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Does the equation x3+y3+z3 = 29 have a solu-
tion in integers? Yes: (3, 1, 1), for instance. How
about x3+y3+z3 = 30? Again yes, although this
was not known until 1999: the smallest solution2

is (−283059965,−2218888517, 2220422932). And
how about x3+y3+z3 = 33? This is an unsolved
problem.

Of course, number theory does not end with
the study of cubic equations in three variables:
one might ask also about

x1729y1093z196884−163xyzt262537412640768000 = 561.

D. Hilbert, in the list of 23 problems he
published after a famous lecture in 1900, asked
his audience to find a method that would an-
swer all such questions. More precisely, Hilbert’s
tenth problem (hereafter denoted H10) asks for
an algorithm that takes as input a multivari-
able polynomial f(x1, . . . , xn) with integer co-
efficients and outputs YES or NO according to
whether there exist integers a1, a2, . . . , an such
that f(a1, . . . , an) = 0.

In 1970, Yu. Matiyasevich, building on earlier
work of M. Davis, H. Putnam, and J. Robinson,
showed that no such algorithm exists.

The purpose of this article is to discuss

• some of the concepts in the proof,
• a few by-products of the proof, and
• current research on related problems that

are still open, such as the analogue for ra-
tional number solutions.

H10 and the DPRM theorem

The notion of algorithm. To make sense of
the negative answer to H10, we need a precise no-
tion of algorithm. In 1900 such a notion had not
yet been developed. But in the 1930s, several rig-
orous models of computation were proposed and

were shown to be equivalent; one of these was
the Turing machine. The equivalence made be-
lievable the Church-Turing thesis, which is the
assertion that every purely mechanical procedure
can be carried out by a Turing machine.3 Because
of this, “algorithm” is taken to mean “Turing ma-
chine”.

An informal description of a Turing machine
may be more enlightening than a mathematically
precise definition. A Turing machine is equivalent
to a finite-length program running on a physi-
cal computer, except that the computer has un-
limited time and memory and is not subject to
physical errors (such as data loss from power out-
ages). The memory is sometimes modelled as an
infinite tape, initialized to the binary representa-
tion of the nonnegative integer input. The com-
puter reads and writes 0s and 1s from and to the
memory tape during its operation, and may or
may not print characters on a separate output
tape, following the rules of its program. It might
run forever, or it might halt when some condition
specified by the program is satisfied.

Turing machines may accept any objects as
input if we fix an encoding of these objects as
nonnegative integers. For example, a polynomial
with integer coefficients could be represented by
the concatenation of the ASCII codes of the char-
acters in a TEX string for the polynomial. The
exact encoding does not matter as long as a Tur-
ing machine can convert between the proposed
encodings.

Diophantine, listable, and computable
sets. Davis, Putnam, Robinson, and Matiyase-
vich deduced the negative answer to H10 from a
stronger theorem having many more implications.
To explain it, we need a few definitions.

1This survey article has been published in Notices Amer. Math. Soc. 55 (2008), no. 3, 344–350.
2Discovered by E. Pine, K. Yarbrough, W. Tarrant, and M. Beck following an approach suggested by N. Elkies.
3Quantum computers might seem at first not to fit this framework. But they can be simulated by classical Turing

machines in exponential time, and H10 asks for any algorithm without being fussy about its running time. When one

ignores running time, quantum computers are no more powerful than classical ones.
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Definition 1. A set A ⊆ Z is diophantine if there
exists a polynomial p(t, ~x) ∈ Z[t, x1, . . . , xn] such
that

A = {a ∈ Z : (∃~x ∈ Zn) p(a, ~x) = 0}.

One should think of p as defining a family of
polynomial equations, depending on a parameter
t; then A is the set of values of the parameter
for which the resulting equation in the remaining
variables x1, . . . , xn has a solution. Equivalently,
if B is the set of solutions to p(t, ~x) = 0 in Z1+n,
then A is the projection of B onto the first co-
ordinate. The definition can be extended in an
obvious way to subsets of Zm for m > 1.

