(2\pi nt)\frac{d\sin{2\pi nt}}{dt}=2\pi ndt$    

    Thus

    $\displaystyle \int_{c_{R,n}}d\theta=\int_{[0,1]}c_{R,n}^*d\theta=\int_0^12\pi ndt=2\pi n.$    

    It follows that $ c_{R,n}\not=\partial c$ for any $ 2$-chain $ c$ in $ \mathbb{R}^2\setminus\{0\},$ if $ n\not=0,$ since by Stokes' theorem this would imply

    $\displaystyle \int_{c_{R,n}}d\theta=\int_{\partial c}d\theta=\int_{c}d(d\theta)=0$    

    since $ d\theta$ is a well-defined closed form.

  5. Spivak, no. 4-27:

    Show that the integer $ n$ of Problem 4-24 is unique. This integer is called the winding number of $ c$ around $ 0.$

    Solution: If $ c$ is a closed $ 1$-cube in $ \mathbb{R}^2$ then with $ n$ from Problem 4-24 above, using Stokes' theorem

    $\displaystyle \int_cd\theta=\int_{c_{1,n}}d\theta+\int_{\partial c^{(2)}}d\theta=2\pi n$    

    which shows that $ n$ is unique, since it is determined by integration over $ c.$

  6. Spivak, no. 4-28:

    Recall that the set of complex number, $ \mathbb{C},$ is simply $ \mathbb{R}^2$ with $ (a,b)=a+bi.$ If $ a_1,\dots,a_n\in\mathbb{C}$ let $ f:\mathbb{C}\longrightarrow \mathbb{C}$ be

    $\displaystyle f(z)=z^n+a_1z^{n-1}+\cdots+a_n.$    

    Define the singular $ 1$-cube $ c_{R,f}:[0,1]\longrightarrow
\mathbb{C}\setminus\{0\}$ by $ c_{R,f}=f\circ c_{R,1}$ and the singular $ 2$-cube $ c$ by

    $\displaystyle c(s,t)=t\cdot c_{R,n}(s)+(1-t)c_{R,f}(s).$    

    1. Show that $ \partial c=c_{R,f}-c_{R,n}$ and that

      $\displaystyle c([0,1]\times[0,1])\subset\mathbb{C}\setminus\{0\}$    

      if $ R$ is large enough.
    2. Using Problem 4-26 above, prove the Fundamental theorem of algebra: Every polynomal $ =z^n+a_1z^{n-1}+\cdots+a_n$ with $ a_i\in\mathbb{C}$ has a root in $ \mathbb{C}.$

    Solution

    1. By definition $ \partial c$ is the sum of four $ 1$-cubes

      $\displaystyle \partial c=c(s,0)-c(s,1)-c(0,s)+c(1,s).$    

      The last two are the same $ 1$-cube with opposite signs, since both $ c_{R,n}$ and $ c_{R,f}$ are closed.
    2. We can estimate $ f$ by

      \begin{multline}
\vert f(z)-z^n\vert=\vert a_1z^{n-1}+\cdots+a_n\vert\\
\le\ver...
...ert a_n\vert
\le C\vert z\vert^{n-1},\text{ in }\vert z\vert\ge1.
\end{multline}

      This shows that $ f(z)\not=0$ on $ c_{R,1}$ for $ R$ large enough. Moreover for each $ s\in[0,1]$ consider

      \begin{multline*}
t\longmapsto tc_{R,f}(s)+(1-t)c_{R,n}(s)\\
=tf(Re^{2\pi is})+(1-t)Re^{2\pi ins}
=tR^n(e^{2\pi ins}+\tau)+(1-t)Re^{2\pi ins}.
\end{multline*}

      Here $ \vert\tau\vert\le C/R$ is very small by (2). Thus the straight line given by varying $ t\in[0,1]$ does not pass through the origin, so $ c([0,1]\times[0,1])\subset\mathbb{C}\setminus\{0\}.$
    3. Since $ c_{R,f}$ and $ c_{R,n}$ differ by an exact $ 2$-chain in $ \mathbb{C}\setminus\{0\}$ it follows from Problem 4-16 that

      $\displaystyle \int{c_{R,f}}d\theta=2\pi n.$    

      Now suppose, to get a contradiction, that $ f(z)\not=0$ for all $ z\in\mathbb{C}.$ In particular, $ a_n\not=0$ since otherwise $ f(0)=0.$ Then

      $\displaystyle d(s,t)=f\circ c_{Rs,1}(t)\in\mathbb{C}\setminus\{0\} \forall (t,s)\in[0,1]\times[0,1].$    

      Since $ \partial d=c_{R,f}-c'$ where $ c'(t)=a_n$ is constant it follows from Stokes' theorem that $ 2\pi n=\int_{c'}d\theta=0$ which is a contradiction. This proves the Fundamental Theorem of Algebra, that $ f(z)$ must have a zero.




next up previous
Next: About this document ...
Richard B. Melrose 2000-12-08