next up previous
Next: About this document ...

18.02 Practice Exam 4 -- May , 1999 2:05-2:55

Directions: Suggested time: 3 hours.

No calculators or notes. There are 20 questions; each counts 12.5 points.

1.
$P: (0,0,0)$ $Q: (0,1,1)$ $R: (1,0,1)$ are three points in space. Find the angle between the vectors $PQ$ and $PR$.

2.
$P: (1,1,0)$ $Q: (2,1,1)$ and $R: (3,2,-1)$ are three points.

(a)
Find the cross product $PQ \times PR$.

(b)
Using (a), get the equation of the plane through the three points, in the form $ax+by+cz=1$.

3.
For what value(s) of the constant $c$ will the system of equations $Ax=0$ have a non-zero solution, if $A$ is the matrix shown and $x$ is the column vector?

\begin{eqnarray*}
A= \left[
\begin{array}{ccc}
1 &0 &c\\
2 &1 &-1\\
1 &2 ...
...[
\begin{array}{c}
x \\
y \\
z
\end{array} \right] \, .
\end{eqnarray*}



4.
Express in terms of $A$ and $B$ the two diagonals of the parallelogram shown, and then prove using vector algebra that if the two diagonals are perpendicular, the sides of the parallelogram are equal.

#1#2#3#4#5@font#3#4#5
\begin{picture}
(4737,3130)(2626,-4675)
\put(3376,-2761){\line( 1, 0){2400}}
\pu...
...2073.529}}
\put(2626,-3286){$\vec{B}$}
\put(5326,-4636){$\vec{A}$}
\end{picture}

5.
The position vector of a moving point $P$ is $r=(\cos t)i+ (\sin t) j + tk$.

(a)
At what point $(a,b,c)$ does $P$ pass through the surface $z= \pi (x^2 + y^2)$?

(b)
What is its speed at that time?

6.
For the function $w=x^2 + xy^2$, and the point $P: (1,1)$, find

(a)
the value of grad $w$ at $P$;

(b)
the directional derivative $dw/ds$ at $P$ in the direction of $A=3i-4j$;

(c)
starting at $P$, approximately how far should you go in the direction of $A$ in order to increase the value of $w$ by $.01$ ?

7.
$P$, $V$ and $T$ for an ideal gas are related by $V=kT/P$, where $k$ is a constant.

(a)
Take $k=2$, and give an approximate formula telling how $\Delta V$ varies with $\Delta p$ and $\Delta T$ when $P=2$ and $T=1$.

(b)
Continuing part (a), when $P=2$ and $T=1$, is $V$ numerically more sensitive to $P$ or $T$? (Indicate brief reason.)




8.
By using Lagrange multipliers, find the point on the plane $x+2y+z-1=0$ which is closest to the origin. (Minimize the square of the distance from the origin. If you don't use Lagrange multipliers, do it some other way for 6 points credit; L.M.s are the easiest way.)

9.
Let $w=f(x,y)$ and $r, \theta$ be the usual polar coordinates. By using the chain rule, find the $2 \times
2$ matrix $A$ (such that the entries of $A$ are explicitly given functions)

\begin{eqnarray*}
\left(
\begin{array}{c}
w_r\\
w_{\theta}
\end{array}\righ...
...A \left(
\begin{array}{c}
w_x\\
w_y
\end{array}\right) \, .
\end{eqnarray*}






10.
For the surface $x^2-y^2+2z^2=8$, find the tangent plane at $(1,1,2)$, in the form

\begin{displaymath}
ax + by + cz =1 \, .
\end{displaymath}

11.
Evaluate by changing the order of integration:


\begin{displaymath}
\int^2_0 \int^4_{x^2} x e^{-y^2} \, dy \, dx \, .
\end{displaymath}

12.
Set up an iterated integral in polar coordinates for the moment of inertia about the origin of the triangular plate shown. Take the density $=1$. Do not evaluate the integral.


\begin{picture}
(2274,2199)(2989,-3748)
\thicklines\put(3001,-2761){\line( 1, 0)...
...$45^{\circ}$}
\put(4351,-2911){$45^{\circ}$}
\put(4876,-2911){$1$}
\end{picture}

13.
Let $F=xy \, i+j$. Find the work done by $F$ going over the quarter-circular path shown, going from $(1,0)$ to $(0,1)$.


\begin{picture}
(8,10)(-2,-3)
\put(-2,0){\line(1,0){7}}
\put(0,-2){\line(0,1){7}}
\qbezier(0,4)(4.2,4)(4,0)
\par\put(-1, 4){$1$}
\put(4,-1.25){$1$}
\end{picture}

14.

(a)
Express the field $F=x(x-2y) i + (2y-x^2)j$ in the form $F= \triangledown f$, for some function $f(x,y)$. Use a systematic method; show work.