Example 2. The subset N := {0, 1, 2, . . . } of Z
is diophantine since for a ∈ Z, we have

a ∈ N ⇐⇒ (∃x1, . . . , x4 ∈ Z) x21 + · · ·+ x24 = a.

Definition 3. A set A ⊆ Z is listable (or recur-
sively enumerable) if there is an algorithm that
prints A, i.e., a Turing machine such that A is
the set of integers it prints out when left running
forever.

Example 4. The set of integers expressible as
a sum of three cubes is listable. (Print out
x3 + y3 + z3 for all |x|, |y|, |z| ≤ 10; then print
out x3 + y3 + z3 for |x|, |y|, |z| ≤ 100; and so on.)
A similar argument shows that any diophantine
subset of Z is listable.

Definition 5. A set A ⊆ Z is computable (or
recursive) if there is an algorithm for deciding
membership in A, i.e., an algorithm that takes
as input an integer a and outputs YES or NO
according to whether a ∈ A.

Any computable set is listable, since given an
algorithm for deciding membership in A, one can
apply it successively to 0, 1, −1, 2, −2, . . . and
print each number for which the membership test
returns YES.

But it is not obvious that every listable set
is computable. An algorithm that prints A does
not immediately let one test whether 33 is in A,
say: if after running the algorithm for a while
the number 33 is not printed, it may be hard to
decide whether it will appear later on.

In fact, the next section shows that there exists
a listable set that is not computable.

The halting problem. The negative answer to
H10 was proved by relating it to undecidability
results in logic and computability theory from the
1930s. These undecidability results were proved
using diagonalization arguments reminiscent of
G. Cantor’s famous proof of the uncountability
of R.

One such result concerns the halting problem,
which asks for an algorithm that takes as input a
computer program p and an integer x, and out-
puts YES or NO, according to whether program
p run on input x eventually halts (instead of en-
tering an infinite loop, say).

Theorem 6 (Turing 1936). The halting problem
is undecidable; that is, no Turing machine can
solve it.

Sketch of proof. Fix an encoding of programs
as nonnegative integers; identify programs with
their integer codes. Suppose that there were an
algorithm for deciding when program p halts on
input x. Using this we could build a new program
H such that for any x,

H halts on input x
⇐⇒ program x does not halt on input x.

Taking x = H, we find a contradiction: H halts
on input H if and only if H does not halt on input
H. �

Corollary 7. There exists a listable set that is
not computable.

Proof. Let A be the set of numbers 2p3x such that
program p halts on input x. By Theorem 6, A
cannot be computable. On the other hand, here is
a program that prints A: loop over N = 1, 2, . . . ,
and during iteration N , for each p, x ≤ N , run
program p on input x for N steps, and print 2p3x

if the program halts within these N steps. �

The DPRM theorem. We are now ready to
state the following remarkable theorem.4

DPRM theorem (Davis, Putnam, Robinson,
Matiyasevich 1970). A subset of Z is listable if
and only if it is diophantine.

To prove their theorem, these four authors
essentially built a computer out of diophantine
equations! They showed that diophantine equa-
tions are rich enough to simulate any computer in
the sense that given a computer program, one can

4Historically, the notions of diophantine, listable, and computable and the DPRM theorem were stated for subsets
of N instead of Z. This makes little difference, however: reductions in both directions are possible because of Example 2

and the equality Z = N ∪ (−N).
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construct a polynomial equation that has an inte-
ger solution if and only if the program halts. The
proof of the DPRM theorem looks curiously like
the construction of a complicated computer pro-
gram, with high-level routines built out of more
elementary ones, except that instead of routines
one has diophantine equations everywhere. An
improved version of the original proof may be
found in Chapters 1–5 of [Mat93].

A brief history of the DPRM theorem.
The DPRM theorem was conjectured in 1949 by
Davis, who also carried out the first reductions
towards its proof. In 1961, Davis, Putnam, and
Robinson proved its analogue for exponential dio-

phantine equations over N (such as 2x3y
xz+x2

=
5x2 + yz). This meant that it remained to show
that exponentiation was diophantine, i.e., that
{(a, b, c) ∈ N3 : c = ab} was a diophantine set.
Earlier, in 1952, Robinson had proved that the
diophantineness of exponentiation would follow
from the existence of a 2-variable diophantine re-
lation of “exponential growth”. Finally, in 1970,
Matiyasevich used properties of Fibonacci num-
bers Fn to prove that the relation m = F2n was
diophantine; this gave what Robinson needed,
and completed the proof of the DPRM theorem.

