Part I:

Hand in the underlined problems; the others are for practice.
Lecture 19. Thurs. (March 18): Changing variables in a double integral. Read SN sect CV, supplementing with Examples 1-4 in EP sect 14.9.

Problems: EP page 955 no. $\underline{9}$, page 956 no. $\underline{13}$, SN sect. Vect Calc, page $2.7 \underline{1}$, Special Problem: The original problem was to evaluate

$$
\iint_{R} \frac{(2 x-3 y)^{2}}{(x+y)^{2}} d x d y \text { over } R:
$$

where R is the region to the right of the y-axis, below the x-axis and above the line $2 x-3 y=4$. However this integral is undefined as a Riemann integral (because the integrand is unbounded) or, more sensibly is $+\infty$ as a Lebesgue integral (or as an improper Riemann integral). In short I should have been more careful when I copied this problem, it is bad, bad bad! The difficult is that the line $x+y=0$ where the integrand is infinite is inside the domain R. If instead I had asked you to evaluate

$$
\iint_{R} \frac{(2 x-3 y)^{2}}{(x+y+3)^{2}} d x d y
$$

for the same R we would have had less trouble!
Solutions: EP page 955, no. 9: For $u=x y, v=x y^{3}$ the Jacobian is

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
y & x \\
y^{3} & 3 x y^{2}
\end{array}\right|=2 x y^{3}
$$

Thus $\frac{\partial(x, y)}{\partial(u, v)}=1 / 2 v$. The area integral is therefore

$$
\int_{3}^{6} \int_{2}^{4} \frac{d u d v}{2 v}=\int_{3}^{6} \frac{d v}{2 v}=\ln 2
$$

EP page 956, no. 13: Since $x=3 r \cos \theta$ and $y=2 r \sin \theta$, the Jacobian is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
3 \cos \theta & -3 r \sin \theta \\
2 \sin \theta & 2 r \cos \theta
\end{array}\right|=6 r
$$

The integral for the volume is

$$
\begin{aligned}
& \iint_{R}\left(x^{2}+y^{2}\right) 6 r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} 6 r^{3}\left(4+5 \cos ^{2} \theta\right) d r d \theta \\
& \quad=\int_{0}^{2 \pi} \frac{3}{2}\left(4+5 \cos ^{2} \theta\right) d \theta=\frac{39 \pi}{2}
\end{aligned}
$$

Special Problem: Make the change of variables $v=2 x-3 y, u=x+y$. The Jacobian is

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
1 & 1 \\
2 & -3
\end{array}\right|=-5
$$

In terms of u and v the region of integration is between $v=0$ and $v=4$ and when $v=2 x-3 y$ is fixed, u runs from $x=0$, where it is $y=-v / 3$, to $y=0$ where it is $x=v / 2$. I leave it as an excercise to evaluate the resulting iterated integral

$$
\int_{0}^{4} \int_{-v / 3}^{v / 2} \frac{v^{2}}{(u+3)^{2}} \frac{d u d v}{5}
$$

Lecture 20. Fri. (March 19): Vector fields. Line integrals in the plane.
Read SN sect. on Vect. Calc. section 1 (covered also in EP 15.1, pp. 960-1). Probs. SN Vect. Calc. Exercises 1.1, nos. 3i, ii, iii, 4 (solns p. 1.5). Read EP 15.2 pp. 969-74. Probs. EP page 976, 6, 9, 33a, b, 34, 35, $\underline{36}$ (S.26).

Lecture 21. Tues. (March 29): Path independence; conservative fields in the plane. Read 15.3 to p. 979. Problem: Work SN Vect. Calc. page 2.7 1, 2, $\underline{3}$ (S.27) However, the solution to Problem 3 on page S. 27 is incorrect. Rather, $\mathbf{F}=\nabla f=\cos x \cos y \mathbf{i}-\sin x \sin y \mathbf{j}$. The rest is correct.

Remark: The Fundamental Theorem of Calculus for line integrals is Theorem 1. You should be able to state and prove the theorem (in the plane; ignore z). The book writes $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, in the lectures and notes we use $\int_{C} \mathbf{F} \cdot \mathbf{d r}$. Both have the same meaning: the line integral which calculates the work done by the field \mathbf{F} carrying a unit test object along the curve C.

Part II: (15 pt)
Directions: Try each problem alone for 15 minutes. If you subsequently collaborate, this should be acknowledged and solutions must be written up independently.

