The Krull Filtration (Lecture 37)

July 11, 2008

Let A be a commutative Noetherian ring. Recall that the Zariski spectrum $\text{Spec } A$ is defined to be the set of all prime ideals $\{p \subseteq A\}$. Let Mod_A denote the category of A-modules. It is possible to recover $\text{Spec } A$ directly from the category Mod_A. For this, we need to recall a few definitions and facts:

Definition 1. Let \mathcal{C} be a Grothendieck abelian category. An object $X \in \mathcal{C}$ is **Noetherian** if every ascending chain of subobjects of X eventually stabilizes. We say that \mathcal{C} is **locally Noetherian** if every object of \mathcal{C} is the direct limit of its Noetherian subobjects.

An object $I \in \mathcal{C}$ is **injective** if the functor $M \mapsto \text{Hom}_\mathcal{C}(M, I)$ is exact. We say that an injective object I is **indecomposable** if, whenever I is written as a direct sum $I \simeq I' \oplus I''$, either I' or I'' is zero.

Let $X \in \mathcal{C}$ be an object. An **injective hull** of X is a monomorphism $X \rightarrow I$ such that I is injective, and every nonzero subobject $I' \subseteq I$ satisfies $I' \times_X X \neq 0$.

Proposition 2. Let \mathcal{C} be a locally Noetherian abelian category. Then:

1. Every object $M \in \mathcal{C}$ admits an injective hull $M \rightarrow I$. Moreover, I is uniquely determined up to (noncanonical) isomorphism. If M is simple, then I is indecomposable.

2. Every direct sum $\oplus_{\alpha} I_\alpha$ of injective objects is injective.

3. Every injective object $I \in \mathcal{C}$ can be obtained as a direct sum $\oplus_{\alpha} I_\alpha$, where each summand I_α is an indecomposable injective.

This motivates the following definition:

Definition 3. Let \mathcal{C} be a locally Noetherian abelian category. Then we let $\text{Spec } \mathcal{C}$ denote the collection of all isomorphism classes of indecomposable injective objects of \mathcal{C}.

Remark 4. A priori, the collection $\text{Spec } \mathcal{C}$ might be very large, since \mathcal{C} has a proper class of injective objects. However, if I is an indecomposable injective object of \mathcal{C}, then I can be regarded as the injective hull of any nonzero submodule $I_0 \subseteq I$. In particular, I can be regarded as the injective hull of a Noetherian object of \mathcal{C}. It follows that $\text{Spec } \mathcal{C}$ is actually a set.

Example 5. Let A be a Noetherian ring. Then there is a canonical bijection

$$\text{Spec } A \rightarrow \text{Spec } \text{Mod}_A$$

which carries a prime ideal $p \subseteq A$ to the injective hull of the A-module A/p.

For example, if $A = \mathbb{Z}$, then the indecomposable injective objects of Mod_A are precisely the abelian groups \mathbb{Q} and $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$, where p is a prime number.

Example 6. Let \mathcal{U} denote the category of unstable Steenrod modules. The simple objects of \mathcal{U} are precisely the modules $\Sigma^k \mathbb{F}_2$, where $k \geq 0$. The injective hull of $\Sigma^k \mathbb{F}_2$ can be identified with the Brown-Gitler module $J(k)$.

If \(A \) is a Noetherian ring, then \(\text{Spec } A \) has a good deal more structure than just that of a set. For example, we can (at least in good cases) assign a \textit{Krull dimension} to every point of \(\text{Spec } A \). The points of Krull dimension zero correspond to the maximal ideals of \(A \). Note that the collection of maximal ideals of \(A \) can be described very simply in terms of \(\text{Mod}_A \): they are isomorphism classes of simple objects of \(\text{Mod}_A \) (more precisely, an \(A \)-module \(M \) is simple if and only if it is isomorphic to a quotient \(A/\mathfrak{m} \), where \(\mathfrak{m} \) is a maximal ideal of \(A \)). Therefore, the corresponding points of \(\text{Spec } \text{Mod}_A \) are precisely the injective hulls of the simple objects of \(A \). We now wish to generalize this picture to more general categories.

\textbf{Definition 7.} Let \(\mathcal{C} \) be a locally Noetherian abelian category. Then \(\text{Krull}^0(\mathcal{C}) \) is the smallest Serre class in \(\mathcal{C} \) which contains every simple object in \(\mathcal{C} \).