For more history, see the references at the end
of this article, including the film [Csi08] and the
website [Vse].

Negative answer to H10. The DPRM theo-
rem easily implies a negative answer to H10, as
we now explain. The undecidability of the halt-
ing problem gave us a listable set that is not com-
putable. By the DPRM theorem, having this is
the same as having a diophantine set that is not
computable. By definition, this means that we
have a polynomial p(t, ~x) such that there is no
algorithm for deciding for which values a ∈ Z the
equation p(a, ~x) = 0 has a solution in integers
x1, . . . , xn. Thus there cannot be an algorithm
for deciding the existence of integer solutions to
all polynomial equations.

Remark. H10 was not the first problem outside
logic and computability theory to be proved un-
decidable. In 1947 A. A. Markov and E. Post in-
dependently found a finitely presented semigroup
for which the word problem is undecidable, and
in 1955 P. S. Novikov did the same for a finitely
presented group. (The word problem for a finitely
presented semigroup G with finite set of genera-
tors A is the problem of deciding, given two finite
sequences of elements of A, whether the product

of the first sequence equals the product of the
second sequence in G.) The word problem for
groups had been motivated by topology, and it
was not long afterward that fundamental prob-
lems in topology itself were found to be undecid-
able: for instance, Markov in 1958 proved that
the problem of deciding whether two finite sim-
plicial complexes are homeomorphic is undecid-
able.

Other fun consequences of DPRM

Undecidability for polynomials of fixed de-
gree in a fixed number of variables. The
proof of the previous section shows that there is
a pair (n, d) of positive integers such that there
is no algorithm for deciding the existence of inte-
ger solutions to n-variable polynomial equations
of total degree d. In the 1960s, before the DPRM
theorem was proved, the fact that it would imply
that equations of bounded degree in a bounded
number of variables suffice to represent all dio-
phantine sets was considered by some as evidence
that the theorem could not be true!

After 1970, several authors, including
Yu. Matiyasevich, J. Robinson, and Z. W. Sun,
proved undecidability results for explicit small
values of n and d. For instance, it is now known
that there is no algorithm for deciding the ex-
istence of integer solutions to polynomial equa-
tions in 11 variables. In the positive direction,
it is known only that there is an algorithm for
polynomials in one variable! It is likely that the
problem is decidable also for polynomials in two
variables, but so far the elaborate machinery de-
veloped by arithmetic geometers is too weak to
prove even this.

As for degree, a trick discovered by T. Skolem
in the 1920s shows that any polynomial equation
in integers is equivalent to one of degree at most
4 (and the equivalence is constructive): for in-
stance, y2 = x5 + 7 is solvable if and only if

(u− x2)2 + (v − u2)2 + (y2 − xv − 7)2 = 0

is. Thus there is no algorithm for equations of
degree 4. In the positive direction, there is an al-
gorithm for equations of degree at most 2 in any
number of variables. The situation for degree 3
is still unknown.

Number of solutions.

Theorem 8 (Davis 1972). Let A be a nonempty
proper subset of N∪ {ℵ0}. There is no algorithm
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that takes as input f(~x) ∈ Z[x1, . . . , xn] and out-
puts YES or NO according to whether the cardi-
nality of {~a ∈ Zn : f(~a) = 0} belongs to A.

The proof, which is very short, shows that an al-
gorithm for any A as above could be used to give
an algorithm for H10.

Simple equations whose smallest solution
is huge.

Theorem 9. There is a polynomial p(t, ~x) such
that for any function F : Z → N that is com-
putable and defined on all of Z, there exists a ∈ Z
such that p(a, ~x) = 0 has a solution ~x ∈ Zn but
no solution with max |xi| < F (a).

