next up previous
Next: About this document ...

18.02 Practice Exam 3 -- April, 1999

Directions: Suggested time: 70 minutes.




Problem 1 (15 points) The solid $ R$ is the piece of the first octant cut off by the plane

$\displaystyle x+y+z=1
$

Set up an iterated double integral in rectangular coordinates which gives the volume of $ R$. (Give the integrand and limits of integration, but do not evaluate.)



\begin{picture}
(8,10)(-2,-3)
\put(0,0){\line(1,0){7}}
\put(0,0){\line(0,1){7}}
...
...ut(2,3.1){$R$}
\put(-.25,7.2){$Z$}
\put(7,0){$Y$}
\put(-3,-3){$X$}
\end{picture}


Problem 2 (15 points) A circular disc has radius $ a$ and $ A$ is a point on its circumference. The density at any point $ P$ on the disc is equal to the distance of $ P$ from $ A$. Set up an iterated double integral in polar coordinates which gives the mass of the disc. Place $ A$ at the origin. (Give the integrand and limits, but to not evaluate the integral.)


Problem 3 (15 points) Evaluate the integral $ \int^1_0 \int^1_x \cos (y^2) \, dy \, dx$ by changing the order of integration. (Sketch the region of integration first.)


Problem 4 (10 points) Change $ \int^1_0 \int^x_{-x}
(x^2 + y^2)^{3/2} \, dy \, dx$ to an interated integral in polar coordinates. (Do not evaluate it.)


Problem 5 (30 points; 10 each)

a)
$ {\bf F}= (axy+y^2){\bf i}+ (x^2+bxy+1){\bf j}$; $ a,b$ are constants. Show that $ F$ is conservative $ \Longleftrightarrow a=2$, $ b=2$.

b)
Taking $ a=2$, $ b=2$, find $ f(x,y)$ so that $ {\bf F}= {\bf\nabla} f$.
c)
Still taking $ a=2$, $ b=2$, show $ \int_C {\bf F} \cdot {\bf dr}=0$ for any curve $ C$ beginning and ending on the $ x$-axis.


Problem 6 (30 points; 15, 5, 10)

a)
Evaluate $ \oint_C -x^2 y \, dx + xy^2 \, dy$ by Green's theorem, if $ C$ is the closed curve as pictured passing through $ (1,0),$ $ (\frac1{\sqrt2},\frac1{\sqrt2}),$ $ (0,0),$ and back to $ (1,0).$


\begin{picture}
(10,7)(-2,-2)
\put(-2,0){\vector(1,0){7}}
\put(0,-2){\line(0,1){...
...4.3,1.5){\vector(-1,1){.5}}
\put(4.5,-1){$1$}
\put(1,.25){$\pi/4$}
\end{picture}

b)
Show that for any simple closed curve $ C$ directed positively,

$\displaystyle \oint_C -y \, dx = \hbox{Area inside } C \, .
$

c)
The curve $ y^2=x^2(1-x)$ shown is given parametrically by

$\displaystyle x=1-t^2 \, , \quad y=t-t^3 \, .
$

Find the area inside the loop.


\begin{picture}
(6,5)(-4,-2)
\put(-4,0){\line(1,0){8}}
\put(0,-4){\line(0,1){8}}...
...ezier(-2.5,3)(1.75,-3)(3.5,0)
\par\qbezier(-2.5,-3)(1.75,3)(3.5,0)
\end{picture}


Problem 7 (15 points; 5, 10)

a)
Write down in rectangular coordinates the field $ {\bf F}=M{\bf i}+N{\bf j}$ whose vectors all have unit length and point radially outward from the origin. ($ {\bf F}=0$ at $ (0,0)$.)

b)
For this field, give the values of $ \int_C {\bf F} \cdot{\bf dr}$ over the following curves (no calculation is required):

$ C_1$ is the unit semi-circle in the upper half-plane, running from $ (1,0)$ to $ (-1,0)$

$ C_2$ is the line segment from $ (0,0)$ to $ (1,1)$

Brief solutions.

Problem 1



\begin{picture}
(8,10)(-2,-3)
\put(0,0){\line(1,0){7}}
\put(0,0){\line(0,1){7}}
...
...,1.25){$R$}
\put(-.25,7.2){$1$}
\put(7,0){$1$}
% put(-3,-3)\{$1$\}
\end{picture}


Thus the volume is $ \int^1_0 \int^{1-x}_0 (1-x-y) \, dx \, dy$ OR $ \int^1_0 \int^{1-4}_0 (1-x-y) \, dx \, dy.$







Problem 2


With the center on the x-axis

$\displaystyle \hbox{Mass } = \int^{\pi /2}_{- \pi /2} \int^{2 \cos \theta}_0 r
\cdot r \, dr \, d \theta
$

OR with the center on the y-axis:

$\displaystyle \hbox{Mass } = \int^{\pi}_0 \int^{2a \sin \theta}_0 r
\cdot r \, dr \, d \theta
$







Problem 3 The region of integration for $ \int^1_0 \int^1_x$ is







\begin{picture}
(10,7)(-2,-2)
\put(-2,0){\line(1,0){7}}
\put(0,-2){\line(0,1){7}...
...w \, y=x$}
\put(1.75,4){${~}_{\swarrow} \, y=1$}
\put(-.75,3){$1$}
\end{picture}






so the integral becomes $ \int^1_0 \int^y_0 \cos (y^2) \, dx \, dy$, which evaluates by


 		 Inner: 		 

