Let p be a prime number. In this lecture we will introduce the category of p-profinite spaces. We begin by reviewing an example from classical algebra.

Let \mathcal{C} be the category of abelian groups, and let $\mathcal{C}_0 \subseteq \mathcal{C}$ be the full subcategory consisting of finitely generated abelian groups. Every abelian group A is the union of its finitely generated subgroups. Consequently, every object of \mathcal{C} can be obtained as a (filtered) direct limit of objects in \mathcal{C}_0. Moreover, the morphisms in \mathcal{C} are determined by the morphisms in \mathcal{C}_0. If A is a finitely generated abelian group and $\{B_\beta\}$ is any filtered system of abelian groups, then we have a bijection $\lim_{\rightarrow} \hom(A, B_\beta) \cong \hom(A, \lim_{\rightarrow} B_\beta)$.

More generally, if A is given as a filtered colimit of abelian groups, then we get a bijection $\hom(\lim_{\rightarrow} A_\alpha, \lim_{\rightarrow} B_\beta) \cong \lim_{\leftarrow} \lim_{\rightarrow} \hom(A_\alpha, B_\beta)$.

We can summarize the situation by saying that \mathcal{C} is equivalent to the category of Ind-objects of \mathcal{C}_0:

Definition 1. Let \mathcal{C}_0 be a category. The category $\text{Ind}(\mathcal{C}_0)$ of Ind-objects of \mathcal{C}_0 is defined as follows:

1. The objects of $\text{Ind}(\mathcal{C}_0)$ are formal direct limits $\lim_{\rightarrow} C_\alpha$, where $\{C_\alpha\}$ is a filtered diagram in \mathcal{C}_0.
2. Morphisms in $\text{Ind}(\mathcal{C}_0)$ are given by the formula $\hom(\lim_{\rightarrow} A_\alpha, \lim_{\rightarrow} B_\beta) \cong \lim_{\alpha} \lim_{\beta} \hom(A_\alpha, B_\beta)$.

Remark 2. There is a fully faithful embedding from \mathcal{C}_0 into $\text{Ind}(\mathcal{C}_0)$, which carries an object $C \in \mathcal{C}_0$ to the constant diagram consisting of the single object C. We will generally abuse notation and identify \mathcal{C}_0 with its image under this embedding.

The category $\text{Ind}(\mathcal{C}_0)$ admits filtered colimits. Moreover, an object $\lim_{\rightarrow} C_\alpha$ in $\text{Ind}(\mathcal{C}_0)$ actually does coincide with the colimit of the diagram $\{C_\alpha\}$ in $\text{Ind}(\mathcal{C}_0)$.

Remark 3. The category $\text{Ind}(\mathcal{C}_0)$ can be characterized by the following universal property: for any category \mathcal{D} which admits filtered colimits, the restriction functor $\text{Fun}_0(\text{Ind}(\mathcal{C}_0), \mathcal{D}) \to \text{Fun}(\mathcal{C}_0, \mathcal{D})$ is an equivalence of categories, where the left side is the category of functors from $\text{Ind}(\mathcal{C}_0)$ to \mathcal{D} which preserve filtered colimits.

Example 4. Let \mathcal{C} be the category of groups (or rings, or any other type of algebraic structure). Then \mathcal{C} is equivalent to $\text{Ind}(\mathcal{C}_0)$, where $\mathcal{C}_0 \subseteq \mathcal{C}$ is the full subcategory spanned by the finitely presented groups (or rings, etcetera).
There is a dual construction, which replaces a category \mathcal{C}_0 by the category $\text{Pro}(\mathcal{C}_0)$ of pro-objects in \mathcal{C}_0: that is, formal inverse limits $\lim_{\alpha} C_{\alpha}$ of filtered diagrams in \mathcal{C}_0.

Example 5. Let \mathcal{C}_0 be the category of finite groups. Then $\text{Pro}(\mathcal{C}_0)$ is equivalent to the category of profinite groups: that is, topological groups which are compact, Hausdorff, and totally disconnected.

The construction $\mathcal{C}_0 \mapsto \text{Pro}(\mathcal{C}_0)$ makes sense not only for ordinary categories, but also for homotopy theories. In other words, suppose that \mathcal{C}_0 is a category enriched over topological spaces (so that for every pair of objects $X, Y \in \mathcal{C}_0$, we have a mapping space $\text{Map}_{\mathcal{C}_0}(X, Y)$). Then we can define a new topological category $\text{Pro}(\mathcal{C}_0)$. Roughly speaking, the objects of $\text{Pro}(\mathcal{C}_0)$ are given by formal filtered limits $\lim_{\alpha} C_{\alpha}$ in \mathcal{C}_0, and the morphisms are described by the formula

$$\text{Map}(\lim_{\alpha} C_{\alpha}, \lim_{\beta} D_{\beta}) = \text{holim}_{\alpha} \text{hocolim}_{\beta} \text{Map}(C_{\alpha}, D_{\beta}).$$

To really make this idea precise requires the machinery of higher category theory; we will be content to work with this construction in an informal way.

We now specialize this construction to the case of interest. Let S denote the category of spaces, S_p the category of p-finite spaces, and S_p^\vee the category $\text{Pro}(S_p)$ of pro-objects in S_p. We will refer to S_p^\vee as the category of p-profinite spaces.

