next up previous
Next: About this document ...

18.02 Problem Set 11 (due Friday, May 7, 1999)







Part I     (7 points)

Hand in the the underlined problems; the others are for practice.

Lecture 33 (Tues. May 4): Line integrals in space, $ \mathop{curl}{\bf F}$, exactness, potentials.

Read SN: Sections 11, 12 and p. 15.1; Problems: SN p. 11.5 nos. 1, 2, 4, 5 (S.40)     SN p. 12.4 and 12.5 nos 1, 2, 3ab(ii) (both methods), 5 (S. 41-2)

Lecture 34 (Thurs. May 6): Stokes' Theorem.

Read: SN Section 13, EP Section 15.7. Problems: SP.7 nos. 5-B3, B4, B5, B7 (S. 43-4).

Lecture 35 (Fri. May 7): Stokes' Theorem, cont'd. Applications.

Part II     (11 points)

Directions: Try each problem alone for 25 minutes. If you subsequently collaborate, solutions must be written up independently. It is illegal to consult old problem sets.

1.
(Tues. 2 pts)

(a)
For what value(s) of the constant $ a,b,c$ will the field

$\displaystyle {\bf F}= axyz{\bf i}+(bx^2z + z^2){\bf j}+ (x^2y + cyz + 2z){\bf k}
$

be conservative?

(b)
Using these values of the constants, find a potential function for the field, by either method described in the Notes. (Show systematic work.)

Solution:

(a)
$ {\bf F}$ will be conservative if $ {\bf\nabla}\times{\bf F}=0.$ Since

\begin{multline*}
{\bf\nabla}\times (P{\bf i}+Q{\bf j}+R {\bf k})=(R_y-Q_z){\bf ...
...k}\\
=(x^2+cz-bx^2-2z){\bf i}(axy-2xy){\bf j}+(2bxz-axz){\bf k}
\end{multline*}

this vanishes (identically) exactly when $ a=2,$ $ b=1$ and $ c=2.$
(b)
Method 1: Calculate the work integral of $ {\bf F}$ along the curve which starts at the orgin, goes along the x-axis to $ (x,0,0),$ then in the direction of $ y$ to $ (x,y,0)$ then in the z-direction to $ (x,y,z).$

$\displaystyle f(x,y,x)=\int_0^x0dx+\int_0^y0dy+\int_0^z(x^2y+2yz+2z)dz=x^2yz+yz^2+z^2.$    

Method 2: Solve $ f_x=2xyz,$ giving $ f=x^2yz+g(y,z).$ Then substitute in $ f_y=x^2z+z^2$ giving $ g_y=z^2$ so $ g=z^2y+h(z)$ and $ f=x^2yz+z^2y+h(z).$ Finally substitute this in $ f_z=x^2y+2yz+2z$ giving $ h'(z)=2z,$ so $ h(z)=z^2+C$ and the general answer is $ f=x^2yz+z^2y+z^2+C$ as before.

2.
(Thurs. 2 pts) Suppose that in $ 3$-space, $ {\bf F}=\mathop{curl}{\bf G}$, where the components of $ {\bf G}$ have continuous second partial derivatives. Prove that, if $ S$ is a closed surface, then

$\displaystyle {\text{\LARGE O}}\kern-14pt\int\kern-9pt\int_S{\bf F}\cdot{\bf\hat n} \, dS=0
$

in two ways:
(a)
by the divergence theorem;
(b)
by drawing a closed curve $ C$ dividing $ S$ into two parts and applying Stokes' theorem to each.

Solution:

(a)
By the divergence theorem,

$\displaystyle {\text{\LARGE O}}\kern-14pt\int\kern-9pt\int_S{\bf F}\cdot{\bf\hat n} \, dS= \iiint_D \mathop{div}{\bf F}dV.$    

Since $ {\bf F}=\mathop{curl}{\bf G},$

\begin{multline*}
\mathop{div}{\bf F}=\mathop{div}(\mathop{curl}{\bf G})
=(R_y-Q...
...x)_y+(Q_x-P_y)_z\\
=R_{yx}-Q_{zx}+P_{zy}-R_{xy}+Q_{xz}-P_{yz}=0
\end{multline*}

by the equality of mixed second derivatives.

