A HALF-TWIST TYPE FORMULA FOR THE R-MATRIX OF A
SYMMETRIZABLE KAC-MOODY ALGEBRA

PETER TINGLEY

ABSTRACT. Kirillov-Reshetikhin and Levendorskii-Soibelman developed a formula for the universal R-matrix of $U_q(g)$ of the form $R = (X^{-1} \otimes X^{-1}) \Delta(X)$. The action of X on a representation V permutes weight spaces according to the longest element in the Weyl group, so is only defined when g is of finite type. We give a similar formula which is valid for any symmetrizable Kac-Moody algebra. This is done by replacing the action of X on V with an endomorphism that preserves weight spaces, but which is bar-linear instead of linear.

1. INTRODUCTION

Let g be a finite type complex simple Lie algebra, and let $U_q(g)$ be the corresponding quantized universal enveloping algebra. In [KR] and [LS], Kirillov-Reshetikhin and Levendorskii-Soibelman developed a formula for the universal R-matrix

$$R = (X^{-1} \otimes X^{-1}) \Delta(X),$$

where X belongs to a completion of $U_q(g)$. The element X is constructed using the braid group element T_{w_0} corresponding to the longest word of the Weyl group, so only makes sense when g is of finite type.

The element X defines a vector space endomorphism X_V on each representation V, and in fact X is defined by this system $\{X_V\}$ of endomorphisms. With this point of view, Equation (1) is equivalent to the claim that, for any finite dimensional representations V and W and $u \in V \otimes W$,

$$R(u) = (X_V^{-1} \otimes X_W^{-1})X_V \otimes W(u).$$

In the present work we replace X_V with an endomorphism Θ_V which preserves weight spaces. We show that, for any symmetrizable Kac-Moody algebra g, and any integrable highest weight representations V and W of $U_q(g)$, the action of the universal R-matrix on $u \in V \otimes W$ is given by

$$R(u) = (\Theta_V^{-1} \otimes \Theta_W^{-1})\Theta_V \otimes W(u).$$

There is a technical difficulty because Θ_V is not linear over the base field $\mathbb{Q}(q)$, but instead is compatible with the automorphism of $\mathbb{Q}(q)$ which inverts q. For this reason Θ_V depends on a choice of a “bar involution” on V. To make Equation (3) precise we define a bar involution on $V \otimes W$ in terms of chosen involutions of V and W, and then show that the composition $(\Theta_V^{-1} \otimes \Theta_W^{-1})\Theta_V \otimes W$ does not depend on any choices.

The system of endomorphisms Θ was previously studied in [T], where it was used to construct the universal R-matrix when g is of finite type. Essentially we have extended this previous work to include all symmetrizable Kac-Moody algebras. However, the action of Θ on a tensor product is defined differently here than in [T], so the constructions of R are a-priori not identical, and we have not in fact proven that the construction in [T] gives the universal R-matrix in all cases.

This note is organized as follows. In Section 2 we establish notation and review some background material. In Section 3 we construct the system of endomorphisms Θ. In Section 4 prove our main
Theorem (Theorem 4.1), which simply says that our construction gives the universal R-matrix in all cases. In Section 5 we discuss two questions which motivated this work.

1.1. Acknowledgements. We thank Joel Kamnitzer, Nicolai Reshetikhin and Noah Snyder for many helpful discussions. This work was partially supported by the NSF RTG grant DMS-035432 and the Australia Research Council grant DP0879951.

2. Background

2.1. Conventions. We first fix some notation. For the most part we follow conventions from [CP].

- \mathfrak{g} is a complex simple Lie algebra with Cartan algebra \mathfrak{h} and Cartan matrix $A = (a_{ij})_{i,j \in I}$.
- (\cdot, \cdot) denotes the paring between \mathfrak{h} and \mathfrak{h}^\ast and (\cdot, \cdot) denotes the usual symmetric bilinear form on either \mathfrak{h} or \mathfrak{h}^\ast. Fix the usual bases a_i for \mathfrak{h}^\ast and H_i for \mathfrak{h}, and recall that $(H_i, a_j) = a_{ij}$.
- $d_i = (\alpha_i, \alpha_i)/2$, so that $(H_i, H_j) = d_j^{-1} a_{ij}$.
- ρ is the weight satisfying $(\alpha_i, \rho) = d_i$ for all i.
- $U_q(\mathfrak{g})$ is the quantized universal enveloping algebra associated to \mathfrak{g}, generated over $\mathbb{Q}(q)$ by E_i and F_i for all $i \in I$, and K_w for w in the co-weight lattice of \mathfrak{g}. As usual, let $K_i = K_{H_i}$. We use conventions as in [CP]. For convenience, we recall the exact formula for the coproduct:

$$
\begin{align*}
\Delta E_i &= E_i \otimes K_i + 1 \otimes E_i \\
\Delta F_i &= F_i \otimes 1 + K_i^{-1} \otimes F_i \\
\Delta K_i &= K_i \otimes K_i
\end{align*}
$$

- We in fact need to adjoin a fixed k^{th} root of q to $\mathbb{Q}(q)$, where k is twice the size of the weight lattice mod the root lattice. We denote this by $q^{1/k}$.
- V_λ is the irreducible representation of $U_q(\mathfrak{g})$ with highest weight λ.
- v_λ is a highest weight vector of V_λ.
- A vector v in a representation V is called singular if $E_i(v) = 0$ for all $i \in I$.
- $V(\mu)$ denotes the μ weight space of V.
- Throughout, a representation of $U_q(\mathfrak{g})$ means a type 1 integrable highest weight representation.

2.2. The R-matrix. We briefly recall the definition of a universal R-matrix, and the related notion of a braiding.

Definition 2.1. A braided monoidal category is a monoidal category \mathcal{C}, along with a natural system of isomorphisms $\sigma_{V,W}^{br} : V \otimes W \to W \otimes V$ for each pair $V, W \in \mathcal{C}$, such that, for any $U, V, W \in \mathcal{C}$, the following two equalities hold:

$$
\begin{align*}
\sigma_{U,V,W}^{br} \otimes \Id &\circ \Id \otimes \sigma_{V,W}^{br} = \sigma_{U \otimes V,W}^{br} \\
\Id &\circ \sigma_{U,V,W}^{br} \otimes \sigma_{U,V \otimes W}^{br} = \sigma_{U,V,W}^{br} \otimes \Id
\end{align*}
$$

The system $\sigma^{br} := \{\sigma_{V,W}^{br}\}$ is called a braiding on \mathcal{C}.

Let $U_q(\mathfrak{g}) \otimes \widehat{U_q(\mathfrak{g})}$ be the completion of $U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ in the weak topology defined by all matrix elements of $V_\lambda \otimes V_\mu$, for all ordered pairs of dominant integral weights (λ, μ).

Definition 2.2. A universal R-matrix is an element R of $U_q(\mathfrak{g}) \otimes \widehat{U_q(\mathfrak{g})}$ such that $\sigma_{V,W}^{br} := \text{Flip} \circ R$ is a braiding on the category of $U_q(\mathfrak{g})$ representations. Equivalently, an element R is a universal R-matrix if it satisfies the following three conditions

(i) For all $u \in U_q(\mathfrak{g})$, $R\Delta(u) = \Delta^{op}(u)R$.

(ii) $(\Delta \otimes 1)R = R_{13}R_{23}$, where R_{ij} mean R placed in the i and jth tensor factors.

(iii) $(1 \otimes \Delta)R = R_{13}R_{12}$.

The following theorem is central to the theory of quantized universal enveloping algebra. See [CP] for a discussion when \(\mathfrak{g} \) is of finite type, and [L] for the general case.

Proposition 2.3. Let \(\mathfrak{g} \) be a symmetrizable Kac-Moody algebra. Then \(U_q(\mathfrak{g}) \) has a unique universal \(R \)-matrix of the form

\[
R = A \left(1 \otimes 1 + \sum_{\text{positive integral weights } \beta} X_\beta \otimes Y_\beta \right),
\]

where \(X_\beta \) has weight \(\beta \), \(Y_\beta \) has weight \(-\beta\), and for all \(v \in V \) and \(w \in W \), \(A(v \otimes w) = q^{\langle \text{wt}(v), \text{wt}(w) \rangle} \).

