Graded problems, Part A
See attached photocopies.

Graded problems, Part B

1. (a) Figure 1 shows a graph of \(G(x) = \sin \left(\frac{1}{x} \right) \). What must be observed is that as \(x \) approaches zero, \(G(x) \) oscillates back and forth between \(-1\) and \(1\) infinitely many times. To see that this must be so, set \(z = \frac{1}{x} \) and consider \(\sin(z) \). As \(x \to 0^+ \), \(z \to \infty \), which allows for infinitely many oscillations of \(\sin(z) \). The same thing happens when \(x \to 0^- \). We see that \(G(x) \) attains every value between \(-1\) and \(1\) in infinitely many times as \(x \to 0 \), but it cannot be said to “approach” any one value in particular. Thus \(\lim_{x \to 0} G(x) \) does not exist.

![Figure 1: The function \(G(x) = \sin(1/x) \)](image)

(b) Choose \(f(x) = -|x| \) and \(h(x) = |x| \). Then since \(|\sin(1/x)| \leq 1 \) for all \(x \), we have \(f(x) \leq x \sin(1/x) \leq h(x) \) for all \(x \) (see Figure 2), and therefore

\[
\lim_{x \to 0} F(x) = 0.
\]

This is also the value of \(F(0) \) by definition, thus \(F \) is continuous at 0.

(c) If \(F(x) \) were differentiable at 0, its derivative there would be

\[
F'(0) = \lim_{h \to 0} \frac{F(0 + h) - F(0)}{h} = \lim_{h \to 0} \frac{h \sin(1/h) - 0}{h} = \lim_{h \to 0} \sin(1/h).
\]

But we saw in part (a) that this limit does not exist, thus \(F \) is not differentiable at 0.

(d) Using again the fact that \(|\sin(1/x)| \leq 1 \), we have

\[-x^2 \leq x^2 \sin(1/x) \leq x^2,\]

and since \(-x^2\) and \(x^2\) both equal zero at \(x = 0 \), \(\lim_{x \to 0} x^2 \sin(1/x) = 0 \). By the definition of the derivative,

\[
H'(0) = \lim_{h \to 0} \frac{H(0 + h) - H(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h} = \lim_{h \to 0} h \sin(1/h) = 0,
\]
Figure 2: \(F(x) = x \sin(1/x) \) along with two “squeezing functions,” \(f(x) = -|x| \) and \(h(x) = |x| \).

by the result of part (b).

2. (a) \(\lim_{x \to 0} \frac{\sin ax}{x} = \lim_{x \to 0} \left(a \frac{\sin ax}{ax} \right) = a \lim_{x \to 0} \frac{\sin ax}{ax} = a \cdot 1 = a \), since as \(x \to 0 \), so does \(ax \).

(b) The polygon is made up of \(n \) identical isosceles triangles, each with two sides of length \(r \). For any one of these triangles, the angle between the two identical sides is \(2\pi/n \) radians. Divide this triangle symmetrically into two right triangles, both with height \(h \) and base \(a \). Then

\[
\frac{h}{r} = \cos \left(\frac{\pi}{n} \right) \quad \text{and} \quad \frac{a}{r} = \sin \left(\frac{\pi}{n} \right).
\]

The area of the full isosceles triangle is then

\[
\frac{1}{2} 2ah = ah = r^2 \cos(\pi/n) \sin(\pi/n) = \frac{r^2}{2} \sin(2\pi/n),
\]

where we’ve used the double angle formula \(\sin(2\theta) = 2 \sin(\theta) \cos(\theta) \). Multiplying by \(n \), the polygon has area

\[
A_n = \frac{nr^2}{2} \sin \left(\frac{2\pi}{n} \right)
\]

(c) Using the result of part (a),

\[
\lim_{n \to \infty} A_n = \lim_{n \to \infty} \frac{nr^2}{2} \sin \left(\frac{2\pi}{n} \right) = \frac{r^2}{2} \lim_{1/n \to 0} \sin \left(\frac{2\pi}{n} \right) = \frac{r^2}{2} \frac{2\pi}{2} = \pi r^2.
\]