
HOMOTOPY THEORY OF MODEL CATEGORIES

C. L. REEDY

In this paper some questions in the homotopy theory of model categories are
answered. The important results of this paper are Theorems B, C and D which
state that pushouts, sequential direct limits, and realizations of simplicial objects
respect weak equivalences, provided sufficient cofibrancy is present.

Section 1 presents a model category structure on the simplicial objects over a
model category. This is done partly to provide a justification for the term cofibrant,
as applied to certain simplicial objects, and also to show that any object can be
“approximated” by a cofibrant object. The lemmas in this section are presented
without proof, since the proofs are easy, and of an entirely category theoretic nature.

In section 2 it is shown that, in model categories, weak equivalences respect
pushouts and sequential direct limits. That weak equivalences respect pushouts is
particularly important since this shows that any closed model category is a suitable
category for homology theory (see [1]).

In section 3 the result that the realization of a weak equivalence of cofibrant
objects is a weak equivalence is proven. Certain stronger results in the case of
simplicial topological spaces are also mentioned. Section 4 discusses special results
about simplicial simplicial sets, including the result that realization is isomorphic
to the diagonal, a useful result which is not widely known, and not original with
the author.

The category theory in this paper is standard and may be found in MacLane [3];
and, the notation conforms with that in Quillen [4], except that q (disjoint union)
is used for coproduct.

1. Simplicial Objects over a Model Category

Given any category C, define S C, the simplicial objects over C, as the covariant
functor category from the category O, the opposite of the category of finite ordered
sets, to C. Let On ⊂ O be the full sub-category whose objects are {0, . . . , n}, and
Sn C the corresponding functor category.

The nth skeleton (skn) and nth coskeleton (ckn) functors, are the left and right
adjoints (respectively) to the restriction functor of S C to Sn C, if such functors exist.
These functors exist if the category C has finite limits and colimits. If X ∈ Sk C

and n < k (or X ∈ S C) then define skn(X) and ckn(X) by first restricting to Sn C.
In principle, the kth degree of skn(X) should consist of one copy of Xn for every

degeneracy map from n to k, with identifications corresponding to degeneracies
from n − 1 to k. The coskeleton should be constructed by taking one copy of Sn

for every face map from k to n, and making identifications for the face maps from
k to n − 1. If C has finite limits and colimits we can formalize this by:
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Lemma 1.1. a. The following is a pushout:
∐

α : n→k

skn−1(X)n −−−−→
∐

α : n→k

Xn





y





y

skn−1(X)k −−−−→ skn(X)k

where the sums are over the degeneracies from n to k, and the vertical maps
are sums of degeneracies in skn(X).

b. The following is a pullback (fiber-product):

ckn(X)k −−−−→ ckn−1(X)k




y





y

∏

α : k→n

Xn −−−−→
∏

α : k→n

ckn−1 Xn

where the products are over the faces from k to n and the vertical maps are
products of face maps of ckn(X).

The important properties of skn and ckn are the adjointness to restriction and
the following:

Lemma 1.2. If X ∈ Sn C, then an extension of X to Sn+1 C (i.e. an object of
Sn+1 C which restricts to X in Sn C) is completely specified by a factorization
skn(X)n+1 → Xn+1 → ckn(X)n+1, of the standard map skn → ckn. If f : X → Y

is a map in Sn C then an extension of f to Sn+1 C is given by a map fn+1 : Xn+1 →
Yn+1, making the appropriate diagrams commute.

Take M to be a closed model category. Define a cofibration in S M as a map
f : X → Y in which, for all n, skn−1(Y )n ∨skn−1(X)n

Xn → Yn is a cofibration in
M. Define f to be a fibration if Xn → ckn−1(X)n ×ckn−1(Y )n

Yn is for all n; and f

is a weak equivalence if fn : Xn → Yn is for all n.

Theorem A. With these definitions S M is a closed model category.

To prove this we need the following lemmas.

Lemma 1.3. Given a diagram:

A2 ←−−−− A1 −−−−→ A3

f2





y

f1





y

f3





y

B2 ←−−−− B1 −−−−→ B3

with f3 and A2 ∨A1
B1 → B2 trivial cofibrations, then A2 ∨A1

A3 → B2 ∨B1
B3 is

a trivial cofibration.