(b)
Use this to evaluate $\int_C F \cdot \, dr$ over the portion of the ellipse given by the graph of $x^2+4y^2=4$ and lying in the upper half-plane; integrate in the direction left to right.



\begin{picture}
(8,10)(-6,-6)
\put(-6,0){\line(1,0){12}}
\put(0,-2){\line(0,1){7...
...4)(-4,0)
\put(-1.5,4){\vector(1,0){.75}}
\qbezier(0,4)(4.2,4)(4,0)
\end{picture}

15.
How should the constants $a$ and $b$ be related if for any simple closed curve $C$

\begin{displaymath}
\oint_C ay \, dx + bx \, dy = \hbox{area inside } C \quad ?
\end{displaymath}

(Give the most general relation; indicate reasoning.)

16.
The solid shown has as its sides the vertical right circular cone, with vertex at the origin and $60$-degree vertex angle. Its top is a portion of the sphere of the radius $2$, and its bottom is horizontal and flat, intersecting the cone at a point having distance $1$ from the origin. (Cross-section is picture.)

Set up (but do not evaluate) an iterated triple integral in spherical coordinates giving the gravitational attraction of the solid on a unit mass placed at the origin. (Take the density $=1$, and the gravitational constant $G=1$.)


\begin{picture}
(10,10)(-3,-3)
\put(-1.25,2.75){\line(1,0){2.4}}
\put(0,0){\line...
...2}}
\put(2,4){\line(-2,-3){2}}
\par\put(2,2){$1$}
\put(2.5,4){$2$}
\end{picture}

17.
Let $F=xi+yj+zk$, and $S$ be the closed cylindrical surface pictured; its sides are the cylinder $x^2+y^2=1$; its top and bottom are horizontal, at heights $a$ and $O$, respectively.

(a)
Find the flux of $F$ over the top and bottom discs.

(b)
Using part (a) and the divergence theorem, find the flux of $F$ across the side cylinder.

#1#2#3#4#5#3#4#5
\begin{picture}
(2037,2195)(4114,-4498)
\thicklines\put(5026,-2686){\oval(1500,7...
...ddefault}{\updefault}a\special{ps:currentpoint grestore moveto}}}}
\end{picture}

18.
Referring to problem 17, find the flux of $F$ across the side cylinder by evaluating a surface integral directly (i.e., without using the divergence theorem).

19.
For what value(s) of the constants $a$ and $b$ will the line integral

\begin{displaymath}
\int^Q_P (axy+yz) \, dx + (x^2 +2y+xz)\, dy + (y^2+bxy) \, dz
\end{displaymath}

be independent of the path? (Show work.)

20.
By using Stokes' theorem, prove that $\oint_C ydx+zdy+xdz=0$ around any simple closed curve lying in the plane $x-2y+z=3$.

Brief Solutions:

1.

\begin{displaymath}
\vec{PQ} = \hat{\bf j} + \hat{k} \, , \quad \vec{PR} = \hat{{\bf i}} + \hat{k}
\end{displaymath}

so

\begin{displaymath}
\vec{P}Q \cdot \vec{PR} = 1 \, , \quad \left\vert \vec{PQ} \right\vert
= \sqrt{2} = \left\vert \vec{PR} \right\vert
\end{displaymath}

hence $\cos \gamma = 1/2 \, , \gamma =$ angle between $\vec{PQ}$ and $\vec{PR}$. Since angle is less that $90^{\circ}$, angle $=
30^{\circ}$.


2.

\begin{displaymath}
\vec{PQ} = \hat{{\bf i}} + \hat{k} \, , \quad \vec{PR} = 2 \hat{{\bf i}}
+ \hat{\bf j} - \hat{k}
\end{displaymath}

(a)
$\vec{PQ} \times \vec{PR} = \hat{k} + \hat{\bf j} + 2
\hat{\bf j} - \hat{{\bf i}} = - \hat{{\bf i}} + 3 \hat{\bf j} + \hat{k}$.

(b)
Since this is a normal to the plane, it must be

\begin{displaymath}
-x+3y+z=d
\end{displaymath}

substituting $d=2$ so plane is

\begin{displaymath}
-\frac{x}{2} + \frac{3y}{2} + \frac{3}{2} =1 \, .
\end{displaymath}




3.
It will have a non-zero solution if and only if

\begin{displaymath}
\det A=1+4c-c+2=0 \qquad \hbox{i.e.} \quad c=-1 \, .
\end{displaymath}




4.
Diagonals are $A-B$ and $A+B$. These are perpendicular if $(A-B) \cdot (A+B) =0$, so

\begin{displaymath}
\left\vert A \right\vert^2 = \left\vert B \right\vert^2
\end{displaymath}

hence $\left\vert A \right\vert = \left\vert B \right\vert$ and the side lengths are equal.




