next up previous
Next: About this document ...

Name e-mail
Rec.Teacher Day-hr


18.02 Exam 3 -- April 9, 1999


1.
Compute the volume of the region between the $ xy$ plane and
the surface $ z= -x^2-y^2 +4$.

Solution: The volume is given by the double integral over the region, $ R=\{x^2+y^2\le 4\}$

\begin{multline*}
\iint_R (4-x^2-y^2)dA=\int_0^{2\pi}\int_0^{2}(4-r^2)r\, d\theta\,dr\\
=2\pi\left[2r^2-\frac{r^4}4\right]_0^2=8\pi.
\end{multline*}

2.
Evaluate the integral

$\displaystyle \int^1_0 \int^1_x \cos (y^2) \, dy \, dx \, .
$

Solution: Change the order of integration and the integral becomes

$\displaystyle \int^1_0 \int^y_0 \cos (y^2) \, dx \, dy= \int_0^1y\cos(y^2)dy=\left[\frac12\sin(y^2)\right]^1_0=\frac12\sin1.$    

3.
Using polar coordinates evaluate the integral

$\displaystyle \int\int_R \exp (x^2 + y^2) \, dA
$

where $ R$ is the disc of radius $ 1$ and center the origin.

Solution: In polar coordinates the integral is

$\displaystyle \int_0^{2\pi}\int_0^1 \exp (r^2) \, rdr\,d\theta = 2\pi\left[\frac12\exp(r^2)\right]_0^1=\pi(e-1).$    

4.

(a)
For what values of the constant $ a$ is

$\displaystyle {\bf F} = (4 x^3 + 2xy + ay^2){\bf i} + (x^2 + 2y){\bf j}
$

a conservative vector field?

(b)
For $ a=0$ compute

$\displaystyle \int_C
{\bf F} \cdot \, d {\bf r}
$

where $ C$ is the semicircule with radius $ 1$, center $ (0,0)$ from $ (1,0)$ to $ (-1,0)$ in the upper half-plane.

Solution:

(a)

$\displaystyle \frac{\partial}{\partial y}(4 x^3 + 2xy + ay^2)=2x+2ay= \frac{\partial}{\partial x}(x^2 + 2y)=2x$    

exactly when $ a=0.$
(b)
Since the vector field is conservative the integral is the same for any contour with these two endpoints, for instance the segment $ [-1,1]$ of the x-axis. The integral along the x-axis is $ \int_{-1}^14x^3dx=0.$

5.
(a)
For the vector field $ {\bf F} =y(x^2+y^2)^2{\bf i}- x(x^2+y^2)^2{\bf j}$ compute $ \operatorname{div}({\bf F})$
(b)
For this vector field and the curve $ C$ which is the circle of radius $ 2$ with center the origin and positive orientation, use Green's theorem to compute the flux integral

$\displaystyle \oint_C {\bf F} \cdot \, {\bf {\hat n}} \, ds \, .$    

Solution:

(a)

\begin{multline*}
\operatorname{div}({\bf F})=\frac{\partial}{\partial x}[y
(x^2...
...al}{\partial y}[x(x^2 +
y^2)^2]\\
=4xy(x^2+y^2)-4xy(x^2+y^2)=0.
\end{multline*}

(b)
0

6.
Sketch the parameterized curve

$\displaystyle x=\cos t \, , \,\
y=\sin^3t \, ,
0 \leq t \leq 2 \pi \, .
$

(a)
Why is it closed?
(b)
Why is it simple?
(c)
Use Green's theorem to express the area inside the curve as a single integral. Do not evaluate it.

OR simply:

Use Green's theorem to express the area inside the simple closed curve

$\displaystyle x=\cos t \, , \,\
y=\sin^3t \, ,
0 \leq t \leq 2 \pi,
$

as a single integral. Do not evaluate it.

Solution: [There is of course a small conceptual problem here that the curve is not smooth, but I don't suppose that anyone will notice.]

(a)
$ x(2\pi)=x(0),$ $ y(2\pi)=y(0).$
(b)
$ \sin t$ takes each value between $ -1$ and $ 1$ twice for $ t$ in the interval $ [0,2\pi]$ but at these points $ \sin t,$ and hence $ \sin^3t$ has opposite sign.
(c)

$\displaystyle \oint_C -y \, dx = \int^{2 \pi}_0 \sin^4t\,dt.$    

7.
Let $ R$ be the region in the first quadrant $ (x \geq 0, y\ge0)$ where $ 3x+y \leq 1.$ Using the change of variable formula for double integrals rewrite the integral

$\displaystyle \int_R \int (3x+y)^4 \exp(x+y) \, dA
$

as an iterated integral in terms of the new variables $ u=3x+y$ and $ v=x+y.$ Give limits of integration but do not evaluate.

Solution: For $ u=3x+y$ and $ v=x+y$ the Jacobian is

$\displaystyle \frac{\partial (u,v)}{\partial (x,y)}=
\left\vert\begin{matrix}3&1\\  1&1
\end{matrix}\right\vert=2,
$

so $ {\partial (x,y)}/{\partial (u,v)}=1/2.$ On $ x=0,$ $ v=u$ and on $ y=0,$ $ v=u/3$ so the integral becomes

$\displaystyle \frac12\int^1_0 \int^{u}_{u/3} u^4 \exp(v) \, dv \, du.$    




next up previous
Next: About this document ...
Richard B. Melrose
1999-05-11