18.02 Practice Exam 3 - April, 1999

Directions: Suggested time: 70 minutes.
Problem 1 (15 points) The solid R is the piece of the first octant cut off by the plane

$$
x+y+z=1
$$

Set up an iterated double integral in rectangular coordinates which gives the volume of R. (Give the integrand and limits of integration, but do not evaluate.)

Problem 2 (15 points) A circular disc has radius a and A is a point on its circumference. The density at any point P on the disc is equal to the distance of P from A. Set up an iterated double integral in polar coordinates which gives the mass of the disc. Place A at the origin. (Give the integrand and limits, but to not evaluate the integral.)

Problem 3 (15 points) Evaluate the integral $\int_{0}^{1} \int_{x}^{1} \cos \left(y^{2}\right) d y d x$ by changing the order of integration. (Sketch the region of integration first.)

Problem 4 (10 points) Change $\int_{0}^{1} \int_{-x}^{x}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x$ to an interated integral in polar coordinates. (Do not evaluate it.)

Problem 5 (30 points; 10 each)
a) $\mathbf{F}=\left(a x y+y^{2}\right) \mathbf{i}+\left(x^{2}+b x y+1\right) \mathbf{j} ; a, b$ are constants. Show that F is conservative $\Longleftrightarrow a=2, b=2$.
b) Taking $a=2, b=2$, find $f(x, y)$ so that $\mathbf{F}=\nabla f$.
c) Still taking $a=2, b=2$, show $\int_{C} \mathbf{F} \cdot \mathbf{d r}=0$ for any curve C beginning and ending on the x-axis.

Problem 6 (30 points; 15, 5, 10)
a) Evaluate $\oint_{C}-x^{2} y d x+x y^{2} d y$ by Green's theorem, if C is the closed curve as pictured passing through $(1,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),(0,0)$, and back to $(1,0)$.

1
b) Show that for any simple closed curve C directed positively,

$$
\oint_{C}-y d x=\text { Area inside } C
$$

c) The curve $y^{2}=x^{2}(1-x)$ shown is given parametrically by

$$
x=1-t^{2}, \quad y=t-t^{3} .
$$

Find the area inside the loop.

Problem 7 (15 points; 5, 10)
a) Write down in rectangular coordinates the field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ whose vectors all have unit length and point radially outward from the origin. $(\mathbf{F}=0$ at $(0,0)$.)
b) For this field, give the values of $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ over the following curves (no calculation is required):
C_{1} is the unit semi-circle in the upper half-plane, running from $(1,0)$ to $(-1,0)$
C_{2} is the line segment from $(0,0)$ to $(1,1)$

Brief solutions.

Problem 1

Thus the volume is $\int_{0}^{1} \int_{0}^{1-x}(1-x-y) d x d y$ OR $\int_{0}^{1} \int_{0}^{1-4}(1-x-y) d x d y$.

Problem 2

With the center on the x -axis

$$
\text { Mass }=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} r \cdot r d r d \theta
$$

OR with the center on the y-axis:

$$
\text { Mass }=\int_{0}^{\pi} \int_{0}^{2 a \sin \theta} r \cdot r d r d \theta
$$

Problem 3 The region of integration for $\int_{0}^{1} \int_{x}^{1}$ is

so the integral becomes $\int_{0}^{1} \int_{0}^{y} \cos \left(y^{2}\right) d x d y$, which evaluates by
Inner: $\left.\quad \cos \left(y^{2}\right) \cdot x\right]_{0}^{1}=\cos \left(y^{2}\right) \cdot y$
Outer: $\left.\quad \frac{1}{2} \sin \left(y^{2}\right)\right]_{0}^{1}=\frac{1}{2} \sin 1$

Problem 4 The region of integration for $\int_{0}^{1} \int_{-x}^{x} \ldots d y d x$ is $\left(r^{2}=x^{2}+y^{2}\right)$

so in polar coordinates the integral becomes

$$
\int_{-\pi / 4}^{\pi / 4} \int_{0}^{1 \sec \theta)} r^{3} \times r d r d \theta
$$