Proof. Use the same p as in the proof of the neg-
ative answer to H10. If there were a computable
bound on the size of the smallest solution when a
solution existed, then one could decide for which
a ∈ Z the equation p(a, ~x) = 0 was solvable sim-
ply by searching up to that bound. This contra-
dicts the choice of p. �

Prime-producing polynomials. Before the
DPRM theorem was proved, Putnam observed
that it would imply the following theorem.

Theorem 10. There exists a polynomial
F (x1, . . . , xn) ∈ Z[x1, . . . , xn] such that the posi-
tive integers in its range (as a function Nn → Z)
are exactly the prime numbers.

Proof. The natural number version of the DPRM
theorem gives a polynomial p(t, ~x) such that for
a ∈ N, the equation p(a, ~x) = 0 is solvable in
natural numbers if and only if a is prime. Define
F (t, ~x) := t(1− p(t, ~x)2). It can be positive only
when p(t, ~x) = 0, and in this case, t is prime and
F (t, ~x) = t. Conversely, every prime arises this
way. �

A reasonably simple prime-producing polyno-
mial in 26 variables was constructed in a paper by
J. P. Jones, D. Sato, H. Wada, and D. Wiens: see
[Mat93, p. 55]. Later Matiyasevich constructed a
10-variable example.

Riemann hypothesis. The DPRM theorem
gives an explicit polynomial equation that has a
solution in integers if and only if the Riemann
hypothesis (RH) is false. Indeed, one can write
a computer program that searches for a coun-
terexample to RH (e.g., by applying the argu-
ment principle and numerical integration to rect-
angles with corners in Q[i] lying in the strip 1/2 <
Re s < 1, or by testing an equivalent formulation

of RH as in [DMR76, p. 335] or [Mat93, §6.4]);
then one can use the DPRM theorem to simulate
the program with a polynomial equation.

M. Baker half-jokingly observed that one
might try to prove RH by showing that the equa-
tion has no solutions modulo 17, say! As one
might expect, however, things are not so easy:
the equation produced by the DPRM theorem
will have solutions modulo any fixed positive in-
teger.

H10 over other rings

Even before 1970, researchers began asking
Hilbert’s question for rings other than Z.

Definition 11. Let R be a commutative ring.
Then Hilbert’s tenth problem over R (H10 over
R) asks for an algorithm that takes as input
f(~x) ∈ R[x1, . . . , xn] and outputs YES or NO ac-
cording to whether there exists ~a ∈ Rn such that
f(~a) = 0.

Technically, to make sense of this, we need to
fix an encoding of elements of R suitable for in-
put into a Turing machine. In cases where this
is not possible (e.g., if R is uncountable), then
it is understood that we restrict the possible in-
puts by requiring that the coefficients of f belong
to some “large” countable subring R0 of R. For
instance, if R = C, we might take R0 to be the
subfield of algebraic numbers.

The question of whether H10 over R has a
positive answer now depends on the ring R (and
possibly also R0). The remainder of this article
will focus on rings R that are of interest to num-
ber theorists. For more information about these
problems, see [DLPVG00,Shl07].

H10 over rings of algebraic integers. The
ring of Gaussian integers, Z[i] := {a + bi : a, b ∈
Z}, shares many properties with Z, so one might
expect a negative answer for H10 over Z[i]. More
generally, inside any number field k (i.e., finite
extension of Q), one has the ring of integers Ok,
defined as the set of α ∈ k satisfying f(α) = 0 for
some monic f(x) ∈ Z[x].

Conjecture 12. For any number field k, H10
over Ok has a negative answer.

Through work of J. Denef, L. Lipshitz,
T. Pheidas, A. Shlapentokh, and the author span-
ning about 30 years, the following is known:

Theorem 13. For a number field k, H10 over
Ok has a negative answer if any of the following
hold:
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(i) k is totally real (i.e., every homomor-
phism k → C has image contained in R).

(ii) k is a quadratic extension of a totally real
number field.

(iii) k has exactly one conjugate pair of non-
real embeddings.

(iv) There exists an elliptic curve E over Q
such that E(Q) and E(k) have the same
positive rank.

