If you haven't done so already, remember to join the 1802 list. There is an inclass test Friday, Feb 19 - which is why this problem set is due on Thursday, Feb 18. Material in the lecture on Thursday Feb 18 will not be included in the test so it will be based on the first 6 lectures, sections 10.4, 12.1-12.6 of Edwards and Penney and parts L and K of the supplementary notes.

Problems are from the text ($\mathrm{EP}=$ Edwards and Penney) or from the supplementary notes (SN).

Hand in underlined problems from Part I and all of Part II. Note that the solutions to Part I problems are generally available in the notes, Section S. Part II is marked more critically with points as indicated. These points will accumulate and finally constitute 30% of the possible total.

Part I (1 pt each for correct answers)

Lec 5 (Thurs Feb 11): Read EP Sect $12.4,10.4$ to p. 591, 12.5 to p. 747 . Problems:EP p. 742 nos. $3, \underline{7}, \underline{22}, \underline{33}$. EP p. 594 , nos. $4, \underline{12}, 15$. EP p. 755 nos. $3, \underline{4}$, 13, 31, 39, 40.
Lec 6 (Fri Feb 12): Read EP Sect 12.6, SN K. Problems SN p. K.2, nos. 1, 2, $\underline{3}$.

Part II

Problem 1: (3 pts)

Given that $\mathbf{A}=\mathbf{2 i}+\mathbf{j}+\mathbf{3 k}$ and $\mathbf{B}=\mathbf{3 i}-\mathbf{2} \mathbf{j}-\mathbf{k}$ find all vectors of length 4 which are perpendicular to both \mathbf{A} and \mathbf{B}.

Solution: The cross product is $\mathbf{A} \times \mathbf{B}=(-1+6) \mathbf{i}-(-2-9) \mathbf{j}+(-4-3) \mathbf{k}=$ $5 \mathbf{i}+11 \mathbf{j}-7 \mathbf{k}$. This has length $\sqrt{195}$ so the two vectors of length 4 perpendicular to both \mathbf{A} and \mathbf{B} are

$$
\pm \frac{2}{\sqrt{195}}(5 \mathbf{i}+11 \mathbf{j}-7 \mathbf{k})
$$

Problem 2: $(2+2 \mathrm{pts})$
Let O be the origin, $P=(2,0,1)$ and let L be the line through the origin parallel to $2 \mathbf{i}-\mathbf{j}+\mathbf{2 k}$.
a) Express the vector OP as the sum of a vector parallel to L and a vector perpendicular to L.
b) Calculate the distance from P to L.

Solution:
a) $\mathbf{O P}=2 \mathbf{i}+\mathbf{k}$ and $\mathbf{A}=2 \mathbf{i}-\mathbf{j}+\mathbf{2 k}$ is parallel to the line. Since \mathbf{A} has length 3 the vector $\frac{1}{9}(\mathbf{O P} \cdot \mathbf{A}) \mathbf{A}=\frac{2}{3} \mathbf{A}$ has the same dot product with \mathbf{A} as $\mathbf{O P}$ has (namely 6.) Thus

$$
\mathrm{OP}=\frac{2}{3}(2 \mathbf{i}-\mathbf{j}+\mathbf{2 k})+\frac{\mathbf{1}}{\mathbf{3}}(2 \mathbf{i}+\mathbf{2} \mathbf{j}-\mathbf{k})
$$

is the (only) decomposition into a part parallel to the line and a part perpendicular to it.
b) A general point on the line is $\frac{1}{3}(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k})+t \mathbf{A}$ (since it is OP plus some multiple of $\mathbf{A})$. The length of this is greater than or equal to $\left|\frac{1}{3}(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k})\right|=1$ which is therefore the distance from the origin to the line.

Problem 3: $(2+2 \mathrm{pts})$
Consider the system $x_{1}+x_{2}=2 c x_{1}, x_{1}+2 x_{2}+x_{3}=2 c x_{2}, x_{2}+x_{3}=2 c x_{3}$.
a) For what values of the constant c will there be a non-trivial solution?
b) Let $c=0$. Find a non-trivial solution by writing the three equations in vector form as $\mathbf{A} \cdot \mathbf{x}=0, \mathbf{B} \cdot \mathbf{x}=0$, and $\mathbf{C} \cdot \mathbf{x}=0$, then using vector analysis to find a non-zero vector \mathbf{x} which is orthogonal to all three vectors \mathbf{A}, \mathbf{B} and \mathbf{C}.

Solution:

a) The determinant of the matrix $\left[\begin{array}{ccc}(1-2 c) & 1 & 0 \\ 1 & (2-2 c) & 1 \\ 0 & 1 & (1-2 c)\end{array}\right]$ is
$2(1-c)(1-2 c)^{2}-2(1-2 c)=2(1-2 c)\left(2 c^{2}-3 c+1-1\right)=2 c(1-2 c)(2 c-3)$.
Thus the determinant vanishes, and hence there is a non-trivial solution, if $c=0$, $c=\frac{1}{2}$ or $c=\frac{3}{2}$.
b) If $c=0$ then the equations are $\mathbf{A} \cdot \mathbf{x}=0, \mathbf{B} \cdot \mathbf{x}=0$, and $\mathbf{C} \cdot \mathbf{x}=0$, if $\mathbf{A}=\mathbf{i}+\mathbf{j}$, $\mathbf{B}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{C}=\mathbf{j}+\mathbf{k}$. The cross product of \mathbf{A} and \mathbf{C} is $\mathbf{i}-\mathbf{j}+\mathbf{k}-$ which is orthogonal to all three. Thus a non-trivial solution is $x_{1}=1, x_{2}=-1$ and $x_{3}=1$.

Problem 4: (8 pts)
Does a pitched "curve ball" in baseball really curve? Work through project 12.5 in EP. There a several questions to be answered; in your answer label then (a), (b) and so on, in order. Write up the last two in decent English.