2.3. **Constructing isomorphisms using systems of endomorphisms.** In this section we review a method for constructing natural systems of isomorphisms \(\sigma_{V,W} : V \otimes W \to W \otimes V \) for representations \(V \) and \(W \) of \(U_q(\mathfrak{g}) \). This idea was used by Henriques and Kamnitzer in [HK], and was further developed in [KT2]. The data needed is:

(i) An algebra automorphism \(C_\xi \) of \(U_q(\mathfrak{g}) \) which is also a coalgebra anti-automorphism.

(ii) A natural system of invertible (vector space) endomorphisms \(\xi_V \) of each representation \(V \) of \(U_q(\mathfrak{g}) \) such that the following diagram commutes for all \(V \):

\[
\begin{array}{ccc}
V & \xrightarrow{\xi_V} & V \\
\bigcirc & & \bigcirc \\
U_q(\mathfrak{g}) & \xrightarrow{c_\xi} & U_q(\mathfrak{g}).
\end{array}
\]

It follows immediately from the definition of coalgebra anti-automorphism that

\[
\sigma^\xi := \text{Flip} \circ (\xi_V^{-1} \otimes \xi_W^{-1}) \circ \xi_V \otimes W
\]

is an isomorphism of \(U_q(\mathfrak{g}) \) representations from \(V \otimes W \) to \(W \otimes V \).

In the current work we require a little more freedom: we will sometimes use automorphisms \(C_\xi \) of \(U_q(\mathfrak{g}) \) which are not linear over \(\mathbb{C}(q) \), but instead are bar-linear (i.e. invert \(q \)). This causes some technical difficulties, which we deal with in Section 3.

Comment 2.4. To describe the data \((C_\xi, \xi) \), it is sufficient to describe \(C_\xi \), and the action of \(\xi_{V_\lambda} \) on any one vector \(v \) in each irreducible representation \(V_\lambda \). This is usually more convenient then describing \(\xi_{V_\lambda} \) explicitly. Of course, the choice of \(C_\xi \) imposes a restriction on the possibilities for \(\xi_{V_\lambda} \), so when we give a description of \(\xi \) in this way we are always claiming that the action on our chosen vector in each \(V_\lambda \) is compatible with \(C_\xi \).

2.4. **A useful lemma.** Let \((V_\lambda, v_\lambda)\) and \((V_\mu, v_\mu)\) be irreducible representations with chosen highest weight vectors. Every vector \(u \in V_\lambda \otimes V_\mu \) can be written as

\[
u = v_\lambda \otimes c_0 + b_{k-1} \otimes c_1 + \ldots + b_1 \otimes c_{k-1} + b_0 \otimes v_\mu,
\]

where, for \(0 \leq j \leq k-1 \), \(b_j \) is a weight vector of \(V_\lambda \) of weight strictly less than \(\lambda \), and \(c_j \) a weight vector of \(V_\mu \) of weight strictly less than \(\mu \). Furthermore, the vectors \(b_0 \in V_\lambda \) and \(c_0 \in V_\mu \) are uniquely determined by \(u \). Thus we can define projections from \(V_\lambda \otimes V_\mu \) to \(V_\lambda \) and \(V_\mu \) as follows:

Definition 2.5. The projections \(p_{V_\lambda, V_\mu}^1 : V_\lambda \otimes V_\mu \to V_\lambda \) and \(p_{V_\lambda, V_\mu}^2 : V_\lambda \otimes V_\mu \to V_\mu \) are given by, for all \(u \in V_\lambda \otimes V_\mu \),

\[
p_{V_\lambda, V_\mu}^1(u) := b_0
\]

\[
p_{V_\lambda, V_\mu}^2(u) := c_0.
\]
Lemma 2.6. Let $S_{\lambda,\mu}$ be the space of singular vectors in $V_\lambda \otimes V_\mu$. The restrictions of the maps $p^{1}_{\lambda,\mu}$ and $p^{2}_{\lambda,\mu}$ from Definition 2.5 to $S_{\lambda,\mu}$ are injective.