$ \left. \cos (y^2) \cdot x\right]^1_0 = \cos (y^2) \cdot y$

Outer: $ \left. \frac{1}{2} \sin (y^2) \right]^1_0 =\frac{1}{2} \sin 1$






Problem 4 The region of integration for $ \int^1_0 \int^x_{-x} \ldots \, dy \, dx$ is $ (r^2=x^2+y^2)$





\begin{picture}
(10,10)(-2,-2)
\put(-2,0){\line(1,0){7}}
\put(0,-2){\line(0,1){7...
...$}
\put(3.2,-1){$1$}
\put (4.5,-3){$x=1$\ becomes $r=\sec \theta$}
\end{picture}








so in polar coordinates the integral becomes

$\displaystyle \int^{\pi / 4}_{- \pi /4}\int^{1\sec \theta)}_0 r^3\times r \,
dr \, d \theta.
$








Problem 5

1.
$ \vec{F}$ conservative $ \Longleftrightarrow
\frac{\partial (axy+y^2)}{\partial y} =
\frac{\partial (...
...artial x} \Longleftrightarrow
ax+2y=2x+by \quad \Longleftrightarrow a=2, \, b=2$

2.
Method 1:





\begin{picture}
(4,4)(-2,0)
\put(0,0){\line(1,0){3}}
\put(3,0){\line(0,1){3}}
\p...
...2$}
\put(1.3,.5){$1$}
\put(0,-1){$(0,0)$}
\put(3.25,-1){$(x_1,0)$}
\end{picture}






$ f(x_1,y_1)= \int_{1}+ \int_2 \qquad \int_1 = 0$ since along $ 1$ $ y=0$ $ dy=0$

$ \int_2 = \int^y_0 (x^2_1 + 2x_1 y+1) \, dy = x^2_1y_1 + x_1y^2_1
+ y_1$

since $ x<x_1\, , dx=0$ along path $ 2$

OR

3.
Method 2: $ \frac{\partial f}{\partial x} = 2xy+y^2$
\begin{displaymath}
% latex2html id marker 986
\begin{array}{rclll}
\therefore f...
...g'(y) &=& x^2+2xy+1\\
& &= g'(y) = 1, \quad g(y)=y
\end{array}\end{displaymath}      

and so

$\displaystyle f=x^2 y+xy^2 + y
$

4.
Using fundamental theorems:

$\displaystyle \int^{(x_{0},0)}_{(x_1, 0)}
\vec{F} \cdot d \vec{r} = \int^{(x_{0},0)}_{(x_1,
0)}{\bf\nabla}(x^2y+xy^2+y)\cdot d{\vec{r}}= 0-0=0
$

OR

Since $ \vec{F}$ is path-independent, we can replace $ C$ by a path $ D$ on the $ x$-axis:

$\displaystyle \int_C \vec{F} \cdot d\vec{r} = \int_D \vec{F} \cdot d\vec{r} =
\int^{x_2}_{x_1} 0 \, (\hbox{since }y=0 \hbox{ on }D) \cdot \, dx = 0.
$


Problem 6

1.
$ \oint_C -x^2 y \, dx + xy^2 \, dy = \iint_R y^2-(-x^2)
\, dA$ by Green's theorem



\begin{picture}
(10,7)(-2,-2)
\put(0,0){\line(1,0){4.5}}
\put(-2,0){\line(1,0){....
...\}
\qbezier(3,3)(4.5,1.5)(4.5,0)
\put(4.5,-1){$1$}
\put(0,-1){$1$}
\end{picture}




$\displaystyle = \int^{\pi / 4}_0 \int^1_0 r^2 \cdot r\, dr\,d \theta =
\left. \frac{\pi}{4} \cdot \frac{r^4}{4} \right]^1_0 =
\frac{\pi}{16}.
$

The original picture can be interpreted to mean that $ C$ was not closed, with the part in the x-axis missing. Since this actually contributes nothing to the line integral, the answer is the same!

2.
By Green's theorem, $ \oint_C -y \, dx = \iint_R -
\frac{\partial(-y)}{\partial y} \, dA = \iint_R \, dA = $ area of $ R$

3.
Using (b), area inside loop
  $\displaystyle =$ $\displaystyle \oint -ydx = \int^1_{-1} -
(t-t^3)(-2t) \, dt = \int^1_{-1}(2t^2-2t^4) \, dt$  
  $\displaystyle =$ $\displaystyle \left. \frac{2t^3}{3}- \frac{2t^5}{5} \right]^1_{-1} =
\frac{2}{3} - \frac{2}{5} -(\frac{-2}{3} + \frac{2}{5}) = 8/15$  


\begin{picture}
(6,5)(-4,-2)
% put(-4,0)\{ line(1,0)\{8\}\}
% put(0,-4)\{ line(0...
...\put(4,.2){$ t=0$}
\put(-.25,-1.5){${~}^{\uparrow} t=-1, \, t=+1$}
\end{picture}






Problem 7

a)
$ {\bf F}= \frac{x {\bf i} + y {\bf j}}{\sqrt{x^2+y^2}}$ has magnitude $ =1$ (since $ \left\vert x {\bf i} + y {\bf j} \right\vert =
\sqrt{x^2 + y^2})$ and has radially outward direction.

b)
For $ C_1,$ the unit semi-circle in the upper half-plane, running from $ (1,0)$ to $ (-1,0),$ $ {\bf F}$ is perpendicular to the tangent of the curve, at every point, so the integral is zero.

For $ C_2,$ $ {\bf F}$ and $ C$ have the same direction and both are constant (on $ C_2)$, so the work is simply $ \left\vert{\bf F} \right\vert\times$ (distance) $ = 1 \cdot \sqrt{2} = \sqrt{2}.$




next up previous
Next: About this document ...
Richard B. Melrose
1999-04-05