5.

\begin{displaymath}
\vec{r} = \cos t \hat{{\bf i}} + \sin t \hat{\bf j} + t \hat{k}
\end{displaymath}

(a)
Passes through $z= \pi (x^2 + y^2)$ if

\begin{displaymath}
z=t= \pi \quad \hbox{i.e. at } (a,b,c)=(-1,0, \pi) \, .
\end{displaymath}

(b)

\begin{displaymath}
\frac{d \vec{r}}{dt} = - \sin t \hat{{\bf i}} + \cos t \hat{\bf j} + \hat{k} =
- \hat{\bf j} + \hat{k} \hbox{ at } t= \pi
\end{displaymath}

so speed $= \sqrt{2}$.




6.
$w=x^2 + xy^2$

(a)
$\vec{\triangledown} w = (2x+y^2) \hat{{\bf i}} + 2xy
\hat{\bf j} = 3 \hat{{\bf i}} + 2 \hat{\bf j}$ at $(1,1)$.

(b)

\begin{eqnarray*}
\frac{dw}{ds} &=& \vec{\triangledown} w \cdot \vec{n} \, ,
\...
... \hbox{ in direction of } 3 \hat{{\bf i}} - 4 \hat{\bf j}
\, .
\end{eqnarray*}



(c)
Approximately $.01 \times 5 = .05$.




7.
(a)

\begin{eqnarray*}
\Delta V \cong \frac{\partial V}{\partial T} \Delta T +
\fra...
...
\hbox{so } \Delta V \cong \Delta T - \frac{1}{2} \Delta P \, .
\end{eqnarray*}



(b)
More sensitive to $\Delta T$.




8.
Lagrange multiplier

\begin{displaymath}
x+2y+z-1- \gamma (x^2+y^2+z^2)
\end{displaymath}

\begin{eqnarray*}
\begin{array}{clrcl}
\partial_x : & 1-2x \gamma & =0 & \gamma...
...\\
\partial z : & 1-2z \gamma & =0 & x+4x+x-1=0 \\
\end{array}\end{eqnarray*}




\begin{displaymath}
x= 1/6 \, , y=1/3 \, , z=1/6 \, .
\end{displaymath}

Closest point is $(\frac{1}{6}\, , \frac{1}{3} \, , \frac{1}{6})$.

NB It is easier to look at the normal $\hat{{\bf i}}+2
\hat{\bf j}+ \hat{k}$ and see where the line in this direction meets the plane

\begin{displaymath}
x=t \, , y=2t \, , z=t \quad : \quad t+4t+t=1 \, , t=1/6
\end{displaymath}

Point is $(\frac{1}{6}\, , \frac{1}{3} \, , \frac{1}{6})$.




9.
$w=f(x,y) \, , x=r \cos \theta \, , y=r \sin \theta$

\begin{eqnarray*}
\begin{array}{lll}
w_r = & \frac{\partial f}{\partial x} \fra...
...heta} \qquad &
w_y= \partial f / \partial y \\ [1ex]
\end{array}\end{eqnarray*}



\begin{eqnarray*}
{w_r \choose w_{\theta}} = A {w_x \choose w_y} \, ,
A= \left(...
...} \quad & \frac{\partial y}{\partial \theta}
\end{array}\right)
\end{eqnarray*}



\begin{eqnarray*}
\hbox{so } A= \left(
\begin{array}{cc}
\cos \theta \quad & \...
...\
-r \sin \theta \quad & r \cos \theta
\end{array}\right) \, .
\end{eqnarray*}






10.
$f=x^2-y^2+2z^2-8$. Normal to surface is

\begin{eqnarray*}
\vec{\triangledown} f = 2x \hat{{\bf i}}-2y \hat{\bf j} + 4z ...
...hat{{\bf i}} - 2 \hat{\bf j}+ 8 \hat{k} \hbox{ at } (1,1,2)
\, .
\end{eqnarray*}



Tangent plane is $\vec{N} \cdot(x \hat{{\bf i}}+y \hat{\bf j}+z \hat{k} =
\hat{N} \cdot ( \hat{{\bf i}} + \hat{\bf j} + 2 \hat{k} )$

\begin{eqnarray*}
2x-2y+8z=2-2+16=16 \\
\frac{x}{8} - \frac{y}{8} + \frac{z}{2} =1 \, .
\end{eqnarray*}






11.