Proof. We prove the Lemma only for $p^{2}_{\lambda,\mu}$, since the proof for $p^{1}_{\lambda,\mu}$ is completely analogous. Let c_1, \ldots, c_m be a weight basis for V_μ. Let u be a singular vector of $V_\lambda \otimes V_\mu$ of weight ν. Then u can be written uniquely as

$$u = \sum_{j=1}^{m} v_j \otimes c_j,$$

where each v_j is a weight vector in V_λ. Let γ be a maximal weight such that there is some j with $\text{wt}(v_j) = \gamma$ and $v_j \neq 0$. It suffices to show that $\gamma = \lambda$, so assume for a contradiction that it does not. Then v_j is not a highest weight vector, so $E_i(v_j) \neq 0$ for some i. But then

$$E_i(u) = \sum_{\text{wt}(v_j, \nu) = \gamma} E_i(v_j) \otimes c_j + \text{terms whose first factors have weight strictly less than } \gamma + \alpha_i.$$

Since the c_j are linearly independent and $E_i(v_j) \neq 0$ for some j with $\text{wt}(v_j) = \gamma$, this implies that $E_i(u) \neq 0$, contradicting the fact that u is a singular vector.

3. Constructing the system of endomorphisms Θ

Constructing and studying $\Theta = \{\Theta_V\}$ is the technical heart of this work. As we mentioned in the introduction, Θ_V is bar linear instead of linear, which makes it more difficult to choose a normalization. To get around this, we introduce the notion of a bar involution bar_V on V, and actually define Θ on the category of representations with a chosen bar involution. We then define a tensor product on this new category, and show that $(\Theta_{V,\text{bar}_V}^{-1} \otimes \Theta_{W,\text{bar}_W}^{-1}) \circ \Theta_{(V,\text{bar}_V),(W,\text{bar}_W)}$ does not depend on the choices of bar_V and bar_W. The real work is in defining this tensor product, which essentially amounts to defining a bar involution on $V \otimes W$ in terms of bar involutions bar_V and bar_W.

3.1. Bar involution. The following \mathbb{Q} algebra involution of $U_q(\mathfrak{g})$ has been studied in several places, for example [K, Section 1.3], and is usually called bar involution. We use the notation C_{bar} because we will also work with bar involutions bar_V on representations V, which are compatible with C_{bar} in the sense of Equation (8).

Definition 3.1. $C_{\text{bar}} : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ is the \mathbb{Q}-algebra involution defined by

$$\begin{cases} C_{\text{bar}}q = q^{-1} \\
C_{\text{bar}}K_i = K_i^{-1} \\
C_{\text{bar}}E_i = E_i \\
C_{\text{bar}}F_i = F_i. \end{cases}$$

It is perhaps useful to imagine that q is specialized to a complex number on the unit circle (although not a root of unity), so that C_{bar} is conjugate linear.

Definition 3.2. Let V be a representation of $U_q(\mathfrak{g})$. A bar involution on V is a \mathbb{Q}-linear involution bar_V such that
(i) \(\text{bar}_V \) is compatible with \(C_{\text{bar}} \) in the sense that the following diagram commutes:

\[
\begin{array}{ccc}
V & \xrightarrow{\text{bar}_V} & V \\
\bigcirc & & \bigcirc \\
\end{array}
\]

\[
U_q(\mathfrak{g}) \xrightarrow{C_{\text{bar}}} U_q(\mathfrak{g}).
\]

(ii) Let \(V^{inv} = \{ v \in V \text{ such that } \text{bar}_V(v) = v \} \). Then \(V = \mathbb{Q}(q) \otimes Q^{inv} \).

Comment 3.3. It is straightforward to check that \(C_{\text{bar}}^2 \) is the identity. Along with condition (ii), this implies that \(\text{bar}_V^2 \) is the identity, so the term “involution” is justified.

Comment 3.4. When it does not cause confusion we will denote \(\text{bar}_V(v) \) by \(\bar{v} \).

Proposition 3.5. Fix \(\lambda \) and a highest weight vector \(v_\lambda \in V_\lambda \). There is a unique bar involution \(\text{bar}_{(V_\lambda,v_\lambda)} \) on \(V_\lambda \) such that \(\text{bar}_{(V_\lambda,v_\lambda)}(v_\lambda) = v_\lambda \).

Proof. Recall that \(V_\lambda \) has a basis consisting of various \(F_{i_k} \cdots F_{i_1} v_\lambda \). All of these vectors must be fixed by any bar involution preserving \(v_\lambda \), so there is at most one possibility. On the other hand, it is clear that the unique \(\mathbb{Q}(q) \)-linear map sending \(f(q) F_{i_k} \cdots F_{i_1} v_\lambda \) to \(f(q^{-1}) F_{i_k} \cdots F_{i_1} v_\lambda \) for each of these basis vectors is a bar involution. \(\square \)

Corollary 3.6. Every representation \(V \) has a (non-unique) bar involution \(\text{bar}_V \).

