Practice Exam 1 for 18.02, Spring 1999

Problem 1 (25 points; 10, 10, 5) Let A = i + 2j + 2k, B = i + j + k.

- 1. Find a vector perpendicular to both **A** and **B**.
- 2. Find the equation of the plane passing through the point(1, 0, 8) and parallel to both **A** and **B**.
- 3. Determine where the plane meets the y-axis.

Solution

- 1. $\mathbf{N} = \mathbf{A} \times \mathbf{B} = j k$ is perpendicular to both.
- 2. The plane is $\mathbf{N} \cdot \mathbf{x} = d$ so y z = -8.
- 3. It meets the y-axis (which is x = 0, z = 0) at the point (0, -8, 0).

Problem 2 (15 points) Use vector methods to show that the line joining the mid-points of two sides of a triangle is parallel to the third side.

Solution If the vertices of the triangle are P, Q and R then the sides are \mathbf{PQ} , \mathbf{QR} and \mathbf{RP} . The vector from the midpoint of \mathbf{PQ} to the midpoint of QR is $\frac{1}{2}(\mathbf{PQ} + \mathbf{QR})$. Summing the three sides gives zero so $\mathbf{PQ} + \mathbf{QR} + \mathbf{RP} = 0$ which implies that $\frac{1}{2}(\mathbf{PQ} + \mathbf{QR}) = -\frac{1}{2}\mathbf{RP}$, so the line between the midpoints of two sides is parallel to the base \mathbf{RP} .

Problem 3 (25 points; 20, 5) Consider the system of linear equations

$$2x_1 + 3x_2 + cx_3 = y_1$$

-x_1 + x_3 = y_2
$$x_1 + x_2 + x_3 = y_3$$

- 1. Take c = 3. Write the system in matrix form $\mathbf{Ax} = \mathbf{y}$. Calculate \mathbf{A}^{-1} and use it to find equations expressing x_1, x_2, x_3 in terms of y_1, y_2 and y_3 .
- 2. For what value(s) of c is it *not* possible to solve for the x's in terms of the y's?

Solution

1. The matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 & c \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. For c = 3 the cofactor matrix of this is $\begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 1 \\ 3 & -5 & 3 \end{bmatrix}$. The determinant (in general) is 3 - c + 3 - 2 = 4 - c = 1 when c = 3. Thus the inverse matrix is

$$\begin{bmatrix} -1 & 0 & 3\\ 2 & -1 & -5\\ -1 & 1 & 3 \end{bmatrix}$$
. It follows that $\mathbf{x} = \mathbf{A} \cdot \mathbf{y}$ so
 $x_1 = -y_1 + 3y_3, \ x_2 = 2y_1 - y_2 - 5y_3, \ x_3 = -y_1 + y_2 + 3y_3.$

2. For c = 4 since the determinant of **A** vanishes and there is then either no solution or an infinite number of solutions depending on **y**.

Problem 4 (25 points; 10, 5, 5, 5) The motion of a point P = (x, y, z) in space is described by the parametric equations

$$x = 2 + t^2$$
 $y = t + 1$ $z = t^2 + 4t + 1$.

- 1. Does the curve meet the plane x + z = 0?
- 2. Where does the curve meet the plane y = 0?
- 3. Compute the velocity vector for the curve.
- 4. Find the point at which the speed is smallest.

Solution

- 1. On the curve $x + z = 2t^2 + 4t + 3 = 2(t + 1)^2 + 1$ which never vanishes, so the curve does not meet the plane x + z = 0.
- 2. The velocity vector is $2t\hat{i} + \hat{j} + (2t+4)\hat{k}$.
- 3. The square of the speed is $4t^2 + 1 + 4(t+2)^2 = 8(t+1)^2 + 9$ so the minimum occurs at t = -1, which means at the point (3, 0, -2).

Problem 5 (10 points) Consider the vectors

$$\mathbf{A} = \mathbf{i} - \mathbf{j} + \mathbf{k}$$
 $\mathbf{B} = \mathbf{i} + \mathbf{j}$ and $\mathbf{C} = \mathbf{i} - \mathbf{j} - 2\mathbf{k}$.

- 1. Show that each is perpendicular to the other two.
- 2. Find constants c_1 , c_2 , c_3 so that $\mathbf{i} = c_1 \mathbf{A} + c_2 \mathbf{B} + c_3 \mathbf{C}$.

Solution

- 1. $\mathbf{A} \cdot \mathbf{B} = 1 1 = 0$, $\mathbf{B} \cdot \mathbf{C} = 1 1 = 0$, $\mathbf{A} \cdot \mathbf{C} = 1 + 1 2 = 0$ so each is perpendicular to the others.
- 2. The dot products are $\mathbf{i} \cdot \mathbf{A} = 1$, $\mathbf{i} \cdot \mathbf{B} = 1$, $\mathbf{i} \cdot \mathbf{C} = 1$. The squares of the lengths are $|\mathbf{A}|^2 = 3$, $|\mathbf{B}|^2 = 2$ and $|\mathbf{C}|^2 = 6$ so

$$\mathbf{i} = \frac{1}{3}\mathbf{A} + \frac{1}{2}\mathbf{B} + \frac{1}{6}\mathbf{C}, \ c_1 = \frac{1}{3}, \ c_2 = \frac{1}{2}, \ c_3 = \frac{1}{6}$$

 $\mathbf{2}$