18.02 Problem Set 11 (due Friday, May 7, 1999)

Part I (7 points)

Hand in the the underlined problems; the others are for practice.
Lecture 33 (Tues. May 4): Line integrals in space, $\operatorname{curl} \mathbf{F}$, exactness, potentials. Read SN: Sections 11, 12 and p. 15.1; Problems: SN p. 11.5 nos. 1, 2, $\underline{4}, \underline{5}$ (S.40) SN p. 12.4 and 12.5 nos $1,2,3 \mathrm{ab}(\mathrm{ii})$ (both methods), $\underline{5}$ (S. 41-2)

Lecture 34 (Thurs. May 6): Stokes’ Theorem.
Read: SN Section 13, EP Section 15.7. Problems: SP. 7 nos. 5-B3, B4, B5, B7 (S. 43-4).

Lecture 35 (Fri. May 7): Stokes' Theorem, cont'd. Applications.

Part II (11 points)

Directions: Try each problem alone for 25 minutes. If you subsequently collaborate, solutions must be written up independently. It is illegal to consult old problem sets.

1. (Tues. 2 pts)
(a) For what value(s) of the constant a, b, c will the field

$$
\mathbf{F}=a x y z \mathbf{i}+\left(b x^{2} z+z^{2}\right) \mathbf{j}+\left(x^{2} y+c y z+2 z\right) \mathbf{k}
$$

be conservative?
(b) Using these values of the constants, find a potential function for the field, by either method described in the Notes. (Show systematic work.)
Solution:
(a) \mathbf{F} will be conservative if $\nabla \times \mathbf{F}=0$. Since

$$
\begin{aligned}
\nabla \times(P \mathbf{i}+Q \mathbf{j}+R \mathbf{k})= & \left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k} \\
& =\left(x^{2}+c z-b x^{2}-2 z\right) \mathbf{i}(a x y-2 x y) \mathbf{j}+(2 b x z-a x z) \mathbf{k}
\end{aligned}
$$

this vanishes (identically) exactly when $a=2, b=1$ and $c=2$.
(b) Method 1: Calculate the work integral of \mathbf{F} along the curve which starts at the orgin, goes along the x -axis to $(x, 0,0)$, then in the direction of y to $(x, y, 0)$ then in the z -direction to (x, y, z).

$$
f(x, y, x)=\int_{0}^{x} 0 d x+\int_{0}^{y} 0 d y+\int_{0}^{z}\left(x^{2} y+2 y z+2 z\right) d z=x^{2} y z+y z^{2}+z^{2}
$$

Method 2: Solve $f_{x}=2 x y z$, giving $f=x^{2} y z+g(y, z)$. Then substitute in $f_{y}=x^{2} z+z^{2}$ giving $g_{y}=z^{2}$ so $g=z^{2} y+h(z)$ and $f=x^{2} y z+z^{2} y+h(z)$. Finally substitute this in $f_{z}=x^{2} y+2 y z+2 z$ giving $h^{\prime}(z)=2 z$, so $h(z)=z^{2}+C$ and the general answer is $f=x^{2} y z+z^{2} y+z^{2}+C$ as before.
2. (Thurs. 2 pts) Suppose that in 3 -space, $\mathbf{F}=\operatorname{curl} \mathbf{G}$, where the components of \mathbf{G} have continuous second partial derivatives. Prove that, if S is a closed surface, then

$$
\oiint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S=0
$$

in two ways:
(a) by the divergence theorem;
(b) by drawing a closed curve C dividing S into two parts and applying Stokes' theorem to each.
Solution:
(a) By the divergence theorem,

$$
\oiint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S=\iiint_{D} \operatorname{div} \mathbf{F} d V .
$$