(b)
Choose a closed curve $ C$ which divides $ S$ into two parts (such as a little circular curve). Let $ S^+$ be the half with outward normal which has the correct orientation for Stokes' theorem. Then the other half, $ S^-$ with outward normal has the correct orientation for $ C'$ which is $ C$ run backwards. Applying Stokes' theorem twice

$\displaystyle \oint_C {\bf G}\cdot d{\bf r}=\iint_{S^+}\mathop{curl}{\bf G}\cdot d{\bf S},$    
$\displaystyle \oint_{C'} {\bf G}\cdot d{\bf r}=\iint_{S^-}\mathop{curl}{\bf G}\cdot d{\bf S}$    

with both $ S^+$ and $ S^-$ having the outward orientation of $ S.$ Since

$\displaystyle \oint_C{\bf G}\cdot d{\bf r}=-\oint_{C'}{\bf G}\cdot d{\bf r}$    

it follows that

$\displaystyle {\text{\LARGE O}}\kern-14pt\int\kern-9pt\int_S{\bf F}\cdot d{\bf ...
...hop{curl}{\bf G}\cdot d{\bf S}+\iint_{S^-}\mathop{curl}{\bf G}\cdot d{\bf S}=0.$    

3.
(Thurs, 3 pts) Which of the following differentials are exact? For each one which is, express it in the form $ df$ for a suitable function $ f(x,y,z)$.

(a)
$ x^2 \, dx + y^2 \, dy + z^2 \, dz$
(b)
$ y^2 z \, dx + 2xyz \, dy + xy^2 \, dz$
(c)
$ y(6x^2 +z) \, dx + x(2x^2 +z) \, dy + xy \, dz$

Solution - in each case compute $ P_y-Q_x,$ $ P_z-R_x,$ $ Q_z-R_y.$

(a)
Exact, it is $ df$ for $ f=\frac13(x^3+y^3+z^3).$
(b)
Exact, it is $ df$ for $ f=xy^2z.$
(c)
Exact, it is $ df$ for $ f=2x^3y+xyz.$

4.
(Thurs 1 pt) Find $ \mathop{curl}{\bf F}$, if $ {\bf F} = x^2 y {\bf i} + yz
{\bf j} + xyz^2 {\bf k}$.

Solution: From the formula above,

$\displaystyle \mathop{curl}{\bf F}=(xz^2-y){\bf i}-yz^2{\bf j}-x^2{\bf k}$    

5.
(Thurs, 2 pts) The fields $ {\bf F}$ below are defined for all $ x$, $ y$, $ z$. For each,

(a)
Show that curl $ {\bf F} = \vec{0}$.

(b)
Find a potential function $ f(x,y,z)$. Use either method, or inspection.

i.
$ x {\bf i} + y{\bf j} + z {\bf k}$

ii.
$ (2xy +z) {\bf i} + x^2 {\bf j} + x {\bf k}$

iii.
$ yz {\bf i} + xz {\bf j} + xy {\bf k}$

Solution -

(a)
$ P_y=0=Q_x,$ $ P_z=0=R_x,$ $ Q_z=0=R_y,$ so $ \mathop{curl}{\bf F} =
{\bf0}.$ $ {\bf F}=\mathop{grad}f,$ $ f=\frac12(x^2+y^2+z^2).$
(b)
$ P_y=2x=Q_x,$ $ P_z=1=R_x,$ $ Q_z=0=R_y,$ so $ \mathop{curl}{\bf F} =
{\bf0}.$ $ {\bf F}=\mathop{grad}f,$ $ f=x^2y+xz.$
(c)
$ P_y=z=Q_x,$ $ P_z=y=R_x,$ $ Q_z=x=R_y,$ so $ \mathop{curl}{\bf F} =
{\bf0}.$ $ {\bf F}=\mathop{grad}f,$ $ f=xyz.$




next up previous
Next: About this document ...
Richard B. Melrose
1999-05-07