next up previous
Next: About this document ...

18.02 Problem Set 9 (due Friday, April 23, 1999)
With Solutions







These problems on multiple integration and surface integrals involve a lot of work. Get started early, even though it's not due until next week. Quite a lot of the work is in Part I.

Part I     (20 points)

Hand in the the underlined problems; the others are for practice.

Lecture 27 (Tues. April 13): Triple integrals in rectangular and cylindrical coordinates.

Read: EP, sect. 12.8 to p. 787. Read: SN I, pp. I.2, I.3; Read EP 14.6, pp. 926-929 (concentrate on Exs. 1,2,3); Read EN 14.7, pp. 934-6.

Problems: EP p.791 Probs 5, 9, 11, 15, 23, 25, 27, 55, 60 (give $ z$ in terms of $ r$), 61. (Solutions in back of book; no. 60: $ 0 \leq r \leq R, Hr/R \leq z \leq H, 0 \leq \Theta \leq 2 \pi$) More problems: I.3/11, 12, 13 (cylindrical coordinates) (I.5). Even more problems EP: 14.6/1, 5, 33, 39 ($ \bar{z}$ only; use symmetry, half the region), 43 (S.23); 14.7/9, 12 (vol. only),19 (S.24).

Lecture 28 (Thurs. April 15): Triple Integrals in spherical coordinates.

Read: Notes I, p. I.4; EP 14.7, pp. 936-940.

Probs. SN: I.4/14, 16 (I.5); EP 14.7 p.941 21, 26, 29, 40 (S.24,25).

Lecture 29 (Fri. April 16): Gravitational attraction. Vector fields.

Read: SN sect. G, probs: G.3/3, 4 (S.25). Read: SN, Vector Calculus, section 8. Probs. SN 8.2, nos. 1, 3 (8.2).

Part II     (25 points)

Directions: Try each problem alone for 25 minutes. If you subsequently collaborate, solutions must be written up independently. It is illegal to consult old problem sets.

1.
(Tues. 3 pts: 2,1) (cf. EP 14.6/33 (S.23))

A rectangular solid has dimensions $ a,b,c$. Its density is $ 1$.

(a)
Find its moment of inertia about an edge of length $ c$. (Place the solid so this edge lies along the $ z$-axis.)

(b)
Suppose the dimensions of the box are $ 1$, $ 2$ and $ 3$. About which edge will the moment of inertia be greatest? smallest? Predict the answer by physical intuition, then verify it by using the formula you found in part (a).

Solution:

(a)
Moment of inertia about $ z$-axis: $ \int^a_0 \int^b_0 \int^c_0
(x^2+y^2) \, dx \, dy \, dz$.
\begin{displaymath}\begin{array}{ll}
\hbox{Inner:} & (x^2 + y^2) z ]^c_0 = c (x^...
...rac{1}{3} b^3 x)]^a_0
= \frac{abc}{3} (a^2+b^2)\, .
\end{array}\end{displaymath}      

(Note that this is symmetric in $ a,b$ as it should be.)

(b)

\begin{displaymath}\begin{array}{ll}
\hbox{Should be \emph{biggest} about axis $...
...axis $2$}
& = \frac{1 \cdot 3 \cdot 2}{3} (1^2+3^2)
\end{array}\end{displaymath}      

2.
(Tues. 3 pts.) Work EP 14.7, p. 940 no. 15 (cf. 14.7/12 (S.24))

Problem: Find volume of the region $ D$ bounded above by the spherical surface $ x^2+y^2+z^2=2$ and below by the paraboloid $ z=x^2+y^2$.