Proof. A2 ∨A1
A3 → A2 ∨A1

B3
∼= (A2 ∨A1

B1) ∨B1
B3 → B2 ∨B1

B3 expresses the
desired map as a composition of trivial cofibrations.

Note that the dual of lemma 1.3 is also true.

Lemma 1.4. a. A map f : X → Y is a trivial cofibration if and only if

skn−1(Y )n ∨skn−1(X)n
Xn → Yn

is a trivial cofibration for all n.
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b. A map f : X → Y is a trivial fibration if and only if

Xn → ckn−1(X)n ×ckn−1(Y )n
Yn

is a trivial fibration, for all n.

Proof. (a) Note that the two conditions are identical for n = 0. (sk−1(X) is the
initial object.) Lemmas 1.1 and 1.3 show that the second condition for degrees less
than n implies that skn−1(X)k → skn−1(Y )k is a trivial cofibration for all k.

The factorization Xn → skn−1(Y )n ∨skn−1(X)n
Xn → Yn then shows that the

two conditions are equivalent in degree n, which completes part a. Part b is proved
similarly.

Proof of Theorem A. It is immediate that weak equivalences compose and cancel,
and that a map which is a retract of a cofibration, fibration or weak equivalence is
one also. Liftings are constructed degreewise using Lemma 1.2 and the fact that a
lifting problem:

A −−−−→ X




y





y

B −−−−→ Y

which has been solved for degrees less than n can be extended to degree n if there
is a lifting in M in the diagram:

skn−1(B)n ∨skn−1(A)n
An −−−−→ Xn





y





y

Bn −−−−→ ckn−1(X)n ×ckn−1(Y )n
Yn

Factorizations are also constructed degreewise. To factor f : X → Y as a cofibration
followed by a fibration, one of which is trivial, assume we have constructed Z ∈
Sn−1 M which factors f , and then extend Z to Sn M by factoring

skn−1(A)n ∨skn−1(X)n
Xn → Zn → ckn−1(Z)n ×ckn−1(Y )n

Yn

as a cofibration and a fibration, the correct one being trivial. Lemmas 1.2 and 1.4
show that the constructed maps factor f appropriately. Thus, M is a closed model
category.

If M is a closed simplicial model category, then given a simplicial set K, and
X ∈ S M, we can define (X⊗K)n = Xn⊗K, and (XK)n = Xn

K . It can be verified
that this makes S M a closed simplicial model category. This shows the weakness of
this model category structure, since just the degreewise structure is measured, and
not the simplicial structure; i.e. two maps which are simplicially homotopic need
not be homotopic in this structure.

2. Colimits in Closed Model Categories

Let M be a closed model category. The following lemma provides a useful de-
scription of weak equivalences of cofibrant objects in closed model categories.
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Lemma 2.1. If A and B are cofibrant objects in M then f : A → B is a weak
equivalence if and only if any lifting problem

A
u

−−−−→ X




y

f





y

p

B
v

−−−−→ Y

where p is a fibration, can be solved to the extent that there exists a map v̂ : B → X

and a homotopy h : A × I → X, such that p ◦ v̂ = v, h is a homotopy from u to
v̂ ◦ f , and p ◦ h = v ◦ f ◦ prA, where prA : A× I→ A is the projection.

Proof. If f is a weak equivalence factor f = k◦j, where j is a trivial cofibration, k a
trivial fibration, j : A→ Z, k : Z → B. Find s : B → Z a section, and H : Z×I→ Z

a homotopy from the identity to s ◦ k, covering the identity of B. Find û : Z → X

with p◦û = v◦k and û◦j = u, by lifting j against p. Let v̂ = û◦s, and h = û◦H ◦`,
where ` is the inclusion A× I→ Z × I. Then v̂ and h are the desired maps.

If f has the property it is easily verified that f induces an epimorphism on left
homotopy classes π`(B, Y ) → π`(A, Y ), and a monomorphism on right homotopy
classes πr(B, Y ) → πr(A, Y ), where Y is a fibrant object. Since A and B are
cofibrant, then f induces and isomorphism [B, Y ]→ [A, Y ], and since M is closed,
f is a weak equivalence.