To make sense of (iv), recall the Mordell-Weil the-
orem, which states that for any elliptic curve E
over a number field k, the abelian group E(k) of
points on E with coordinates in k is finitely gen-
erated. Condition (iv) is probably satisfied for
every number field k, but this seems extremely
difficult to prove.

The reason that the proof of the negative an-
swer for Z cannot be adapted directly to arbitrary
Ok is that it uses the fact that the integer solu-
tions to Pell’s equation x2 − dy2 = 1 for a fixed
nonsquare d ∈ N form an abelian group of rank 1.
It is only for number fields like those in (i)–(iii) of
Theorem 13 that something close enough to this
holds over Ok.

In contrast with Conjecture 12, if Z is the ring
of all algebraic integers, i.e., {α ∈ C : f(α) =
0 for some monic f(x) ∈ Z[x]}, then H10 over Z
has a positive answer, as shown by R. Rumely.

H10 over Q. H10 over Q is equivalent to one
of the big open problems in arithmetic geometry,
namely whether there is a general algorithm for
deciding whether a variety X over Q has a ratio-
nal point5.

Reductions. Might one deduce a negative answer
to H10 over Q from the negative answer to H10
over Z? Given a polynomial equation over Q,
one can construct an equivalent system of poly-
nomials over Z by replacing each rational variable
by a ratio of two new integer variables, clearing
denominators, and adding auxiliary equations to
force the denominator variables to take nonzero
values in any solution (such auxiliary equations
exist since the subset Z − {0} of Z is diophan-
tine). Since a system of polynomial equations
f1 = · · · = fn = 0 over Z is equivalent to a sin-
gle polynomial equation f21 + · · · + f2n = 0 over
Z, the previous sentence shows that H10 over Q
can be embedded as a subproblem of H10 over

Z. Unfortunately, this goes the wrong way: the
subproblem might still be decidable even though
the whole problem is not.6

One way to get a reduction in the useful di-
rection would be to show that Z is diophan-
tine over Q, i.e., that there is a polynomial
p(t, ~x) ∈ Q[t, x1, . . . , xn] such that Z equals the
set of a ∈ Q such that p(a, ~x) = 0 has a solution
~x ∈ Qn. Indeed, we could use this to embed H10
over Z as a subproblem of H10 over Q: given a
polynomial equation to be solved in integers, we
could consider the same equation over Q together
with auxiliary equations that force the rational
variables to take integer values (this is where we
need Z to be diophantine over Q).

Actually, something a little weaker would suf-
fice for the desired reduction. It would suffice to
have a diophantine model of the ring Z over Q,
i.e., a diophantine set S ⊆ Qn that “looks like
Z” in the sense that it is equipped with a bijec-
tion φ : Z → S such that the graphs of + and ×
(subsets of Z3) correspond under φ to diophan-
tine subsets of S3 ⊆ Q3n.

Even more generally, it would suffice to have
a diophantine interpretation of Z over Q: this is
like a diophantine model, except that Z is iden-
tified not with a diophantine subset of some Qn,
but with a diophantine subset modulo a diophan-
tine equivalence relation.

Remark. It has been suggested that one might try
to build a diophantine model of Z over Q using
an elliptic curve E with E(Q) ' Z. Such elliptic
curves are easy to find, and under the bijection
Z→ E(Q) the graph of + on Z corresponds to a
diophantine subset; unfortunately it is not clear
whether the same is true for the graph of ×.

Mazur’s conjecture. B. Mazur has proposed a
conjecture that, if true, would rule out some of
these approaches towards a negative answer to
H10 over Q. If X is a variety over Q, then the
set X(R) of real points on X inherits a topology
from the topology of Rn.

Conjecture 14 (Mazur 1992). For any variety
X over Q, the topological closure of X(Q) in
X(R) has at most finitely many connected com-
ponents.

A deep theorem of G. Faltings can be used to
prove Mazur’s conjecture for a curve X. But our

5Readers unfamiliar with the notion of variety will lose little generality, for our purposes, in thinking of X as a
system of polynomial equations, and a rational point as a simultaneous solution in rational numbers.