Problem 1. (Thurs. 5 pt) Work EP page 958 (Misc. Problems) no. 52.
Solution: The integral is

$$
I=\iint_{R} \exp \left(\frac{x-y}{x+y}\right) d x d y
$$

For the suggested change of variables, $u=x-y, v=x+y$ the Jacobian is

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|=2
$$

Thus $d x d y=\frac{1}{2} d u d v$ The region of integration, R, is the set where $x, y \geq 0$ and $x+y \leq 1$. In terms of the new variables this is $0 \leq v \leq 1, u+v \geq 0, u-v \geq 0$. Thus
$I=\frac{1}{2} \int_{0}^{1} \int_{-v}^{v} \exp (u / v) d u d v=\frac{1}{2} \int_{0}^{1}[v \exp (u / v)]_{-v}^{v}=\frac{1}{2} \int_{0}^{1} v\left(e-\frac{1}{e}\right)=\frac{1}{4}\left(e-\frac{1}{e}\right)$.
Problem 2. (Fri. 2 pt) Write down the velocity field for a standard 2dimensional flow between the lines $x=0$ and $x=1$: The flow is upwards, with parabolic cross-section; i.e., along any horizontal line segment between 0 and 1 , the velocity vector has magnitude 0 at the two ends, while in between its length increases and decreases so the tips of the vectors lie on a parabola, whose maximum height is 1 , in the middle. Indicate reasoning. (This is the way a liquid flows in a pipe if it adheres to the pipe walls.)

Solution: The direction of the vector field is always \mathbf{j}. Its magnitude must be $|\mathbf{F}|=4 x(1-x)$, since it has to be quadratic and vanish at $x=0$ and $x=1$ and have size 1 when $x=\frac{1}{2}$. Thus

$$
\mathbf{F}=4 x(1-x) \mathbf{j} .
$$

Problem 3. (Fri. 3 pt) Imagine the z-axis represents an infinitely long, uniformly charged wire. The electric force it exerts on a unit charge at the point (x, y) is given by

$$
F(x, y)=k(x \mathbf{i}+y \mathbf{j}) /\left(x^{2}+y^{2}\right) .
$$

Find by direct calculation of the line integral in each case the work done by the force in moving a unit charge along the paths:

1. line from $(0,1)$ to $(\infty, 1)$.
2. circle of radius a with center at origin, traced counterclockwise.
3. line from $(1,0)$ to $(0,1)$ (use integral tables in the book covers).

Solution:
The vector field is

$$
\mathbf{F}=\frac{k x \mathbf{i}+k y \mathbf{j}}{x^{2}+y^{2}}
$$

so the work done along a curve C is

$$
k \int_{C} \frac{x d x+y d y}{x^{2}+y^{2}}
$$

1. The curve is x running from 0 to ∞ while $y=1$. Thus the work done is

$$
\left.k \int_{0}^{\infty} \frac{x d x}{x^{2}+1}=\frac{k}{2} \ln \left(x^{2}+1\right)\right]_{0}^{\infty}=\infty
$$

So an infinite amount of work must be done (just like 18.02!)
2. The curve is $x=a \cos t, y=a \sin t$, t running from 0 to $\pi / 2$. Thus $d x=$ $-a \sin t d t, d y=a \cos t d t$ and the work done is

$$
k \int_{0}^{\pi / 4} \frac{-a^{2} \cos t \sin t+a^{2} \sin t \cos t}{a^{2}} d t=0
$$

3. Parameterize by $y=1-x, d y=-d x, x$ running from 1 to 0 , so the work done is
$\left.k \int_{1}^{0} \frac{x d x+(1-x)(-d x)}{x^{2}+(1-x)^{2}}=\int_{1}^{0} \frac{(2 x-1) d x}{2 x^{2}-2 x+1}=\frac{1}{2} \ln \left(2 x^{2}-2 x+1\right)\right]_{1}^{0}=0$.
Problem 4. (Fri. 8 pt) Answer the same questions as in SN Vect. Calc. page 2.7 no. 1 for the function $f(x, y)=x y(x+y)$, and the path C given by the quarter circle running from $(0,1)$ to $(-1,0)$.

Solution:
a) Since $f=x^{2} y+x y^{2}, \mathbf{F}=\left(2 x y+y^{2}\right) \mathbf{i}+\left(x^{2}+2 x y\right) \mathbf{j}$.
b) Directly: Parameterize the curve by $x=\cos t, y=\sin t, \pi / 2 \leq t \leq \pi$. Thus $d x=-\sin t d t, d y=\cos t d t$ so the line integral is

$$
\int_{\pi / 2}^{\pi}\left(-\sin ^{3} t-2 \cos t \sin ^{2} t+\cos ^{3} t+2 \sin t \cos ^{2} t\right) d t
$$

Using the formulæ $\sin ^{3} t=\sin t\left(1-\cos ^{2} t\right)$ and $\cos ^{3} t=\cos t\left(1-\sin ^{2} t\right)$ the integral becomes
$\left.\int_{\pi / 2}^{\pi}\left(-\sin t-3 \cos t \sin ^{2} t+\cos t+3 \sin t \cos ^{2} t\right) d t=\cos t-\sin ^{3} t-\sin t-\cos ^{3} t\right]_{\pi / 2}^{\pi}=0$.
A simpler path between these two point is down the y-axis to the origin and then along the x -axis. The integrand vanishes on both pieces so the integral is zero. By the fundamental theorem

$$
\left.\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(x, y)\right]_{(-1,0)}^{(0,1)}=0
$$