Note that the lemma is true if the condition for weak equivalence is weakened to
a lifting exists such that both triangles homotopy commute. However, this stronger
condition is needed later.

In the following material this lemma will be used as a characterization of weak
equivalences of cofibrants. The proposition below gives an important independent
application of Lemma 2.1.

Proposition 2.2. Let M and N be closed simplicial model categories, and L: M→
N and R: N →M left and right adjoints, respectively. Further, assume that L and
R are simplicial adjoints in the sense that one of the equivalent conditions

i. L(X ⊗K) ∼= L(X)⊗K,
ii. R(XK) ∼= R(X)K , or
iii. HomM

(

X, R(Y )
)

∼= HomN

(

L(X), Y
)

holds. (HomM and HomN are the simplicial set valued hom functors of M and N.)
Then, if R preserves fibrations and weak equivalences then L preserves cofibrations
and weak equivalences of cofibrants.

Proof. By adjointness, cofibrations are preserved by L, since R preserves trivial
fibrations. We can then apply Lemma 2.1 and the fact that L(X ⊗ I) ∼= L(X)⊗ I,
and conclude the result.

This result is useful in the case of simplicial algebras when L is extension of
theories. (See [6].) In this case R is the forgetful functor; thus, well behaved. The
Proposition shows that L must also be well behaved.

Theorem B. If

A
i

−−−−→ B




y

f





y

g

C
j

−−−−→ D
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is a pushout diagram in M (i.e. D = B ∨A C), with i a cofibration, f a weak
equivalence, and A and C are cofibrant, then g is a weak equivalence.

Proof. We wish to apply Lemma 2.1. Given a diagram:

A
i

−−−−→ B
u

−−−−→ X




y

f





y

g





y

p

C
j

−−−−→ D
v

−−−−→ Y

with p a fibration, we know by Lemma 2.1 that there exists a v̄ : C → X such that
p ◦ v̄ = v ◦ j, and H : A× I→ X such that H is a homotopy from u ◦ i to v̄ ◦ f and
p ◦H = v ◦ j ◦ f ◦ prA.

Since A and B are cofibrant then there exists a cylinder object B × I such that
the map B ∨A A× I→ B × I is a cofibration and a weak equivalence (the wedge is
over the zero inclusion A→ A× I). Lift in the diagram

B ∨A A× I
(u,H)
−−−−→ X





y





y

p

B × I
v◦g◦pr

B−−−−−→ Y

to obtain h. Define v̂ = (h1, v̄) : D = B ∨A C → X , where h1 is the one end of h.
The conditions of lemma 2.1 are now satisfied by v̂ and h. Q.E.D.

Note: By an example in [4] it is known that the cofibrancy hypothesis can not
be omitted, in general.

Corollary. Given a diagram

A2
i1←−−−− A1

i2−−−−→ A3




y

f2





y

f1





y

f3

B2 ←−−−−
j1

B1 −−−−→
j2

B3

where f1, f2 and f3 are weak equivalences i1 and j1 are cofibrations, and Ai, Bi

are cofibrant (i = 1, 2, 3), then A2 ∨A1
A3 → B2 ∨B1

B3 is a weak equivalence.

Proof. By Theorem B we can assume i2 and j2 are also cofibrations. Then

A2 ∨A1
A3 → A2 ∨A1

(A3 ∨A1
B1) ∼= (A2 ∨A1

B1) ∨B1
(A3 ∨A1

B1)

→ B2 ∨B1
(A3 ∨A1

B1)→ B2 ∨B1
B3

expresses the desired map as a composition of weak equivalences.

We also need one more result for use in Section 3.

Theorem C. If M has sequential direct limits (i.e. every sequence A0 → A1 → · · ·
has a direct limit), then given a commuting diagram of sequences

A0
i0−−−−→ A1

i1−−−−→ · · ·




y

f0





y

f1

B0 −−−−→
j0

B1 −−−−→
j1

· · ·



6 C. L. REEDY

where each fn is a weak equivalence, each in and jn is a cofibration, and A0 and
B0 are cofibrant, then f∞ : A∞ → B∞, the limit, is a weak equivalence.