\textbf{Remark 8.} If \(\mathcal{C} \neq 0 \), then \(\text{Krull}^0(\mathcal{C}) \neq 0 \). In other words, \(\mathcal{C} \) contains a simple object. To prove this, choose a nonzero object \(M \in \mathcal{C} \). Since \(\mathcal{C} \) is locally Noetherian, \(M \) is the union of its Noetherian subobjects. We may therefore assume that \(M \) is Noetherian. Let \(M_0 \) be a maximal proper submodule of \(M \). Then \(M/M_0 \) is a simple object of \(\mathcal{C} \).

\textbf{Proposition 9.} Let \(\mathcal{C} \) be a locally Noetherian abelian category, and let \(I \) be an injective object of \(\mathcal{C} \). Then exactly one of the following statements holds:

1. The object \(I \) is the injective hull of a simple object \(C \in \mathcal{C} \) (which is then determined up to isomorphism).

2. The object \(I \) belongs to \(\mathcal{C}/\text{Krull}^0(\mathcal{C}) \) (and is injective as an object of \(\mathcal{C}/\text{Krull}^0(\mathcal{C}) \)).

\textit{Proof.} Let \(\mathcal{C}_0 = \{ C \in \mathcal{C} : \text{Hom}_\mathcal{C}(C, I) = 0 \} \). Since \(I \) is injective, \(\mathcal{C}_0 \) is a Serre class in \(\mathcal{C} \).

By definition, \(I \) belongs to \(\mathcal{C}/\text{Krull}^0(\mathcal{C}) \) if and only if, for every object \(C \in \text{Krull}^0(\mathcal{C}) \), we have \(\text{Hom}_\mathcal{C}(C, I) = \text{Ext}_\mathcal{C}(C, I) = 0 \). The second equality is automatic, since \(I \) is injective, and the first is equivalent to the assertion that \(C \in \mathcal{C}_0 \). In other words, \(I \in \mathcal{C}/\text{Krull}^0(\mathcal{C}) \) if and only if \(\text{Krull}^0(\mathcal{C}) \subseteq \mathcal{C}_0 \). Consequently, (2) holds if and only if \(\text{Hom}_\mathcal{C}(C, I) = 0 \) for every simple object \(C \in \mathcal{C} \).

Suppose that (2) does not hold, and choose a nonzero map \(f : C \to I \) where \(C \) is simple. Then \(f \) must be a monomorphism. Choose an injective hull \(C \subseteq I' \). Since \(I \) is injective, we can extend \(f \) to a map \(\overline{f} : I' \to I \). Since \(\text{ker}(\overline{f}) \cap C \cong \text{ker}(f) \cong 0 \), we deduce that \(\overline{f} \) is injective. Since \(I' \) is injective, the injective map \(\overline{f} \) splits and we get an isomorphism \(I \cong I' \oplus I'' \). Since \(I \) is indecomposable, \(I'' \cong 0 \) so that \(\overline{f} \) is an isomorphism. This proves (1), except for the uniqueness of \(C \). To establish the uniqueness, we note that given injective maps

\[C \hookrightarrow I \hookrightarrow D, \]

the intersection \(C \times_I D \) can be regarded as a nonzero submodule of both \(C \) and \(D \). If \(C \) and \(D \) are simple, this gives isomorphisms

\[C \hookrightarrow C \times_I D \hookrightarrow D. \]

This motivates the following definition:

\textbf{Definition 10.} Let \(\mathcal{C} \) be a Grothendieck abelian category. For each \(n > 0 \), we let \(\text{Krull}^n(\mathcal{C}) \) denote the inverse image of \(\text{Krull}^0(\mathcal{C}/\text{Krull}^{n-1}(\mathcal{C})) \) under the localization functor

\[L : \mathcal{C} \to \mathcal{C}/\text{Krull}^{n-1}(\mathcal{C}). \]

We will say that an indecomposable injective \(I \in \text{Spec } \mathcal{C} \) has \textit{Krull dimension} \(> n \) if \(I \) belongs to \(\mathcal{C}/\text{Krull}^n(\mathcal{C}) \).

We have a filtration of \(\mathcal{C} \) by Serre classes

\[\text{Krull}^0(\mathcal{C}) \subseteq \text{Krull}^1(\mathcal{C}) \subseteq \text{Krull}^2(\mathcal{C}) \subseteq \ldots \]

By construction, each of the successive quotients \(\text{Krull}^{n+1}(\mathcal{C})/\text{Krull}^n(\mathcal{C}) \) is generated by simple objects.
Remark 11. If A is a well-behaved commutative ring (such as a finitely generated algebra over a field), then the Krull filtration above is finite: we have $\text{Krull}^n(M) = M$ as soon as $n \geq \dim(A)$. In general, the filtration need not terminate nor exhaust \mathcal{C} (to obtain the whole of \mathcal{C}, one needs to define an analogous filtration indexed by the ordinals).