Problem 5

1. \vec{F} conservative $\Longleftrightarrow \frac{\partial\left(a x y+y^{2}\right)}{\partial y}=\frac{\partial\left(x^{2}+b x y+1\right)}{\partial x} \Longleftrightarrow a x+2 y=2 x+b y \quad \Longleftrightarrow$ $a=2, b=2$
2. Method 1:

$$
\begin{aligned}
& \left.\quad\right|_{2} ^{\left(x_{1}, y_{1}\right)} \\
& \quad \frac{1}{(0,0)}\left(x_{1}, 0\right) \\
& f\left(x_{1}, y_{1}\right)=\int_{1}+\int_{2} \quad \int_{1}=0 \text { since along } 1 y=0 d y=0 \\
& \int_{2}=\int_{0}^{y}\left(x_{1}^{2}+2 x_{1} y+1\right) d y=x_{1}^{2} y_{1}+x_{1} y_{1}^{2}+y_{1} \\
& \text { since } x<x_{1}, d x=0 \text { along path } 2 \\
& \text { OR }
\end{aligned}
$$

3. Method 2: $\frac{\partial f}{\partial x}=2 x y+y^{2}$

$$
\begin{aligned}
\therefore f= & x^{2} y+x y^{2}+g(y) \\
\frac{\partial f}{\partial y}= & x^{2}+2 x y+g^{\prime}(y) \\
& =g^{\prime}(y)=1, \quad g(y)=y
\end{aligned}=x^{2}+2 x y+1
$$

and so

$$
f=x^{2} y+x y^{2}+y
$$

4. Using fundamental theorems:

$$
\int_{\left(x_{1}, 0\right)}^{\left(x_{0}, 0\right)} \vec{F} \cdot d \vec{r}=\int_{\left(x_{1}, 0\right)}^{\left(x_{0}, 0\right)} \nabla\left(x^{2} y+x y^{2}+y\right) \cdot d \vec{r}=0-0=0
$$

OR
Since \vec{F} is path-independent, we can replace C by a path D on the x-axis:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{D} \vec{F} \cdot d \vec{r}=\int_{x_{1}}^{x_{2}} 0(\text { since } y=0 \text { on } D) \cdot d x=0 .
$$

Problem 6

1. $\oint_{C}-x^{2} y d x+x y^{2} d y=\iint_{R} y^{2}-\left(-x^{2}\right) d A$ by Green's theorem

$$
\left.=\int_{0}^{\pi / 4} \int_{0}^{1} r^{2} \cdot r d r d \theta=\frac{\pi}{4} \cdot \frac{r^{4}}{4}\right]_{0}^{1}=\frac{\pi}{16} .
$$

The original picture can be interpreted to mean that C was not closed, with the part in the x -axis missing. Since this actually contributes nothing to the line integral, the answer is the same!
2. By Green's theorem, $\oint_{C}-y d x=\iint_{R}-\frac{\partial(-y)}{\partial y} d A=\iint_{R} d A=$ area of R
3. Using (b), area inside loop

$$
\begin{aligned}
& =\oint-y d x=\int_{-1}^{1}-\left(t-t^{3}\right)(-2 t) d t=\int_{-1}^{1}\left(2 t^{2}-2 t^{4}\right) d t \\
& \left.=\frac{2 t^{3}}{3}-\frac{2 t^{5}}{5}\right]_{-1}^{1}=\frac{2}{3}-\frac{2}{5}-\left(\frac{-2}{3}+\frac{2}{5}\right)=8 / 15
\end{aligned}
$$

Problem 7

a) $\mathbf{F}=\frac{x \mathbf{i}+y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}$ has magnitude $=1$ (since $|x \mathbf{i}+y \mathbf{j}|=\sqrt{x^{2}+y^{2}}$) and has radially outward direction.
b) For C_{1}, the unit semi-circle in the upper half-plane, running from $(1,0)$ to $(-1,0), \mathbf{F}$ is perpendicular to the tangent of the curve, at every point, so the integral is zero.

For C_{2}, \mathbf{F} and C have the same direction and both are constant (on C_{2}), so the work is simply $|\mathbf{F}| \times($ distance $)=1 \cdot \sqrt{2}=\sqrt{2}$.

