
18.02 Problem Set 10 (due Thursday, April 29, 1999)
Part I (9 points)

Hand in the the underlined problems; the others are for practice.
Lecture 30 (Thurs. April 22): Surface integrals and flux.
Read: SN, vector calculus section 9.
Problems: SN p.9.7 nos. 1, 2, 3, 4, 6, 8 (S. 36,37).
Lecture 31 (Thurs. April 22): Applications of flux, divergence theorem.
Read: EP pp. 995-998, 1000-1001.
Lecture 32 (Tues. April 27): Divergence theorem.
Read: SN, Vector Calculus, section 10; EP pp. 1006-1008.
Problems: SN, p. 10.5 nos. 1a, 2, 3, 5; p. 10.6 6, 7i, 8 (S.38,39).

Part II (20 points)

Directions: Try each problem alone for 25 minutes. If you subsequently collabo-
rate, solutions must be written up independently. It is illegal to consult old problem
sets.

1. (Thurs. 8 pts: 2, 3, 3) Take the surface bounded below by the right-angled
cone z = (x2 + y2)1/2, and above by the unit sphere centered at the origin.
The upper and lower surfaces intersect in a circle.

Let S be the disc having this circle as its boundary; T the spherical cap
forming the upper surface, and U the cone forming the lower surface. Orient
all three surfaces so that the normal vector points generally upward (i.e, has
a positive k-component).

Calculate the flux of the vector field F = zk over each of these three
surfaces. In each case, do the calculation directly from the definition of the
surface integral for flux, as in the Notes and Part I problems.

Solution. Flux through S :∫∫
S

~F · ~ndS =
∫∫

S

z dS

=
∫∫

x2+y2≤1/2

dx dy/
√

2 =
π

2
√

2
.

Since z = 1/
√

2 on the disk.
Flux through T :∫∫

T

~F · ~n dS =
∫∫

T

z2 sinϕdϕdθ

=
∫ 2π

0

∫ π/4

0

cos2 ϕ sinϕdϕdθ

=
2π
3
− π

3
√

2
.

Flux through U : On U

z =
√
x2 + y2 = f(x, y) , n̂ dS = (k− i− j) dx dy∫∫

U

~F · d~S =
∫∫

U

z dy dx =
∫ 2π

0

∫ 1/
√

2

0

r · r dr dθ =
π

3
√

2
.

1
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2. (Thurs. 3 pts.) A pattern of heat generation and absorption produces the
temperature distribution in space (u is the temperature at the point (x, y, z)):

u = e−x
2−y2−z2

.

Find the heat flow across a sphere of radius a centered at the origin (cf.
EP p. 1000; call the heat conductivity k).

For what radius a will the heat flow across the sphere be greatest?
Solution: The heat flow across a surface is the flux of the vector field −k∇u

where u is the temerature distribution. In this case,

∇u = e−x
2−y2−z2

(−2xi− 2yj− 2zk.

Thus the flux across the sphere of radius a (outwards) is∫∫
S

F · n̂dS

= (−k)
∫∫

(−2)e−x
2−y2−z2

(xi + yj + zk) · 1
a

(xi + yj + zk)dS

= 8πa3ke−a
2
.

The maximum value for this will occur when the derivative vanishes, that is

when 8πka2e−a
2
(3− 2a2) = 0 so a =

√
3
2 .

3. (Fri. 4 pts: 2,2) In problem 1 above, you calculated directly the flux of the
vector field F = zk over three surfaces shown in cross-section at the right.
The unit with the spherical cap T , the cone U given by z = r, and the disc S
bounded by the circle in which T and U intersect. In each case, the normal
vector is the one with a positive k-component.

The correct value for the flux over the disc S is π
√

2/4. Using this:
(a) Use the divergence theorem (and the formula for the volume of a solid

cone) to get the flux over the conical surface U . (Watch for orientations!)
(b) Similarly, use the divergence theorem to get the flux over T . (get the

volume of the whole ice cream cone and subtract the cone volume to get
the volume of the spherical cap on top.)

Solution:
(a) By the divergence theorem,∫∫

S

F · n̂dS +
∫∫

U ′
F · n̂dS =

∫∫∫
C

(∇ · F)dV = Vol(C) =
√

2π
12

where U ′ is U with the opposite normal and C is the solid cone. Therefore,∫∫
UF · n̂dS = −

∫∫
U ′

F · n̂dS =
√

2π
6

.

(b) Volume of solid is∫ 2π

0

∫ π/4

0

∫ 1

0

ρ2 sinϕdρ dϕdθ =
2π
3
−
√

2π
3

.

So the volume of the cap is 2π
3 −

5
√

2π
12 . By the divergence theorem∫∫

S′
F · n̂dS +

∫∫
T

F · n̂dS = Vol of cap
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so ∫∫
T

F · n̂dS =
2π
3
−
√

2π
6

.

4. (Fri. 2 pts.) Let S be a smooth closed surface. Show that the field xi+yj+zk
cannot be tangent to S at every point (x, y, z) of S.

Solution: By the divergence theorem
∫∫

S
F · n̂dS =

∫∫∫
R
∇ · FdV. If F =

xi + yj + zk then ∇ · F = 3 and the volume integral is 3Vol(R) 6= 0. Thus
the flux of F through S cannot be zero, so F · n̂ = 0 at some point on S and
therefore xi + yj + zk cannot be tangent to the surface everywhere.

5. (Fri. 3 pts.) Prove that if f(x, y, z) satisfies Laplace’s equation (see Notes P),
then the flux of its gradient field Of across any smooth closed surface is 0.

Solution: If F = ∇f = fxi + fyj + fzk then ∇ · F = fxx + fyy + fzz = 0,
precisely the given condition that f satisfy Laplace’s equation. The by the
divergence theorem the flux of ∇f through any closed surface is

∫∫
S
∇a ·

n̂dS = 0.