We wish to study the Krull filtration on the abelian category \mathcal{U} of unstable A-modules. We begin by determining $\text{Krull}^0(A)$.

Definition 12. An unstable A-module M is locally finite if, for each $x \in M$, the cyclic submodule $A \cdot x \subseteq M$ has finite dimension over F.

Proposition 13. An unstable A-module M belongs to $\text{Krull}^0(\mathcal{U})$ if and only if M is locally finite.

Proof. We first observe that the collection of locally finite A-modules forms a Serre class in \mathcal{U}. Consequently, to prove the “only if” direction it will suffice to show that every simple A-module is locally finite. This follows from the characterization of simple objects given in Remark 11.

For the converse, let us suppose that M is locally finite. We wish to prove that $M \in \text{Krull}^0(\mathcal{U})$. Write M as the union of its finitely generated submodules M_α. Since $\text{Krull}^0(\mathcal{U})$ is a Serre class, it will suffice to show that each M_α belongs to $\text{Krull}^0(\mathcal{U})$. Since M is locally finite, each M_α is finite dimensional over F_2. We may therefore assume that M has finite dimension over F_2. We now work by induction on the dimension of M. Let x be a nonzero element of M of maximal degree k. Then x determines an exact sequence

$$0 \to \Sigma^k F_2 \to M \to M' \to 0.$$

By construction, we have $\Sigma^k F_2 \in \text{Krull}^0(\mathcal{U})$, and $M' \in \text{Krull}^0(\mathcal{U})$ by the inductive hypothesis. It follows that $M \in \text{Krull}^0(\mathcal{U})$, as desired.

We now wish to give another characterization of $\text{Krull}^0(\mathcal{U})$, this time using Lannes’ T-functor. We first observe that $H^*(BF_2)$ canonically decomposes as a direct sum $F_2 \oplus H^*_{\text{red}}(BF_2)$. Consequently, we get a canonical isomorphism of functors

$$(\bullet \otimes H^*(BF_2)) \simeq \bullet \oplus (\bullet \otimes H^*_{\text{red}}(BF_2)).$$

Passing to adjoints, we get a decomposition of functors

$$T \simeq \text{id} \oplus T$$

from the category \mathcal{U} to itself. Moreover, formal properties of T are inherited by T: for example, since T is exact and commutes with suspension and Φ, we deduce that T is exact and commutes with suspension and Φ.

Proposition 14. Let M be an unstable A-module. Then $M \in \text{Krull}^0(\mathcal{U})$ if and only if $TM = 0$.

Proof. The “only if” direction is easy: let $\mathcal{E} = \{ M \in \mathcal{U} : TM = 0 \}$. Then \mathcal{E} is a Serre class in \mathcal{U}. To show that $\text{Krull}^0(\mathcal{U}) \subseteq \mathcal{E}$, it suffices to show that every simple object $\Sigma^k F_2$ belongs to \mathcal{E}. Since T commutes with suspensions, it suffices to show that $T F_2$ vanishes. This is equivalent to the assertion that $T F_2 \simeq F_2$, which was established in an earlier lecture.

The converse is much more difficult to prove. It relies on the following classification of the injective objects of \mathcal{U}:

Theorem 15. Every indecomposable injective object of \mathcal{U} appears as a summand of $J(m) \otimes (H^*_{\text{red}}(BF_2))^\otimes n$ for some integers m and n.

Let us assume Theorem 15 and complete the proof. Let $M \in \mathcal{U}$ be such that $TM = 0$. We wish to show that $M \in \text{Krull}^0(\mathcal{U})$. Equivalently, we wish to show that the localization functor $L : \mathcal{U} \to \mathcal{U}/\text{Krull}^0(\mathcal{U})$ annihilates M. If not, there exists a nonzero map $\eta \in \text{Hom}(LM, I) \simeq \text{Hom}(M, I)$, where I is an indecomposable
injective of $\mathcal{U}/\text{Krull}^0(\mathcal{U})$. According to Proposition 9, we can identify I with an indecomposable injective of \mathcal{U} which is not the injective hull of a simple object (in other words, I is not isomorphic to a Brown-Gitler module $J(m)$). Invoking Theorem 15, we get a nonzero map

$$M \to J(m) \otimes H^*_\text{red}(BF_2)^{\otimes n}$$

for some $n > 0$. This is adjoint to a nonzero map $T^n M \to J(m)$, so that $T M \neq 0$. \hfill \square

We now extend the previous result to describe each step of the Krull filtration.