6On the other hand, if H10 over Z had had a positive answer, it would have implied a positive answer to H10 over
Q. It has been argued that this, together with the fact that Hilbert asked his question for Z instead of Q, suggests

that Hilbert expected a positive answer to his tenth problem.
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almost complete lack of understanding of ratio-
nal points on higher-dimensional varieties makes
it difficult to gather much evidence for or against
the conjecture in general. See [Maz94] for further
discussion.

Mazur’s conjecture, together with some ele-
mentary topology, implies that for any set S ⊆
Qn that is diophantine over Q, the closure of S
in Rn has at most finitely many connected com-
ponents. In particular, it implies that Z is not
diophantine over Q. (This was Mazur’s reason
for introducing his conjecture.) A more compli-
cated argument of G. Cornelissen and K. Zahidi
involving the DPRM theorem shows that Mazur’s
conjecture implies also that there is no diophan-
tine model of Z over Q.

On the other hand, it is not known whether
Mazur’s conjecture rules out also a diophantine
interpretation of Z over Q.

Subrings of Q. Given that we have a negative
answer for Z and do not know the answer for Q,
we might ask about rings in between. Every such
ring is Z[S−1] for some subset S of the set P of all
primes: Z[S−1] consists of the rational numbers
whose denominators are divisible only by primes
in S. How large can we make S and still prove a
negative answer for H10 over Z[S−1]?

If S is finite, work of Robinson on diophantine
definitions of valuation rings in Q implies that Z
is diophantine over Z[S−1], so the negative an-
swer for Z implies a negative answer for Z[S−1].
If S is infinite, we may measure its size by defin-
ing the natural density of S as

lim
X→∞

#{p ∈ S : p ≤ X}
#{p ∈ P : p ≤ X}

,

if the limit exists.
In 2003 the author proved

Theorem 15. There exists a computable set S ⊆
P of density 1 such that

(i) There exists a curve E such that
E(Z[S−1]) is an infinite discrete subset of
E(R). (So the analogue of Mazur’s con-
jecture for Z[S−1] is false.)

(ii) There is a diophantine model of Z over
Z[S−1].

(iii) H10 over Z[S−1] has a negative answer.

The proof takes E to be an elliptic curve of rank
1 (minus its point at infinity), and shows that by
choosing S carefully, we can control the subset
E(Z[S−1]) of E(Q) sufficiently well to obtain a
discrete set that looks enough like Z to serve as
a diophantine model.

Unfortunately, the complement of S in P,
while sparse, is still infinite, so Theorem 15 im-
plies nothing about H10 over Q.

First-order sentences

In terms of logic, H10 asks for an algorithm to
decide the truth of positive existential sentences

(∃x1∃x2 · · · ∃xn) f(x1, . . . , xn) = 0

in the language of rings, where the variables run
over integers. More generally, one can ask for an
algorithm to decide the truth of arbitrary first-
order sentences, in which any number of quan-
tifiers and boolean operations are permitted: a
typical such sentence is

(∃x)(∀y)(∃z)(∃w) (x ·z+3 = y2) ∨ ¬(z = x+w).

Long before DPRM, the work of K. Gödel,
A. Church, and A. Turing in the 1930s made it
clear that there was no algorithm for solving the
harder problem of deciding the truth of first-order
sentences over Z.

First-order sentences over Q. Though it is
not known whether Z is diophantine over Q, we
have

Theorem 16 (Robinson 1949). One can charac-
terize Z as the set of t ∈ Q such that a particular
first-order formula of the form

(∀~x)(∃~y)(∀~z)(∃~w) p(t, ~x, ~y, ~z, ~w) = 0

is true, when the variables range over rational
numbers.

Combining this with the non-existence of an algo-
rithm for first-order sentences over Z, Robinson
obtained

Corollary 17. There is no algorithm to decide
the truth of a first-order sentence over Q.