\epsffile {pracno11.eps}

\begin{eqnarray*}
\int^2_0 \int^4_{x^2} x e^{-y^2} \, dy \, dx \\
&=& \int^4_0...
...^2} \right]^4_0 \\
&=& \frac{1}{4} \left( 1-e^{-16} \right)\, .
\end{eqnarray*}






12.
Twice integral for upper half:

\begin{eqnarray*}
2 \times \int^{\pi / 4}_0 \int^{1/ \cos \theta}_0 r^2 r \, dr
\, d \theta \, .\\
(x=r \cos \theta =1)
\end{eqnarray*}






13.
$\vec{F}=xy \hat{{\bf i}} + \hat{\bf j}$. Parameterization

\begin{eqnarray*}
x= \cos t \, , y= \sin t \quad 0 \leq t \leq \pi/2 \, .\\
\i...
..._0 s^2 \, ds \qquad s= \sin t \\
&=& 1 - \frac{1}{3} = 2/3 \, .
\end{eqnarray*}






14.

(a)

\begin{eqnarray*}
\vec{F} = F_1 \hat{bf i} + F_2 \hat{\bf j} \, , F_1=x(x-2y) \...
...
\frac{\partial f}{\partial y} = -x^2+g' =2y-x^2 \, , g=y^2 \\
\end{eqnarray*}



Thus $\vec{F}$ is the gradient $\frac{x^3}{3} -x^2y+y^2$.

(b)
\epsffile {pracno14.eps}

\begin{eqnarray*}
\int_c \vec{F} \cdot d \vec{r} = f(P_1)-f(P_0) \hbox{ if }
\...
...ox{ so } \\
\int_c \vec{F} \cdot d \vec{r} = \frac{16}{3} \, .
\end{eqnarray*}







15.
By Green's theorem

\begin{displaymath}
\oint_C ay \, dx + bx \, dy = \int\int_S (b-a) \, dx \, dy \, .
\end{displaymath}

For this to be $1/$ the area, must have $b-1=1$ always.




16.
Question is confusing without picture. I think it should be:

\epsffile {pracno16.eps}

In spherical coordinate $Gm=1$)

\begin{eqnarray*}
\int^{2 \pi}_0 \int^{\pi /3}_0 \int^2_{1/2 \cos \varphi} \cos
\varphi \sin \varphi \, d \rho \, d \varphi \, d \theta \\
\end{eqnarray*}



Bottom plane in $z= \frac{1}{2} = \rho \cos \varphi$.




17.

(a)

\begin{eqnarray*}
\int\int_T \vec{F} \cdot \vec{n} \, dS = \int\int_T z \, dS =...
...through top} \\
\int\int_B \vec{F} \cdot \vec{n} \, dS =0 \, .
\end{eqnarray*}



(b)

\begin{displaymath}
\div \vec{F} = 3 \hbox{ so } \quad \int\int\int_D \div \vec{F} \,
dV= 3 \pi a
\end{displaymath}

where $D$ is the interior of the cylinder. Thus the flux through the sides is $2 \pi a$.




18.

\begin{displaymath}
\int\int_S \vec{F} \cdot \vec{n} \, dS = \int\int_S (x^2+y^2) \, dS
\end{displaymath}

For the side surface $\vec{n} = x \hat{\bf i} + y \hat{\bf j} \, ,
x^2+y^2=1$ so the flux through the sides in the area, $2 \pi a$.




19.
(Note this has been corrected.) The line integral is independent of the path only if

\begin{displaymath}
\vec{F}=(axy+yz) \hat{{\bf i}} + (x^2+2yz+xz) \hat{\bf j} +(y^2+bxy) \hat{k}
\end{displaymath}

is a gradient.

\begin{eqnarray*}
\frac{\partial F_1}{\partial y} &=& ax+z \, , \frac{\partial
...
...bx \Rightarrow b=1 \\ [1ex]
\hbox{So only if } a=2 \, , b=1 \, .
\end{eqnarray*}






20.
By Stokes' theorem

\begin{eqnarray*}
\oint_C y \, dx + z \, dy + x \, dz = \int\int_S \cos \vec{F}...
...{array}\right\vert \\
= - \hat{{\bf i}} - \hat{\bf j} - \hat{k}
\end{eqnarray*}



Since $d \vec{S} = \vec{n} \, d \vec{S}$, $\vec{n} =( \hat{{\bf i}}-2
\hat{j}+ \hat{k})/ \sqrt{6}$

\begin{displaymath}
{\rm curl} \vec{F} \cdot \vec{n} = 0 \hbox{ so } \int\int_S {\rm curl}
\vec{F} \cdot d \vec{S} =0
\end{displaymath}

for any surface contained in $x-2y+z=3$. Thus

\begin{displaymath}
\oint_C y \, dx + z \, dy +x \, dz =0 \, .
\end{displaymath}




next up previous
Next: About this document ...
Richard B. Melrose
1999-05-10