18.02 Practice Problems for Final

The following are a selection of problems whose solutions are in the Notes; after each group of problems is the page number (S.xx) of their solutions. You can pick the topics you feel you need most review on.

I would suggest reviewing by looking first at the four hour exams, and the practice hour exams - redo those problems, paying attention to the ones you originally missed. You have solutions to all of these. Then use the problems on this sheet for additional practice.

Final Exam: Will have about 20 short problems, covering the term's work evenly except there will be some extra weighting on Stokes' theorem.

1. Simple vector proofs; using the dot product formula:

$$
A \cdot B=|A||B| \cos \theta=a_{1} b_{1}+a_{2} b_{2}+a_{3} c_{3} .
$$

12.1/53 12.2/43, 62 794/18 (S.1)

2 . Vector cross product: its direction and magnitude and the determinantal formula for it. Equations of lines and planes.
$12.3 / 7,14,19$ (S.2, 3) $\quad 12.4 / 7,32,37$ (S.5)
3. Matrices: matrix multiplication, calculating $\operatorname{det} A$ and A^{-1} for 2×2 and 3×3 matrices. Solving $A x=b$ by using A^{-1} and by Cramer's rue.

A square system $A x=0$ has a non-trivial solution $\Leftrightarrow \operatorname{det} A=0$. L.17/18a \quad L.18/4 \quad L.19/1b, 3a (S.4)
4. Parametric equations. Finding the velocity, acceleration, unit tangent vector and speed of a motion.

$$
\text { 601/40a (S.6) 12.5/11, } 39 \text { (S.7) }
$$

5. Tangent plane to $z=f(x, y)$; tangent linear approximation:

$$
\delta w \approx f_{x} \Delta x+f_{y} \Delta y
$$

13.4/39, 57 (S.9) TA-7/3, 5 (S.10)
6. Directional derivative $d w / d s$; gradient ∇f (including geometric interpretations of its direction and magnitude); deducing approximate values of $d w / d s$ and ∇f from map of the level curves of $f(x, y)$.
∇f is normal vector to contour surfaces of $f(x, y, z)$; from this one gets the tangent plane to $f(x, y, z)=c$. Contour curves.

$$
13.8 / 12,23,32 \quad \text { (S.13) }
$$

7. Chain rule, when variables are independent and when not independent.
13.7/5, 43, 49 (S.12) N.3/3a, 4 (S.16)
8. Finding maxima and minima: with and without Lagrange multipliers. Application to line-fitting by method of least squares.
9. Double integrals; putting in limits, changing the order of integration.
I.1/1, 2 (S.19) 14.2/15, 30, 37 (S.20)
10. Double integrals in polar coordinates.
I.2/5 (S.21) 14.4/2, 16, 23 14.5/33 956/36 (S.22)
11. Triple integrals in rectangular and cylindrical coordinates. 14.6/5, 33 (S.23) 14.7/9, 12 (S.24) I.3/11, 12 (I.5)
12. Spherical coordinates; gravitational attraction.
I.4/14, 16 (I.5) 14.7/26 (S.24) G.4/3 (S.25)
13. Line integrals; path independence, conservative fields (in the plane) and exact differentials. Finding the (mathematical) potential function.
15.2/11, 32, 36 (S.26) Notes 2.7/1, 5, 6 (S.27, 8, 9)
14. Green's theorem, work form: SP.4/4-C1(b), 4-C4 (S.30) flux form: Notes 3.4/4 (S.32) 4.5/4a (S.33)
15. Surface integrals and flux: Notes $9.8 / 4,5,8$ (S.36, 37) (Basic surfaces: sphere, cylinder and the graph of $z=f(x, y)$.)
16. Divergence theorem.

Notes 10.5/5, 6, 8 (S.38, 39)
17. Line integrals in 3 -space and conservative fields; exact differentials; finding the potential function.

Notes 11.5/1, 4 12.5/2, 3 (S.40, 41)
18. Stokes' theorem, curl F; del operator ∇, its use in formulas. SP.7/5-B4 (S.43) 15.7/1, 2 (S.46)

