Directions: Suggested time: 50 minutes.

1. (20 points) The solid D is represented as the region of space between the graph of $z=1-x^{2}-y^{2}$ and the $x y$-plane. Find its moment of inertia about the z-axis, if the density is ℓ.

Solution: The moment of inertia around the z-axis is the integral

$$
\begin{aligned}
\iiint_{D} \ell\left(x^{2}+y^{2}\right) d V=\iint_{R} & \int_{0}^{1-x^{2}-y^{2}} \ell\left(x^{2}+y^{2}\right) d z d x d y \\
& =\iint_{R} \ell\left(x^{2}+y^{2}\right)\left(1-x^{2}-y^{2}\right) d x d y
\end{aligned}
$$

where the shadow region R is $x^{2}+y^{2} \leq 1$. Introducing polar coordinates this becomes

$$
\mathrm{MoI}=\int_{0}^{2 \pi} \ell \int_{0}^{1}\left(1-r^{2}\right) r^{2} r d r d \theta=2 \pi \ell\left[\frac{1}{4} r^{4}-\frac{1}{6} r^{6}\right]_{0}^{1}=\frac{\pi}{6} \ell
$$

2. (20 points) A solid D has the shape of a filled ice cream cone: a right circular cone, surmounted by a slice from a sphere of radius a.

The cone has slant height a and a vertex angle 60 degrees as pictured.

Take the density to be 1, and find the gravitational attraction of D on a unit mass placed at the vertex. (Set up and evaluate a triple integral in spherical coordinates.)

Solution: By symmetry, the gravitational attraction on a unit mass at the origin is in the direction of the z -axis and hence equal
to its \mathbf{k} component. This is
$G \iiint_{D} \frac{\cos \varphi}{\rho^{2}} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{a} \cos \varphi \sin \varphi d \rho d \varphi d \theta$

$$
=G 2 \pi a\left[\frac{1}{2} \sin ^{2} \varphi\right]_{0}^{\pi / 6}=G a \pi / 4
$$

3. (5 points) Modify the iterated triple integral of the preceding problem so it now calculates the gravitational attraction at the vertex due to the part of D lying above the top of the cone (i.e., to the spherical slice). Just set up the integral; don't evaluate it.

Solution: Instead the integral becomes

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{\frac{a \cos \pi / 6}{\cos \varphi}}^{a} \cos \varphi \sin \varphi d \rho d \varphi d \theta
$$

4. (10 points) Suppose the vector field F in the $x y$-plane satisfies $F=\nabla f$, where

$$
f_{x x}+f_{y y}=0 \quad \text { for all } x, y
$$

Show that F has no net flux through any simple closed curve C.

This should not really have been on this practice exam. Better do one for flux through a surface.

Solution: $\mathbf{F}=f_{x} \mathbf{i}+f_{y} \mathbf{j}$. The flux form of Green's theorem for a simple closed curve C is

$$
\oint_{C} \mathbf{F} \cdot \hat{\mathbf{n}} d s=\iint_{R} \operatorname{div} \mathbf{F} d A
$$

Since $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}\left(f_{x}\right)+\frac{\partial}{\partial y}\left(f_{y}\right)=f_{x x}+f_{y y}=0$ by assumption. Thus the flux integral must vanish.
5. (45 points; 5, 15, 25)

Let S be the hemisphere of radius 1 , with base in the $x y$-plane and center at the origin, and T be its base (the disc of radius 1 and center at the origin in the $x y$-plane). Both surfaces are oriented so their unit normal vectors point upwards, i.e., this is the direction of positive flux. Let $\mathbf{F}=(3 z+1) \mathbf{k}$.
(a) Find the flux of F over T, by inspection.
(b) Using your answer to part (a), find the flux of F over S by using the divergence theorem.
(c) Find the flux of F over S directly, by calculating a surface integral using spherical coordinates.

Solution:

(a) On T the normal upward normal is \mathbf{k} so $\mathbf{F} \cdot \mathbf{j}=1$ and hence the flux upward through T is the area π.
(b) If $\hat{\mathbf{n}}$ is the upward unit normal to both S and T then by the divergence theorem

$$
\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S-\iint_{T} \mathbf{F} \cdot \hat{\mathbf{n}} d S=\iint_{D} \nabla \cdot \mathbf{F} d V .
$$

The divergence is $\nabla \cdot \mathbf{F}=3$ so

$$
\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S=3 \operatorname{Vol}(D)+\pi=3 \pi
$$

(c) The flux integral written explicitly is

$$
\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2}(3 z+1) z \sin \varphi d \varphi d \theta
$$

Here $z=\cos \varphi$ on S so this flux integral is

$$
\begin{aligned}
2 \pi \int_{0}^{\pi / 2}\left(3 \cos ^{2} \varphi \sin \varphi+\cos \varphi\right. & \sin \varphi) d \\
& =2 \pi\left[-\cos ^{3} \varphi-\frac{1}{2} \cos ^{2} \varphi\right]_{0}^{\pi / 2}=3 \pi
\end{aligned}
$$