Proof. Choose a decomposition of \(V \) into irreducible components, and a highest weight vector in each irreducible component, then use Proposition 3.5. \(\square \)

Definition 3.7. Fix \((V, \text{bar}_V) \) and \((W, \text{bar}_W) \), where \(\text{bar}_V \) and \(\text{bar}_W \) are involutions of \(V \) and \(W \) compatible with \(C_{\text{bar}} \). Let \((\text{bar}_V \otimes \text{bar}_W) \) be the vector space involution on \(V \otimes W \) defined by \(f(q)v \otimes w \rightarrow f(q^{-1}) \bar{v} \otimes \bar{w} \) for all \(f(q) \in \mathbb{Q}(q) \) and \(v \in V, w \in W \).

Comment 3.8. It is straightforward to check that the action of \((\text{bar}_V \otimes \text{bar}_W) \) on a vector in \(V \otimes W \) does not depend on its expression as a sum of elements of the form \(f(q)v \otimes w \). The resulting map is a \(\mathbb{Q}(q) \)-linear involution.

Definition 3.9. Fix \(u \in V_\lambda \otimes V_\mu \) a weight vector of weight \(\nu \). Define \(v^\beta \) for each weight \(\beta \) as the unique element of \(V_\lambda(\nu - \beta) \otimes V_\mu(\beta) \) such that

\[
u = \sum_{\beta} v^\beta.
\]

Lemma 3.10. Fix \((V_\lambda, \text{bar}_{V_\lambda}) \) and \((V_\mu, \text{bar}_{V_\mu}) \). Let \(v_\nu \) be a singular weight vector in \(V_\lambda \otimes V_\mu \), and write

\[
v_\nu = \sum_{j=1}^N b_j \otimes c_j,
\]

where each \(b_j \) is a weight vector of \(V_\lambda \), and each \(c_j \) is a weight vector of \(V_\mu \). Then

\[
\text{bar}(v_\nu) := \sum_{j=0}^N q^{(\mu,\nu)-(\text{wt}(c_j),\text{wt}(c_j))}+2(\mu-\text{wt}(c_j),\rho)b_j \otimes c_j
\]

is also singular.
Proof. Fix $i \in I$. The vector v_{β} is singular, so $E_i v_{\beta} = 0$ and hence $(E_i v_{\beta})^\beta = 0$ for all β. Then:

$$(19) \quad 0 = (E_i v_{\beta})^\beta = \sum_{\text{wt}(c_j) = \beta} q^{(\beta,\alpha_i)} E_i b_j \otimes c_j + \sum_{\text{wt}(c_j) = \beta - \alpha_i} b_j \otimes E_i c_j.$$

Using Equation (18):

$$(20) \quad (E_i \text{bar}(v_{\beta}))^\beta = \sum_{\text{wt}(c_j) = \beta} q^{(\mu,\nu)} (\beta,\beta) + 2(\mu - \alpha_i,\rho) q^{(\beta,\alpha_i)} E_i b_j \otimes c_j$$
\begin{equation}
+ \sum_{\text{wt}(c_j) = \beta - \alpha_i} q^{(\mu,\nu)} (\beta - \alpha_i,\beta - \alpha_i) + 2(\mu - \alpha_i,\rho) b_j \otimes E_i c_j
\end{equation}

$$(21) \quad = q^{(\mu,\nu)} (\beta - \alpha_i,\beta - \alpha_i) + 2(\mu - \alpha_i,\rho) \times$$

$$\sum_{\text{wt}(c_j) = \beta} q^{(-\beta,\alpha_i)} E_i b_j \otimes c_j + \sum_{\text{wt}(c_j) = \beta - \alpha_i} b_j \otimes E_i c_j,$$

$$(22) \quad = q^{(\mu,\nu)} (\beta - \alpha_i,\beta - \alpha_i) + 2(\mu - \alpha_i,\rho) \text{bar}(\text{bar}_\lambda \otimes \text{bar}_\rho)(E_i v_{\beta})^\beta,$$

where $(\text{bar}_\lambda \otimes \text{bar}_\rho)$ is the involution from Definition 3.7. But $E_i (v_{\beta})^\beta = 0$, so we see that $E_i (v_{\beta})^\beta = 0$. Since this holds for all i and all β, $\text{bar}(v_{\beta})$ is singular. \square

Definition 3.11. Let $\text{bar}(V, v_{\lambda}) \otimes (V, v_{\mu})$ be the unique involution on $V \otimes V$ which agrees with the involution bar from Lemma 3.10 on singular vectors, and is compatible with C_{bar}.