How complicated must a class of first-order
sentences be, in order that we are able to prove
that no algorithm can decide the truth of all sen-
tences in the class? Using quaternion algebras,
the author in 2007 improved Robinson’s result
by defining Z in Q by a formula with 2 universal
quantifiers followed by 7 existential quantifiers:
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Theorem 18. The set Z equals the set of t ∈ Q
such that

(∀a, b)(∃x1, x2, x3, x4, y2, y3, y4)

(a+ x2
1 + x2

2 + x2
3 + x2

4)(b+ x2
1 + x2

2 + x2
3 + x2

4)

·
[(
x2
1 − ax2

2 − bx2
3 + abx2

4 − 1
)2

+

2309∏
n=0

(
(n− t− 2x1)

2 − 4ay2
2 − 4by2

3 + 4aby2
4 − 4

)2]
= 0

is true, when the variables range over rational
numbers.

Corollary 19. There is no algorithm for decid-
ing, given an algebraic family of morphisms of
varieties, whether there exists one that is surjec-
tive on rational points.

Cornelissen and Zahidi obtained an even bet-
ter result conditional on the truth of a plausible
conjecture about elliptic curves.

If we could eliminate the two universal quan-
tifiers in Theorem 18, we would have a negative
answer to H10 over Q. But we cannot see how to
eliminate even one of them.

Status of knowledge. The table below summa-
rizes what is known regarding the questions

• Is there an algorithm for H10 over R?
• Is there an algorithm to decide the truth

of arbitrary first-order sentences over R?

over various rings R, listed roughly in order of
increasing arithmetic complexity7:

Ring H10 1st order

C YES YES
R YES YES

Fq YES YES

p-adic fields YES YES
Fq((t)) ? ?

Z YES YES

number field ? NO
Q ? NO

global function field NO NO
Fq(t) NO NO

C(t) ? ?
C(t1, . . . , tn), n ≥ 2 NO NO

R(t) NO NO

Ok ? NO
Z NO NO

For C the positive answers are a consequence of
19th century elimination theory. For R they come
from A. Tarski’s elimination theory for semialge-
braic sets, subsets of Rn defined by polynomial
equations and polynomial inequalities. For finite
fields Fq, the answers are trivially positive! By a
p-adic field, we mean a finite extension of the field
Qp of p-adic numbers; A. Macintyre developed an
elimination theory for these, though the positive
answers were given before this, in work of J. Ax,
Yu. Ershov, S. Kochen, and A. Nerode. It is sur-
prising that the answers for the closely analogous
field Fq((t)) of formal Laurent series over a finite
field are not known.

We have already mentioned Rumely’s positive
answer for H10 over Z; this was extended to first-
order sentences by L. van den Dries. The nega-
tive answers for first-order sentences over a num-
ber field k and its ring of integers Ok are due to
Robinson.

By global function field we mean the field Fq(t)
of rational functions with coefficients in a finite
field, or a finite extension of Fq(t). Such fields are
studied both because they are closely tied to alge-
braic geometry and because they are analogous to
number fields in many ways. The breakthrough
giving the negative answer to H10 for Fq(t) for
odd q was due to T. Pheidas. The extension to all
global function fields (and even finite extensions
of Fq(t1, . . . , tn) for n ≥ 2) was completed by
C. Videla, A. Shlapentokh, and K. Eisenträger.
The proofs use the Frobenius endomorphism in
an essential way, however, and hence cannot be
adapted to number fields.

The negative answer to H10 over C(t1, . . . , tn)
for n ≥ 2 is due to K. H. Kim and F. W. Roush;
this result should be better known among alge-
braic geometers than it is since it implies that
there is no algorithm for the general problem
of deciding whether a rational map of varieties
X 99K Pn over C for fixed n ≥ 2 admits a ra-
tional section. The analogue with Pn replaced
by an arbitrary fixed variety Y of dimension at
least 2 was proved by K. Eisenträger using work
of L. Moret-Bailly. Although the answers for C(t)
are unknown, the answers for R(t) are negative,
as shown by J. Denef.

Our list of results is by no means complete:
for instance, we have said nothing about rings of
holomorphic or meromorphic functions, function

7There is no formal definition of arithmetic complexity, but for fields k we can look at the size of the absolute
Galois group Gal(ks/k), where ks is a separable closure of k. Domains may be considered more complex than their

fraction fields, since they have “extra structure” coming from the divisibility relation.
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fields over an algebraically closed field of posi-
tive characteristic, etc. There remain many open
problems for anyone who is interested.
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