Attempt all questions. Each problem is worth 20 points, although some are harder than others!

1. Using the Divergence Theorem, evaluate the flux integral

$$
\oiint_{S} \mathbf{F} \cdot \hat{n} d S
$$

where $\mathbf{F}=x^{2} \mathbf{i}+\left(y+z^{3}\right) \mathbf{j}+y^{2} \mathbf{k}, S$ is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$ and \hat{n} is the unit outward normal.

Solution: By the divergence theorem this flux integral is equal to the volume integral

$$
\iiint_{x^{2}+y^{2}+z^{2} \leq 4} \operatorname{div} \mathbf{F} d V=\iiint_{x^{2}+y^{2}+z^{2} \leq 4}(2 x+1) d V=\frac{32 \pi}{3}
$$

by symmetry and the formula for the volume of a sphere.
2. Compute the surface area of the part of the surface $z+x^{2}+y^{2}=1$ in $z \geq 0$.

Solution: The surface area is given by the integral $\iint_{S} d S$. We may use the variables x and y on the surface, the 'shadow region' is $x^{2}+y^{2} \leq 1$ and the surface measure is
$d S=\left(1+f_{x}^{2}+f_{y}^{2}\right)^{\frac{1}{2}} d x d y=\left(1+4 x^{2}+4 y^{2}\right)^{\frac{1}{2}} d x d y, f(x, y)=1-x^{2}-y^{2}$.
Thus the surface area is

$$
\begin{aligned}
\iint_{\left\{x^{2}+y^{2} \leq 1\right\}}\left(1+4 x^{2}+4 y^{2}\right)^{\frac{1}{2}} d x d y=\int_{0}^{2 \pi} & \int_{0}^{1}\left(1+4 r^{2}\right)^{\frac{1}{2}} r d r d \theta \\
& =2 \pi\left[\frac{1}{12}\left(1+4 r^{2}\right)^{\frac{3}{2}}\right]_{0}^{1}=\frac{1}{6} \pi\left(5^{\frac{3}{2}}-1\right)
\end{aligned}
$$

3. Let D be the three dimensional region between the two surfaces

$$
\begin{aligned}
& z=\left(x^{2}+y^{2}\right)^{2} \\
& z=8+2\left(x^{2}+y^{2}\right)
\end{aligned}
$$

(a) Sketch the region D.
(b) Using cylindrical (polar) coordinates compute the moment of inertia of D, assumed to have unit density, around the z-axis.
Solution: a) Anything reasonable! It lies over $x^{2}+y^{2} \leq 4$ with $\left(x^{2}+y^{2}\right)^{2} \leq$ $z \leq 8+2\left(x^{2}+y^{2}\right)$.
b)

$$
\begin{array}{r}
\mathrm{MoI}=\iiint_{D}\left(x^{2}+y^{2}\right) d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{4}}^{8+2 r^{2}} r^{3} d z d r d \theta \\
=2 \pi \int_{0}^{2} r^{3}\left(8+2 r^{2}-r^{4}\right) d r=2 \pi\left(2 \cdot 2^{4}+2^{6} / 3-2^{8} / 8\right)=128 \pi / 3
\end{array}
$$

4. Let D be the region in three dimensional space consisting of the points (x, y, z) with $x \geq 0, y \geq 0, z \geq 0$ and $x^{2}+y^{2}+z^{2} \leq 4$.

Assuming where needed that D has unit density, write down integral formulae in terms of spherical coordinates (DO NOT EVALUATE) for
(a) The average over D of the distance from the z-axis.
(b) The moment of inertia of D, with unit density, around the z-axis.
(c) The \hat{k} component of the gravitational force exerted by D on a unit mass at the origin.
Solution: The region in spherical coordinates is $0 \leq \phi \leq \pi / 2,0 \leq \theta \leq \pi / 2$ and $0 \leq \rho \leq 2$. Thus the three integrals are
(a) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta /(4 \pi / 3)$ (or an integral for the volume can be written out).
(b) $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{4} \sin ^{3} \phi d \rho d \phi d \theta$.
(c) $G \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2} \sin \phi \cos \phi d \rho d \phi d \theta$.
5. Let D be 'ice-cream cone' consisting of the points in the unit ball (=solid unit sphere) where the 'azimuth' (angle with the positive direction of the z-axis) $\varphi<\pi / 4$. Assuming that it has unit density, compute the gravitational force D exerts on a unit mass at the origin.

Solution: Place D so that its axis is the z-axis (as indicated). Then in spherical polar coordinates the \mathbf{k} component (and hence the actual) gravitational force on a unit mass at the origin is

$$
G \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} \frac{\cos \varphi}{\rho^{2}} \rho^{2} \sin \varphi d \rho d \varphi d \theta=2 \pi G\left[\frac{1}{2} \sin ^{2} \varphi\right]_{0}^{\pi / 4}=\pi G / 2
$$