Lemma 3.12. $\text{bar}(V, v_{\lambda}) \otimes (V, v_{\mu})$ is a bar involution.

Proof. Definition 3.2 part (i) follows immediately from the definition of $\text{bar}(V, v_{\lambda}) \otimes (V, v_{\mu})$. To establish Definition 3.2 part (ii), it suffices to show that there is a basis for the space $S_{\lambda,\mu}$ of singular vectors of $V \otimes V$ which is fixed by $\bar{v}_{(V, v_{\lambda}) \otimes (V, v_{\mu})}$. Since $V = \mathbb{Q}(q) \otimes V_{\text{inv}}$, there is a basis for $S_{\lambda,\mu}$ consisting of elements of $V_{\text{inv}} \otimes \mathbb{Q} V$. Using Lemma 2.6, we see that there is a basis for $S_{\lambda,\mu}$ consisting of vectors of the form

$$(23) \quad v_{\lambda} \otimes c_0 + \cdots + b_0 \otimes v_{\mu},$$

where $b_0 = b_0$ and the missing terms are all of the form $b \otimes c$ with $\text{wt}(c) < \mu$. By Definition 3.11 and Lemma 2.6, this vector is invariant under $\text{bar}(V, v_{\lambda}) \otimes (V, v_{\mu})$. \square

In light of Definition 3.2 part (ii), we can extend Definition 3.11 by naturality to construct a bar-involution on $(V, \text{bar}_V) \otimes (W, \text{bar}_W)$ in terms of any bar-involutions of V and W.

3.2. The system of endomorphisms Θ

Consider the \mathbb{Q}-algebra automorphism C_Θ of $U_q(g)$:

$$C_\Theta(E_i) = E_i K_i^{-1},$$

$$C_\Theta(F_i) = K_i F_i,$$

$$C_\Theta(K_i) = K_i^{-1},$$

$$C_\Theta(q) = q^{-1}.$$

Notice that C_Θ is not linear over $\mathbb{Q}(q)$, but instead inverts q. One can easily check that C_Θ is a \mathbb{Q} algebra involution, and that it is also a coalgebra anti-involution.

Definition 3.13. Fix a representation V with a bar involution bar_V. Then Θ_{V, bar_V} is the \mathbb{Q} linear endomorphism of V defined by

$$(25) \quad \Theta_{V, \text{bar}_V}(v) = q^{-(\text{wt}(v),\text{wt}(v))/2+(\text{wt}(v),\rho) \text{bar}_V(v)}.$$
Comment 3.14. Using Definitions 3.1, one can see that, for any irreducible $V_{\lambda} \subset V$, $\Theta_{V,\bar{V}_{\lambda}}$ restricts to an endomorphism of V_{λ}.

Comment 3.15. There are sometimes weights λ for which $-(\lambda, \lambda)/2 + (\lambda, \rho)$ is not an integer. However, it is always a multiple of $1/k$ where k is twice the size of the weight lattice mod the root lattice. It is for this reason that we adjoin $q^{1/k}$ to the base field.

Lemma 3.16. The following diagram commutes

$$
\begin{array}{ccc}
V & \xrightarrow{\Theta_{\lambda}} & V \\
\cup & & \cup \\
U_q(\mathfrak{g}) & \xrightarrow{c_{\Theta}} & U_q(\mathfrak{g}).
\end{array}
$$

Proof. It is sufficient to check that $C_{\Theta}(X)\Theta_{V}(v) = \Theta_{V}(Xv)$, where $X = E_i$ or F_i. We do the case of F_i and leave E_i as an exercise. Fix $v \in V$.

