HOMEWORK 7

DUE DATE: WEDNESDAY, APRIL 5

1. Argue that there exists a map $\alpha: S^2 \to S^2 \vee S^1$ so that the inclusion $S^1 \hookrightarrow (S^2 \vee S^1) \cup_{\alpha} D^3$

induces an isomorphism on π_1 and \widetilde{H}_* , but is not a homotopy equivalence.

2. (Hatcher) Consider the equivalence relation \sim_w generated by weak homotopy equivalence: $X \sim_w Y$ if there are spaces $X = X_1, X_2, \ldots, X_n = Y$ with weak homotopy equivalences $X_i \to X_{i+1}$ or $X_i \leftarrow X_{i+1}$ for each *i*. Show that $X \sim_w Y$ iff X and Y have a common CW-approximation.

3. Show that $p: E \to B$ is a principle *G*-bundle, and $f: X \to B$ is a map, then the pullback $f^*E = E \times_B X \to X$ is a principle *G*-bundle. Show that if $g: Y \to X$ is another map, then there is an isomorphism of *G*-bundles

$$g^*f^*E \cong (f \circ g)^*E.$$

4. Suppose that X is a pointed, connected CW complex. A trivialization of a principle G-bundle

 $p: E \to X$

is a section $s: X \to E$, satisfying $ps = Id_X$. An isomorphism of trivialized bundles is a bundle isomorphism which preserves the trivialization.

(a) Argue that a trivialization is the same thing as an isomorphism with the trivial G-bundle.

(b) Let $EG \to BG$ be the universal *G*-bundle. Argue that there is an isomorphism $[X, EG]_* \cong \{\text{isomorphism classes of trivialized } G\text{-bundles}\}.$

(c) Show that any two trivialized bundles are isomorphic. Conclude that EG is contractible, and that ΩBG is weakly equivalent to G.

WARNING: This problem turns out to be subtler than I initially imagined. You may for simplicity assume that G is discrete!