Proof. The proof of Lemma 2.1 can be extended to show that a lifting and homotopy
on Bn and An × I can be chosen which extend the ones on Bn−1 and An−1 × I.
Since (A × I)∞ will be a cylinder object for A∞ if we chose An × I so that (An q
An)∨An−1× I→ An× I is a cofibration, then the limit of the lifting and homotopy
will show that f∞ is a weak equivalence, by Lemma 2.1.

3. Realizations

We now assume that M is a closed simplicial model category having sequential
direct limits. If X ∈ S M we define the realization of X (

∣

∣X
∣

∣) to be the standard
identification space made up of the objects Xn ⊗∆n in M. Realization is the left
adjoint to the singular complex functor, given by Sing(X)n = X∆n

.

Lemma 3.1. If X ∈ S M define
∣

∣X
∣

∣

0
= X0. For n > 0 define

∣

∣X
∣

∣

n
by the following

pushout diagram:

skn−1(X)n ⊗∆n ∨skn−1(X)n⊗∂∆n Xn ⊗ ∂∆n −−−−→ Xn ⊗∆n





y





y

∣

∣X
∣

∣

n−1
−−−−→

∣

∣X
∣

∣

n

(∗)

where the maps are the standard ones. Then X is the direct limit
∣

∣X
∣

∣

0
→

∣

∣X
∣

∣

1
→

· · · →
∣

∣X
∣

∣.

The proof is easy, and is omitted. Note that Lemma 3.1 shows that
∣

∣X
∣

∣ in fact
exists under the given conditions.

Theorem D. If X and Y are cofibrant in S M, and f : X → Y is a weak equiva-
lence, then

∣

∣f
∣

∣ :
∣

∣X
∣

∣→
∣

∣Y
∣

∣ is a weak equivalence.

Proof. First
∣

∣f
∣

∣

0
:
∣

∣X
∣

∣

0
→

∣

∣Y
∣

∣

0
is a weak equivalence, since

∣

∣f
∣

∣

0
= f0. By using

Lemma 1.1a and Theorem B, we know that skn(X)→ skn(Y ) is a weak equivalence.
Thus we can apply Theorem B to conclude that the induced map corresponding to
the upper left hand corner of the diagram (∗) is a weak equivalence. The upper
map of (∗) is a cofibration, since X and Y are cofibrant. Now use Theorem B
and Lemma 3.1 to conclude that

∣

∣X
∣

∣

n
→

∣

∣Y
∣

∣

n
is a weak equivalence. Finally,

using Theorem C, noting that
∣

∣X
∣

∣

n−1
→

∣

∣Y
∣

∣

n−1
is a cofibration, we conclude that

∣

∣X
∣

∣→
∣

∣Y
∣

∣ is a weak equivalence.

Note: The dual of this theorem must also hold. The dual statement is that a
map between fibrant cosimplicial objects over a closed simplicial model category M

(having filtered inverse limits), which is a degreewise weak equivalence, induces a
weak equivalence on the corealization. When M is the category of simplicial sets
it is easily seen that the dual model category structure agrees with the Bousfield-
Kan structure [2], since the weak equivalences and fibrations are the same. The
defined corealization agrees with the Bousfield-Kan codiagonal; and, in fact, the
constructed filtration agrees with the filtration of the codiagonal by Totn(X).

In the special case of topological spaces, it should be noted that the following
stronger result is true:
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Theorem E. If X, Y ∈ S Top, and f : X → Y is a degreewise weak homotopy
equivalence (respectively homotopy equivalence, or homology isomorphism), and X

and Y are cofibrant, in the sense that skn−1(X)n ⊂ Xn has homotopy extension
property (same for Y ), then

∣

∣f
∣

∣ :
∣

∣X
∣

∣ →
∣

∣Y
∣

∣ is a weak homotopy equivalence (re-
spectively homotopy equivalence, or homology isomorphism).

Proof. Use the proof of Theorem D, noting that Theorems B and C are true for all
the mentioned classes of equivalence, when cofibration mean homotopy extension
property.