1. $\Theta_{V}(F_i v) = q^{-(\text{wt}(F_i v), \text{wt}(F_i v))/2 + (\text{wt}(F_i v), \rho)} \bar{\Theta}_{V}(F_i v)\bar{\lambda}
\begin{align*}
\Theta_{V}(F_i v) &= q^{-(\text{wt}(v) - \alpha, \text{wt}(v) - \alpha)/2 + (\text{wt}(v) - \alpha, \rho)} F_i \bar{\Theta}_{V}(v) \\
&= q^{(\alpha, \text{wt}(v) - \alpha)} q^{-(\text{wt}(v), \text{wt}(v))/2 + (\text{wt}(v), \rho)} F_i \bar{\Theta}_{V}(v) \\
&= K_i F_i q^{-(\text{wt}(v), \text{wt}(v))/2 + (\text{wt}(v), \rho)} \bar{\Theta}_{V}(v) \\
&= C_{\Theta}(F_i) \Theta_{V}(v).
\end{align*}

where for Equation (29) we have used the fact that $(\alpha_i, \alpha_i)/2 = (\alpha_i, \rho) = d_i$. \hfill \Box

Definition 3.17. Fix two representations with bar involutions (V, \bar{V}_{λ}) and (W, \bar{W}_{λ}). We set $\Theta_{V,\bar{V}_{\lambda}} \otimes (W, \bar{W}_{\lambda})$ to be the \mathbb{Q} linear endomorphism of $V \otimes W$ defined by, for all $u \in V \otimes W$,

$$
\Theta_{V,\bar{V}_{\lambda}} \otimes (W, \bar{W}_{\lambda})(u) = q^{-\text{wt}(u), \text{wt}(u))/2 + (\text{wt}(u), \rho)} \bar{\Theta}_{V,\bar{V}_{\lambda}} \otimes (W, \bar{W}_{\lambda}).
$$

Comment 3.18. By Lemma 3.12, $\bar{V}_{\lambda} \otimes (W, \bar{W}_{\lambda})$ is a bar involution on $V \otimes W$, so by Lemma 3.16, $\Theta_{V,\bar{V}_{\lambda}} \otimes (W, \bar{W}_{\lambda})$ is compatible with C_{Θ}.

4. Main Theorem

Theorem 4.1. $(\Theta_{V,\bar{V}_{\lambda}} \otimes \Theta_{W,\bar{W}_{\lambda}}) \otimes (V, \bar{V}_{\lambda}) \otimes (W, \bar{W}_{\lambda})$ acts on $V \otimes W$ as the standard R-matrix. This holds independent of the choice of bar involutions \bar{V}_{λ} and \bar{W}_{λ}.

Proof. We will actually prove the equivalent statement that

$$
\sigma^{\Theta} := \text{Flip} \circ (\Theta_{V,\bar{V}_{\lambda}} \otimes \Theta_{W,\bar{W}_{\lambda}}) \otimes (V, \bar{V}_{\lambda}) \otimes (W, \bar{W}_{\lambda})
$$

acts on $V \otimes W$ as the standard braiding $\text{Flip} \circ R$. By Lemma 3.16 and the fact that C_{Θ} is a \mathbb{Q} coalgebra anti-automorphism, the following diagram commutes:

$$
\begin{array}{ccc}
V \otimes W & \xrightarrow{\Theta_{V,\bar{V}_{\lambda}} \otimes (W, \bar{W}_{\lambda})} & V \otimes W \\
\cup & & \cup \\
U_q(\mathfrak{g}) & \xrightarrow{c_{\Theta}} & U_q(\mathfrak{g}).
\end{array}
$$

In particular, $\sigma^{\Theta} : V \otimes W \rightarrow W \otimes V$ is an isomorphism. Thus it suffices to show that $\sigma^{\Theta}(v_{\mu}) = \text{Flip} \circ R(v_{\mu})$ for every singular weight vector $v_{\mu} \in V \otimes W$. By naturality it is enough to consider the case when V and W are irreducible, so let v_{μ} be a singular vector in $V_{\lambda} \otimes V_{\mu}$. Write

$$
v_{\mu} = b_{\lambda} \otimes c_{0} + b_{k-1} \otimes c_{1} + \ldots + b_{1} \otimes c_{k-1} + b_{0} \otimes b_{\mu},
$$
where for $0 \leq j \leq k - 1$, b_j is a weight vector of V_μ of weight strictly less then μ. By Definitions 3.11 and 3.13,

$$\sigma^\Theta(v_\nu) = \text{Flip} \circ (\Theta_{V_\lambda, \text{bar}_V}^{-1} \otimes \Theta_{V_\nu, \text{bar}_V}^{-1}) \Theta_{(V_\lambda, \text{bar}_V)}(\nu, \text{bar}_V) (\cdots + b_0 \otimes b_\mu)$$

