1. Show that if \(f : X \to Y \) is a fibration, and \(Y \) is based, then the canonical map

\[
f^{-1}(*) \to F(f)
\]

is a homotopy equivalence.

2. A Serre fibration is a map \(f : X \to Y \) satisfying a restricted form of the homotopy lifting property. For all \(n \geq 0 \) and all \(g, h \) making the outer square commute

\[
\begin{array}{ccc}
I^n \times \{0\} & \xrightarrow{g} & X \\
\downarrow & & \downarrow f \\
I^{n+1} & \xrightarrow{h} & Y
\end{array}
\]

there exists a dotted arrow as above making the diagram commute. The notion of Serre fibration is often times more convenient than the notion of fibration.

Suppose that \(Y \) is pointed. Show that the canonical map \(f^{-1}(*) \to F(f) \) is a weak equivalence. Deduce that Serre fibrations have long exact sequences of homotopy groups.

3. (Path-loop fibration) Let \(X \) be a pointed space.

(a) Show that the evaluation map

\[
ev_1 : \text{Map} (I, X) \to X
\]

is a Serre fibration, with fiber \(\Omega X \). (Note: it is actually a fibration.) This fiber sequence is called the path-loop fibration.

(b) Show that if \(p : E \to X \) is a Serre fibration with contractible total space \(E \), and fiber \(F \), then there is a weak equivalence \(F \to \Omega X \). (Hint: one approach is to compare with the LES of the path-loop fibration.)

4. Show that all locally trivial bundles are Serre fibrations.

5. Let \(H \) be a closed sub-Lie group of a compact Lie group \(G \). Show that \(G \to G/H \) is a locally trivial bundle with fiber \(H \). (Note: I think that the assumption that \(G \) is compact is not necessary, but might make the problem easier.)