Notes:

1. This shows that the standard spectral sequence for the homology of the real-
ization of a simplicial space works as long as the skeleta sit cofibrantly into
each higher degree.

2. Other forms of Lemma 3.1 and Theorem D can also be used to show that weak
and strong realizations are equivalent for cofibrant simplicial sets, simplicial
simplicial sets, topological spaces, etc.

4. Simplicial Sets

In the case of simplicial sets Theorem D becomes more interesting in view of the
following result.

Theorem F. Let S Set be the category of simplicial sets, and Bi S Set the cate-
gory of simplicial simplicial sets. Then the realization functor Bi SSet → S Set is
naturally isomorphic to the diagonal functor.

Proof. Note the following:

Lemma 4.1. If M is a closed simplicial model category and X ∈ S M, then
∣

∣X ⊗K
∣

∣ ∼=
∣

∣X
∣

∣⊗K.

Proof. Realization is a colimit of a certain diagram in M. Since − ⊗ K is a left
adjoint (to (−)K) then −⊗K preserves colimits.

Let ∆[i] represent the discrete i simplex in Bi S Set. I.e. ∆
[i]
k is the discrete set

∆i
k. Let ∆[i] ⊗ ∆j be the simplicial simplicial set whose kth degree is ∆

[i]
k ⊗ ∆j .

By the lemma
∣

∣∆[i] ⊗∆j
∣

∣ ∼=
∣

∣∆[i]
∣

∣⊗∆j = ∆i ⊗∆j ,

which is also the diagonal of ∆[i] ⊗∆j . The objects ∆[i] ⊗∆j in Bi S Set perform
the same function as the ∆is in S Set. In particular, any object X ∈ Bi S Set is the
colimit of the objects ∆[i] ⊗∆j over all maps of these objects into X . Realization
preserves colimits, since it is a left adjoint. Diagonal trivially preserves colimits.
Thus, since every X ∈ Bi S Set is naturally a colimit of objects on which diagonal
and realization agree, then

∣

∣X
∣

∣ and the diagonal of X are isomorphic.

Theorem D implies that the diagonal of a map of simplicial simplicial sets which
is a degreewise weak equivalence, is also a weak equivalence.

The note at the end of section one also applies here. In particular, since a simpli-
cial simplicial set has two different structures as a simplicial simplicial set; then, we
have constructed two distinct model category structures on this category, one dis-
tinguishing the vertical structure and one distinguishing the horizontal structure.
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The existence of a model category structure which combines both structures simul-
taneously is an interesting question. The following result provides an indication of
what such a structure might be.

Proposition 4.2. If the weak equivalences in some model category structure on
BiS Set include both the horizontal and vertical degreewise weak equivalences, then
the weak equivalences include all maps whose diagonals are weak equivalences.

Proof. Write Xk,∗ for the kth vertical section and X∗,k for the kth horizontal section
of an object X ∈ Bi S Set. Let X be a fibrant object in the vertical model category
structure constructed in section 1. Then a lifting in the diagram

∆n−1 −−−−→ Xk,∗




ydi





y

∆n −−−−→ (ckk−1,∗ X)k,∗

is the same as a lifting in the diagram

∂∆n−1 −−−−→ X∗,n




y





y

di

∆k −−−−→ X∗,n−1

Thus in a vertically fibrant object all the vertical face maps are weak equivalences, so
the inclusion X∗,0 ↪→

∣

∣X
∣

∣ is a weak equivalence. Now consider any map f : X → Y

which is an weak equivalence on the diagonal. Find R(X), R(Y ), and R(f) such
that the diagram:

X −−−−→ R(X)




y

f





y

R(f)

Y −−−−→ R(Y )

commutes, the horizontal inclusions are vertical weak equivalences, and R(X) and
R(Y ) are fibrant in the vertical structure. Then

∣

∣X
∣

∣ and R(X)∗,0 are weakly equiva-
lent to R(X); and, similarly for Y . Thus R(X)∗,0 → R(Y )∗,0 is a weak equivalence
since

∣

∣f
∣

∣ is, so R(f) is a horizontal weak equivalence. Thus in the hypothetical
structure f must be a weak equivalence, since X ↪→ R(X), Y ↪→ R(Y ), and R(f)
are.
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