(36) $$= \text{Flip} \circ (\Theta_{V_\lambda, \text{bar}_V}^{-1} \otimes \Theta_{V_\nu, \text{bar}_V}^{-1}) (q^{-1}(\mu + \nu, \nu + \mu) / 2 \pm (\mu + \nu, \nu)) (\cdots + b_0 \otimes b_\mu)$$

(37) $$= q^{-1}(\nu, \nu - \nu) / 2 - (\nu, \nu) / 2 + (\nu, \nu - \nu) / 2 b_\mu \otimes b_0 + \cdots$$

(38) $$= q^{\nu, \nu - \nu} b_\mu \otimes b_0 + \cdots$$

(39) $$\text{where } \cdots \text{ always represents terms where the factor coming from } V_\mu \text{ has weight strictly less then } \mu.$$

It follows immediately from Proposition 2.3 that

$$\text{Flip} \circ R(v_\nu) = q^{\nu, \nu - \nu} b_\mu \otimes b_0 + \cdots$$

where again \cdots represents terms of the form $c \otimes b$ where $\nu, \nu - \nu < \mu$. Both $\sigma^\Theta(v_\nu)$ and $\text{Flip} \circ R(v_\nu)$ are singular vectors in $V_\mu \otimes V_\lambda$, so by Lemma 2.6 they are equal. \qed

Comment 4.2. The above proof works independent of the choice of bar_V and bar_W. One can also see directly that σ^Θ does not depend on these choices. Restrict to the irreducible case, and notice that by Lemma 3.5, σ^Θ depends only the a choice of highest weight vectors v_λ and v_μ. It is straightforward to check that rescaling these vectors has no effect on σ^Θ.

Comment 4.3. One can check that Θ_V is an involution of \mathbb{Q} vector spaces, so the inverses in the statement of Theorem 4 are in some sense unnecessary. We include them because Θ_V should really be thought of as an isomorphism between V and the module which is V as a \mathbb{Q} vector space, but with the action of $U_q(g)$ twisted by C_{Θ}. We have not specified the action of Θ on this new module. The way the formula is written, Θ is always acting on V, W or $V \otimes W$ with the usual action, where it has been defined.

5. Future directions

We have two main motivations for developing our formula for the R-matrix.

Motivation 1. In work with Joel Kamnitzer [KT2], we showed that Drinfeld’s unitarized R-matrix \tilde{R} (see [D]) respects crystal basis (up to some signs). Composing with Flip, we see that \tilde{R} descends to a crystal map from $B \otimes C$ to $C \otimes B$, which is fact agrees with the crystal commutator defined in [HK]. We make extensive use of Equation (1), so our methods are only valid in the finite type case. However Drinfeld’s unitarized R-matrix is defined in the symmetrizable Kac-Moody case, as is the crystal commutator (see [KT1] and [S]). We hope that the formula given in Theorem 4.1 will help us to extend some of the results in [KT2] to the symmetrizable Kac-Moody case.

Motivation 2. Recall that the action of the braiding Flip $\circ R$ on $V \otimes W$ can be drawn diagrammatically as passing a string labeled V over a string labeled W. If we use flat ribbons in place of strings, as it is often convenient to do, one can consider the following isotopy:
Roughly, if one interprets twisting a ribbon by 180 degrees as X, and twisting two ribbon together as at the bottom on the right side as $\text{Flip} \circ \Delta(X)$, the two sides of this isotopy correspond to the two sides of Equation (1), written as

\begin{equation}
\text{Flip} \circ R = \text{Flip} \circ (X^{-1} \otimes X^{-1}) \Delta(X) = (X^{-1} \otimes X^{-1}) \circ \text{Flip} \circ \Delta(X).
\end{equation}

In work with Noah Snyder [ST], we make this precise. One should be able to use our new formula to give a precise interpretation of “twisting a ribbon by 180 degrees” in the symmetrizable Kac-Moody case. It is for this reason that we use the term “half twist type formula” in our title.

References

E-mail address: P.Tingley@ms.unimelb.edu.au

Department of Mathematics, University of Melbourne, Parkville, VIC, 3010, Australia