## Name

## Rec.Teacher

## e-mail

## Day-hr

### 18.02 Exam 3 - April 9, 1999

1. Compute the volume of the region between the $x y$ plane and the surface $z=-x^{2}-y^{2}+4$.

Solution: The volume is given by the double integral over the region, $R=\left\{x^{2}+y^{2} \leq 4\right\}$

$$
\begin{array}{rl}
\iint_{R}\left(4-x^{2}-y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r & d \theta \\
=2 \pi\left[2 r^{2}-\frac{r^{4}}{4}\right]_{0}^{2}=8 \pi
\end{array}
$$

2. Evaluate the integral

$$
\int_{0}^{1} \int_{x}^{1} \cos \left(y^{2}\right) d y d x
$$

Solution: Change the order of integration and the integral becomes

$$
\int_{0}^{1} \int_{0}^{y} \cos \left(y^{2}\right) d x d y=\int_{0}^{1} y \cos \left(y^{2}\right) d y=\left[\frac{1}{2} \sin \left(y^{2}\right)\right]_{0}^{1}=\frac{1}{2} \sin 1 .
$$

3. Using polar coordinates evaluate the integral

$$
\iint_{R} \exp \left(x^{2}+y^{2}\right) d A
$$

where $R$ is the disc of radius 1 and center the origin.
Solution: In polar coordinates the integral is

$$
\int_{0}^{2 \pi} \int_{0}^{1} \exp \left(r^{2}\right) r d r d \theta=2 \pi\left[\frac{1}{2} \exp \left(r^{2}\right)\right]_{0}^{1}=\pi(e-1)
$$

4. (a) For what values of the constant $a$ is

$$
\mathbf{F}=\left(4 x^{3}+2 x y+a y^{2}\right) \mathbf{i}+\left(x^{2}+2 y\right) \mathbf{j}
$$

a conservative vector field?
(b) For $a=0$ compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where $C$ is the semicircule with radius 1 , center $(0,0)$ from $(1,0)$ to $(-1,0)$ in the upper half-plane.

## Solution:

(a)
$\frac{\partial}{\partial y}\left(4 x^{3}+2 x y+a y^{2}\right)=2 x+2 a y=\frac{\partial}{\partial x}\left(x^{2}+2 y\right)=2 x$
exactly when $a=0$.
(b) Since the vector field is conservative the integral is the same for any contour with these two endpoints, for instance the segment $[-1,1]$ of the x -axis. The integral along the x -axis is $\int_{-1}^{1} 4 x^{3} d x=0$.
5. (a) For the vector field $\mathbf{F}=y\left(x^{2}+y^{2}\right)^{2} \mathbf{i}-x\left(x^{2}+y^{2}\right)^{2} \mathbf{j}$ compute $\operatorname{div}(\mathbf{F})$
(b) For this vector field and the curve $C$ which is the circle of radius 2 with center the origin and positive orientation, use Green's theorem to compute the flux integral

$$
\oint_{C} \mathbf{F} \cdot \hat{\mathbf{n}} d s
$$

Solution:
(a)

$$
\begin{aligned}
\operatorname{div}(\mathbf{F})=\frac{\partial}{\partial x}\left[y\left(x^{2}+y^{2}\right)^{2}\right]-\frac{\partial}{\partial y} & {\left[x\left(x^{2}+y^{2}\right)^{2}\right] } \\
& =4 x y\left(x^{2}+y^{2}\right)-4 x y\left(x^{2}+y^{2}\right)=0
\end{aligned}
$$

(b) 0
6. Sketch the parameterized curve

$$
x=\cos t, \quad y=\sin ^{3} t, 0 \leq t \leq 2 \pi .
$$

(a) Why is it closed?
(b) Why is it simple?
(c) Use Green's theorem to express the area inside the curve as a single integral. Do not evaluate it.
OR simply:
Use Green's theorem to express the area inside the simple closed curve

$$
x=\cos t, \quad y=\sin ^{3} t, 0 \leq t \leq 2 \pi
$$

as a single integral. Do not evaluate it.
Solution: [There is of course a small conceptual problem here that the curve is not smooth, but I don't suppose that anyone will notice.]
(a) $x(2 \pi)=x(0), y(2 \pi)=y(0)$.
(b) $\sin t$ takes each value between -1 and 1 twice for $t$ in the interval $[0,2 \pi]$ but at these points $\sin t$, and hence $\sin ^{3} t$ has opposite sign.
(c)

$$
\oint_{C}-y d x=\int_{0}^{2 \pi} \sin ^{4} t d t
$$

7. Let $R$ be the region in the first quadrant $(x \geq 0, y \geq 0)$ where $3 x+$ $y \leq 1$. Using the change of variable formula for double integrals rewrite the integral

$$
\int_{R} \int(3 x+y)^{4} \exp (x+y) d A
$$

as an iterated integral in terms of the new variables $u=3 x+y$ and $v=x+y$. Give limits of integration but do not evaluate.

Solution: For $u=3 x+y$ and $v=x+y$ the Jacobian is

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right|=2
$$

so $\partial(x, y) / \partial(u, v)=1 / 2$. On $x=0, v=u$ and on $y=0, v=u / 3$ so the integral becomes

$$
\frac{1}{2} \int_{0}^{1} \int_{u / 3}^{u} u^{4} \exp (v) d v d u
$$

