Practice Exam 1 for 18.02, Spring 1999

Problem 1 (25 points; 10, 10,5) Let $\mathbf{A}=\mathbf{i}+\mathbf{2 j}+\mathbf{2 k}, \mathbf{B}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.

1. Find a vector perpendicular to both \mathbf{A} and \mathbf{B}.
2. Find the equation of the plane passing through the point $(1,0,8)$ and parallel to both A and B.
3. Determine where the plane meets the y-axis.

Solution

1. $\mathbf{N}=\mathbf{A} \times \mathbf{B}=j-k$ is perpendicular to both.
2. The plane is $\mathbf{N} \cdot \mathbf{x}=d$ so $y-z=-8$.
3. It meets the y-axis (which is $x=0, z=0$) at the point $(0,-8,0)$.

Problem 2 (15 points) Use vector methods to show that the line joining the mid-points of two sides of a triangle is parallel to the third side.

Solution If the vertices of the triangle are P, Q and R then the sides are $\mathbf{P Q}, \mathbf{Q R}$ and $\mathbf{R P}$. The vector from the midpoint of PQ to the midpoint of $Q R$ is $\frac{1}{2}(\mathbf{P Q}+\mathbf{Q R})$. Summing the three sides gives zero so $\mathbf{P Q}+\mathbf{Q R}+\mathbf{R P}=0$ which implies that $\frac{1}{2}(\mathbf{P Q}+\mathbf{Q R})=-\frac{1}{2} \mathbf{R P}$, so the line between the midpoints of two sides is parallel to the base RP.

Problem 3 (25 points; 20,5) Consider the system of linear equations

$$
\begin{aligned}
2 x_{1}+3 x_{2}+c x_{3} & =y_{1} \\
-x_{1}+x_{3} & =y_{2} \\
x_{1}+x_{2}+x_{3} & =y_{3}
\end{aligned}
$$

1. Take $c=3$. Write the system in matrix form $\mathbf{A x}=\mathbf{y}$. Calculate $\mathbf{A}^{\mathbf{1}}$ and use it to find equations expressing x_{1}, x_{2}, x_{3} in terms of y_{1}, y_{2} and y_{3}.
2. For what value(s) of c is it not possible to solve for the x 's in terms of the y 's?

Solution

1. The matrix $\mathbf{A}=\left[\begin{array}{ccc}2 & 3 & c \\ -1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$. For $c=3$ the cofactor matrix of this is $\left[\begin{array}{ccc}-1 & 2 & -1 \\ 0 & -1 & 1 \\ 3 & -5 & 3\end{array}\right]$. The determinant (in general) is $3-$ $c+3-2=4-c=1$ when $c=3$. Thus the inverse matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 0 & 3 \\
2 & -1 & -5 \\
-1 & 1 & 3
\end{array}\right] . \text { It follows that } \mathbf{x}=\mathbf{A} \cdot \mathbf{y} \text { so }} \\
& x_{1}=-y_{1}+3 y_{3}, x_{2}=2 y_{1}-y_{2}-5 y_{3}, x_{3}=-y_{1}+y_{2}+3 y_{3} .
\end{aligned}
$$

2. For $c=4$ since the determinant of \mathbf{A} vanishes and there is then either no solution or an infinite number of solutions depending on y .

Problem $4(25$ points; 10, 5, 5, 5) The motion of a point $P=$ (x, y, z) in space is described by the parametric equations

$$
x=2+t^{2} \quad y=t+1 \quad z=t^{2}+4 t+1
$$

1. Does the curve meet the plane $x+z=0$?
2. Where does the curve meet the plane $y=0$?

3 . Compute the velocity vector for the curve.
4. Find the point at which the speed is smallest.

Solution

1. On the curve $x+z=2 t^{2}+4 t+3=2(t+1)^{2}+1$ which never vanishes, so the curve does not meet the plane $x+z=0$.
2. The velocity vector is $2 t \hat{i}+\hat{j}+(2 t+4) \hat{k}$.
3. The square of the speed is $4 t^{2}+1+4(t+2)^{2}=8(t+1)^{2}+9$ so the minimum occurs at $t=-1$, which means at the point $(3,0,-2)$.
Problem 5 (10 points) Consider the vectors

$$
\mathbf{A}=\mathbf{i}-\mathbf{j}+\mathbf{k} \quad \mathbf{B}=\mathbf{i}+\mathbf{j} \text { and } \mathbf{C}=\mathbf{i}-\mathbf{j}-\mathbf{2 k} .
$$

1. Show that each is perpendicular to the other two.
2. Find constants c_{1}, c_{2}, c_{3} so that $\mathbf{i}=c_{1} \mathbf{A}+c_{2} \mathbf{B}+c_{3} \mathbf{C}$.

Solution

1. $\mathbf{A} \cdot \mathbf{B}=1-1=0, \mathbf{B} \cdot \mathbf{C}=1-1=0, \mathbf{A} \cdot \mathbf{C}=1+1-2=0$ so each is perpendicular to the others.
2. The dot products are $\mathbf{i} \cdot \mathbf{A}=1, \mathbf{i} \cdot \mathbf{B}=1, \mathbf{i} \cdot \mathbf{C}=1$. The squares of the lengths are $|\mathbf{A}|^{2}=3,|\mathbf{B}|^{2}=2$ and $|\mathbf{C}|^{2}=6$ so

$$
\mathbf{i}=\frac{1}{3} \mathbf{A}+\frac{1}{2} \mathbf{B}+\frac{1}{6} \mathbf{C}, c_{1}=\frac{1}{3}, c_{2}=\frac{1}{2}, c_{3}=\frac{1}{6} .
$$