Solution: Certainly $ D$ has circular symmetry. Its projection into the $ xy$-plane (its shadow) is a disc of some radius $ a.$ To determine $ a$ set $ x=0$ and solve

\begin{multline*}
z^2+y^2=2 \text{ and }z=y^2\Rightarrow
z^2+z-2=(z-1)(z+2)=0\Rightarrow\\ z=-2 \text{ (makes no sense) or }z=1.
\end{multline*}

So $ a=1.$

In cylindrical polar coordinates the volume is

$\displaystyle \int^{2 \pi}_0 \int^1_0 \int^{\sqrt{2-r^2}}_{r^2} \, rdz\, dr \, d \theta.$    


\begin{displaymath}\begin{array}{ll}
\hbox{Inner:} & rz]^{\sqrt{2-r^2}}_{r^2} = ...
...) \quad (\hbox{Book: } \frac{\pi}{6}(8 \sqrt{2}-7))
\end{array}\end{displaymath}      

3.
(Thurs. 2 pts: 1,1)

Definition: The average value of $ f(x,y,z)$ over a region $ D$ in $ 3$-space is

$\displaystyle \frac{1}{V(D)} \iiint f(x,y,z) \, dV, \qquad V(D)= \hbox{volume of
} D \, .
$

Find the average distance of a point in a solid sphere of radius $ 1$ from

(a)
the center of the sphere
(b)
an axis of the sphere
(c)
a point on the surface of the sphere

Solution:

(a)

$\displaystyle \int^{2\pi}_0 \int^{\pi}_0 \int^1_0 \rho \cdot \rho^2 \sin \varphi\, d \rho \, d \varphi \, d \theta$    

Inner:$\displaystyle \quad \frac{\rho ^4}{4} \sin \varphi ]^1_0 = \frac{\sin \varphi}{4},$    Middle:$\displaystyle \quad \frac{- \cos \varphi}{4}]^{\pi}_0 = \frac{1}{2},$    Outer:$\displaystyle \quad \frac{1}{2} \cdot 2 \pi = \pi$    

then divide by the volume of the sphere $ 4/3 \pi$ so

Answer:$\displaystyle \quad \pi \cdot \frac{3}{4 \pi} = 3/4.$    

(b)

$\displaystyle \int^{2\pi}_0 \int^{\pi}_0 \int^1_0 \rho \sin \varphi \cdot \rho^2 \sin \varphi \, d \rho \, d \varphi \, d \theta$    

Inner:$\displaystyle \quad\frac{1}{4} \sin^2 \varphi,$    Middle:$\displaystyle \quad \frac{1}{4} \left( \frac{\varphi}{2} - \frac{\sin 2 \varphi}{4} \right) ]^{\pi}_0 = \pi/8,$    Outer:$\displaystyle \quad 2 \pi \cdot \pi/8 = \pi^2/4$    

So

Answer:$\displaystyle \quad \frac{\pi^2}{4} \cdot \frac{3}{4 \pi} = \frac{3 \pi}{16}.$    

(c)
Take the point on the boundary of the solid sphere to be $ (0,0,1).$ Then the distance squared from it is

$\displaystyle x^2+y^2+(z-1)^2=\rho ^2-2\rho\cos\phi+1.$    

Thus the integral we wish to evaluate is

$\displaystyle \int^{2\pi}_0 \int^1_0 \int^{\pi}_0 (\rho ^2-2\rho\cos\varphi+1)^{\frac12} \cdot \rho^2 \sin \varphi \, d \varphi \,d \rho \, d \theta.$    

Inner:$\displaystyle \quad \frac13\rho(\rho ^2-2\rho\cos\varphi+1)^{\frac32}]_0^\pi=\frac13 \rho ((\rho -1)^3-(\rho +1)^3)$    
Middle:$\displaystyle \quad \frac13 (\frac25\rho ^5+2\rho ^3)]^1_0=\frac45,\ $    Outer:$\displaystyle \frac{8\pi}5$    

Answer:$\displaystyle \frac65.$    

4.
(Fri. 3 pts) Prob SN, G.3/1b

Solution: Grav. attractions on vertex of solid icream cone with density $ \rho$

$\displaystyle =G \int^{2\pi}_0 \int^{\pi/6}_0 \int^a_0 \rho \cdot \frac{\cos \rho}{\rho^2} \cdot \rho^2 \sin\varphi \, d \rho \, d \varphi \, d \theta$    

the integrand being density$ \times$   grav.$ \times dV.$ Dropping $ G$ for the moment