Since $\mathbf{F}=\operatorname{curl} \mathbf{G}$,

$$
\begin{aligned}
\operatorname{div} \mathbf{F}=\operatorname{div}(\operatorname{curl} \mathbf{G})=\left(R_{y}-Q_{z}\right)_{x} & +\left(P_{z}-R_{x}\right)_{y}+\left(Q_{x}-P_{y}\right)_{z} \\
& =R_{y x}-Q_{z x}+P_{z y}-R_{x y}+Q_{x z}-P_{y z}=0
\end{aligned}
$$

by the equality of mixed second derivatives.
(b) Choose a closed curve C which divides S into two parts (such as a little circular curve). Let S^{+}be the half with outward normal which has the correct orientation for Stokes' theorem. Then the other half, S^{-}with outward normal has the correct orientation for C^{\prime} which is C run backwards. Applying Stokes' theorem twice

$$
\begin{aligned}
& \oint_{C} \mathbf{G} \cdot d \mathbf{r}=\iint_{S^{+}} \operatorname{curl} \mathbf{G} \cdot d \mathbf{S} \\
& \oint_{C^{\prime}} \mathbf{G} \cdot d \mathbf{r}=\iint_{S^{-}} \operatorname{curl} \mathbf{G} \cdot d \mathbf{S}
\end{aligned}
$$

with both S^{+}and S^{-}having the outward orientation of S. Since

$$
\oint_{C} \mathbf{G} \cdot d \mathbf{r}=-\oint_{C^{\prime}} \mathbf{G} \cdot d \mathbf{r}
$$

it follows that

$$
\oiint_{S} \mathbf{F} \cdot d \mathbf{r}=\iint_{S^{+}} \operatorname{curl} \mathbf{G} \cdot d \mathbf{S}+\iint_{S^{-}} \operatorname{curl} \mathbf{G} \cdot d \mathbf{S}=0 .
$$

3. (Thurs, 3 pts) Which of the following differentials are exact? For each one which is, express it in the form $d f$ for a suitable function $f(x, y, z)$.
(a) $x^{2} d x+y^{2} d y+z^{2} d z$
(b) $y^{2} z d x+2 x y z d y+x y^{2} d z$
(c) $y\left(6 x^{2}+z\right) d x+x\left(2 x^{2}+z\right) d y+x y d z$

Solution - in each case compute $P_{y}-Q_{x}, P_{z}-R_{x}, Q_{z}-R_{y}$.
(a) Exact, it is $d f$ for $f=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right)$.
(b) Exact, it is $d f$ for $f=x y^{2} z$.
(c) Exact, it is $d f$ for $f=2 x^{3} y+x y z$.
4. (Thurs 1 pt) Find $\operatorname{curl} \mathbf{F}$, if $\mathbf{F}=x^{2} y \mathbf{i}+y z \mathbf{j}+x y z^{2} \mathbf{k}$.

Solution: From the formula above,

$$
\operatorname{curl} \mathbf{F}=\left(x z^{2}-y\right) \mathbf{i}-y z^{2} \mathbf{j}-x^{2} \mathbf{k}
$$

5. (Thurs, 2 pts) The fields \mathbf{F} below are defined for all x, y, z. For each,
(a) Show that curl $\mathbf{F}=\overrightarrow{0}$.
(b) Find a potential function $f(x, y, z)$. Use either method, or inspection.
(i) $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
(ii) $(2 x y+z) \mathbf{i}+x^{2} \mathbf{j}+x \mathbf{k}$
(iii) $y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$

Solution -
(a) $P_{y}=0=Q_{x}, P_{z}=0=R_{x}, Q_{z}=0=R_{y}$, so $\operatorname{curl} \mathbf{F}=\mathbf{0} . \mathbf{F}=\operatorname{grad} f$, $f=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)$.
(b) $P_{y}=2 x=Q_{x}, P_{z}=1=R_{x}, Q_{z}=0=R_{y}$, so curl $\mathbf{F}=\mathbf{0} . \mathbf{F}=\operatorname{grad} f$, $f=x^{2} y+x z$.
(c) $P_{y}=z=Q_{x}, P_{z}=y=R_{x}, Q_{z}=x=R_{y}$, so $\operatorname{curl} \mathbf{F}=\mathbf{0} . \mathbf{F}=\operatorname{grad} f$, $f=x y z$.