Proposition 16. Let M be an unstable A-module. Then $M \in \text{Krull}^n(\mathcal{U})$ if and only if $T^{n+1} M \simeq 0$.

Proof. The proof goes by induction on n, the case $n = 0$ being Proposition 14. Suppose first that $T^{n+1} M \simeq 0$. We wish to prove that $M \in \text{Krull}^n(\mathcal{U})$. Writing M as the union of its finitely generated submodules, we may reduce to the case where M is finitely generated. Let $L : \mathcal{U} \to \mathcal{U}/\text{Krull}^{n-1}(\mathcal{U})$ be the localization functor. We wish to show that LM belongs to $\text{Krull}^0(\mathcal{U}/\text{Krull}^{n-1}(\mathcal{U}))$. For this, we will show that LM has finite length in $\mathcal{U}/\text{Krull}^{n-1}(\mathcal{U})$.

By the inductive hypothesis, the functor T^n factors as a composition

$$\mathcal{U} \xrightarrow{L} \mathcal{U}/\text{Krull}^{n-1}(\mathcal{U}) \xrightarrow{F} \mathcal{U}.$$

Consequently, for any subobject $N \subseteq LM$, we can identify FN with a subobject of $T^n M$. Note that $T^n M$ is locally finite (by Proposition 14) and finitely generated (since T preserves finitely generated objects), and therefore finite dimensional. Thus there are only finitely many possibilities for the subobject $FN \subseteq T^n M$.

But if $FN = FN' \subseteq T^n M$, then the inclusions

$$N \hookrightarrow N \cap N' \hookrightarrow N'$$

induce isomorphisms

$$FN \hookrightarrow F(N \cap N') \hookrightarrow FN'.$$

Using the inductive hypothesis, we deduce that $N = N \cap N' = N'$. Thus, there are only finitely many subobjects of $LM \in \mathcal{U}/\text{Krull}^{n-1}(\mathcal{U})$, so that LM has finite length.

We now prove the reverse inclusion: $\text{Krull}^n(\mathcal{U}) \subseteq \{M : T^{n+1} M \simeq 0\}$. As before, the right side is a Serre class, to it will suffice to show that $T^{n+1} M = 0$ whenever LM is a simple object of $\mathcal{U}/\text{Krull}^{n-1}(\mathcal{U})$. We have a sequence of surjective maps

$$M \to \Sigma \Omega M \to \Sigma^2 \Omega^2 M \to \ldots$$

whose colimit is zero. Since LM is simple, we conclude that there exists an integer k such that the map

$$LM \to \Sigma^k \Omega^k M$$

is an isomorphism and $L \Sigma^{k+1} \Omega^{k+1} M = 0$. We then have isomorphisms

$$T^n M \to T^n \Sigma^k \Omega^k M \simeq \Sigma^k T^n \Omega^k M.$$

Moreover, the inductive hypothesis implies that Σ and Ω induce adjoint functors on the localized category $\mathcal{U}/\text{Krull}^{n-1}(\mathcal{U})$; it is not difficult to deduce from this that $L \Omega^k M$ is again simple. We may therefore replace M by $\Omega^k M$, and thereby assume that $L \Sigma \Omega M \simeq 0$.

Consider the exact sequence

$$\Phi M \to M \to \Sigma \Omega M \to 0.$$

This gives rise to an exact sequence of localizations

$$L\Phi M \xrightarrow{\alpha} LM \to L\Sigma \Omega M \to 0.$$
in the category \(\mathcal{U}/\text{Krull}^{n-1}(\mathcal{U}) \). Since \(LM \) is simple and the last term vanishes, we conclude that \(\alpha \) is an epimorphism.

Applying the functor \(F \), we get an epimorphism \(T^n \Phi M \to T^n M \). Let \(N = T^n M \). Since \(\Phi \) commutes with \(T^n \), we deduce that the canonical map \(\Phi N \to N \) is surjective. It then follows by induction on \(m \) that \(N^m \simeq 0 \) for \(m > 0 \). In other words, \(N \) is concentrated in degree zero, and is a direct sum of copies of \(F_2 \). It follows that \(0 \simeq TN \simeq T^{n+1} M \), as desired. \(\square \)