Inner:$\displaystyle \frac{\rho^2}{2} \sin \varphi \cos \varphi ]^a_0 = \frac{a^2}{2} \sin \varphi \cos \varphi$    
Middle:$\displaystyle \frac{a^2}{4} \sin^2 \varphi ]^{\pi/6} = \frac{a^2}{4} \cdot \frac{1}{4} \quad = \frac{a^2}{16}$    
Outer:$\displaystyle 2 \pi \cdot \frac{a^2}{16} = \frac{\pi a^2}{8}$    

Answer:$\displaystyle \quad G \cdot \frac{\pi a^2}{8}$    

5.
(Fri. 3 pts) Prob SN, G.3/5

Solution: Put the hemisphere with its flat surface up and its pole at the origin. Then do the integral in two pieces: the inner solid cone and the outer shell.

$\displaystyle =G \int^{2\pi}_0 \int^{\pi/4}_0 \int^{a/\cos \varphi}
\sin \varphi \cos \varphi \, d \rho \, d \varphi \, d \theta
$

(since the top surface is $ z=a$, % latex2html id marker 670
$ \therefore \rho \cos \varphi
=a$ or $ \rho = a/ar \varphi$)

(Drop $ G$ during the integration)

Evaluating Cone part:

Inner:$\displaystyle \sin \varphi \cos \varphi \cdot \rho ]^{a/ar \varphi}= a \sin \varphi,$    
Middle:$\displaystyle - a ar \varphi ]^{2 \pi/4} = a\left(1- \frac{\sqrt{2}}{2}\right),$    
Outer:$\displaystyle 2 \pi \frac{\sqrt{2}}{6}a = \frac{\sqrt{2} \pi a}{3} G$    

So the total is

$\displaystyle = \pi a \left( 2- \sqrt{2} + \frac{\sqrt{2}}{3} \right) G = 2 \pi a G \left( 1- \frac{\sqrt{2}}{3} \right)$    

6.
(Fri. 3 pts)

(a)
Write down the most general vector field, all of whose vectors are perpendicular to the plane $ 2x-y+3z=5$.

(b)
The force of a positive unit dork is radically outward, with magnitude equal to the distance of the dork. Show that the force field in three-space resulting from two positive unit dorks, place on the $ x$-axis at $ x=1$ and $ x=-1$, is the same as the force field of a single positive two-unit dork at the origin.

(c)
Write down the magnetic field in $ 3$-space arising from an infinite wire along the $ y$-axis, carrying a unit positive current in the negative direction.

(The field is tangent to a circle centered on the $ y$-axis, lying in a plane perpendicular to the $ y$-axis, with direction given by the right hand rule, and magnitude inversely proportional to the distance from the $ y$-axis.)

Solution:

(a)
If the vectors are perpendicular to $ 2x-y+3z=5$, they are parallel to the normal vector to this plane: $ {\bf i} - {\bf j} + 3{\bf k}$ and so must be of the form

$\displaystyle {\bf F} = f(x,y,z) (2 {\bf i}) - {\bf j} + 3 {\bf k}
$

(b)
For a unit dork at the origin, $ {\bf F} = x{\bf i}+ y{\bf j} + z
{\bf k}$. For a unit dork at $ (-1,0,0)$ and $ (1,0,0)$ therefore the sum of the fields is

$\displaystyle (x+1){\bf i}+ y{\bf j}+ z{\bf k}
+ (x-1){\bf i} + y{\bf j} + z{\bf k}
= 2x{\bf i} + 2y{\bf j} + 2z{\bf k}
$

which is the same as a two unit dork at the origin.

(c)
Looking at the $ xz$-plane $ {\bf F} =
- \frac{z{\bf i} + x{\bf k}}{(x^2 + z^2)}.$




next up previous
Next: About this document ...
Richard B. Melrose
1999-04-23