There is a canonical functor $G : S_p^\vee \to S$, which carries a formal inverse limit $\lim_{\alpha} C_{\alpha}$ to the space $\text{holim}_{\alpha} C_{\alpha}$. If we restrict to a suitable subcategory of S_p^\vee by imposing finiteness and connectivity conditions, then the functor G is fully faithful; its essential image being (a suitable subcategory of) the category of p-complete spaces. We will discuss this point in more detail in a future lecture.

The functor G has a left adjoint $X \mapsto X^\vee$, which we will refer to as the functor of p-profinite completion. The functor \vee carries a topological space X to the formal inverse limit $X^\vee = \lim X_{\alpha}$, where X_{α} ranges over all p-finite spaces equipped with a map to X. If X is itself p-finite, then we can identify this inverse limit with X itself.

Definition 6. Let X be a p-profinite space. We let $H^n(X) = H^n(X; F_p)$ denote the set of homotopy classes of maps from X into an Eilenberg-MacLane space $K(F_p, n)$ in the p-profinite category S_p^\vee.

Since $K(F_p, n)$ is p-finite, we see that

$$H^n(\lim X_{\alpha}) \simeq \lim H^n(X_{\alpha}).$$

It follows that for any p-profinite space X, the cohomology $H^*(X) \simeq \bigoplus_n H^n(X)$ is a filter colimit of the cohomology rings of a collection of p-finite spaces, and therefore inherits the structure of an unstable algebra over the Steenrod algebra.

Remark 7. If X is a topological space, then the cohomology $H^*(X; F_p)$ (in the usual sense) can be identified with the cohomology $H^*(X^\vee)$ of the p-profinite completion of X, defined as in Definition 6.

The process of extracting cohomology does not generally commute with the inverse limit functor $G : S_p^\vee \to S$, unless we make suitable finiteness assumptions.

We now discuss the existence of mapping objects in the p-profinite category.

Proposition 8. Let X be a p-profinite space, and let V be a finite dimensional vector space over F_p. Then there exists a p-profinite space X^{BV} equipped with an evaluation map $X^{BV} \times BV \to X$ with the following universal property: for any p-profinite space Y, the induced map

$$\theta : \text{Map}(Y, X^{BV}) \to \text{Map}(Y \times BV, X)$$

is a weak homotopy equivalence.
Proof. If \(X = \varprojlim X_\alpha \), then we can take \(X^{BV} = \varprojlim X^{BV}_\alpha \) (here we are using the fact that each \(X^{BV}_\alpha \) is again \(p \)-finite). We claim that \(X^{BV} \) has the appropriate universal property. For any \(p \)-profinite space \(Y \), we can identify \(\theta \) with a map
\[\text{holim} \text{Map}(Y, X^{BV}_\alpha) \simeq \text{Map}(Y \times BV, X) \simeq \text{holim} \text{Map}(Y \times BV, X_\alpha). \]
It will therefore suffice to prove the result after replacing \(X \) by \(X_\alpha \), so we may assume that \(X \) is \(p \)-finite.

Let \(Y = \varprojlim Y_\beta \). Then the map \(\theta \) can be identified with
\[\text{hocolim} \text{Map}(Y_\beta, X^{BV}) \simeq \text{Map}(Y \times BV, X) \simeq \text{hocolim} \text{Map}(Y_\beta \times BV, X), \]
where the last equivalence follows from the observation that \(Y \times BV \simeq \varprojlim Y_\beta \times BV \) is a product for \(Y \) and \(BV \) in the \(p \)-profinite category. We may therefore assume that \(Y \) is \(p \)-finite as well, in which case the result is obvious.

Remark 9. Proposition 9 remains valid if we replace \(BV \) by an arbitrary \(p \)-finite space. However, it is not valid if \(BV \) is a general \(p \)-profinite space; the \(p \)-profinite category \(S^p \) does not have internal mapping objects in general.

Remark 10. Let \(X = \varprojlim X_\alpha \) and \(Y = \varprojlim Y_\beta \) be \(p \)-profinite spaces. Then \(\varprojlim X_\alpha \times Y_\beta \) is a product for \(X \) and \(Y \) in the category of \(p \)-profinite spaces. Applying the Kunneth theorem to the \(p \)-finite spaces \(X_\alpha \) and \(Y_\beta \), we deduce
\[H^*(X \times Y) \simeq \varprojlim H^*(X_\alpha \times Y_\beta) \simeq \varprojlim H^* X_\alpha \otimes H^* Y_\beta \simeq H^* X \otimes H^* Y. \]

Let us now assume that \(p = 2 \). Let \(X \) be a \(p \)-profinite space. The evaluation map \(X^{BV} \times BV \to X \) induces a map on cohomology
\[H^* X \to H^*(X^{BV} \times BV) \simeq H^*(X^{BV}) \otimes H^*(BV), \]
which is adjoint to a map \(\psi : T_V H^*(X) \to H^*(X^{BV}) \).

Theorem 11. The map \(\psi \) is an isomorphism, for every \(2 \)-profinite space \(X \).

Proof. The proof when \(X \) is 2-finite was given in the previous lecture. In general, write \(X = \varprojlim X_\alpha \). Then we have
\[T_V H^*(X) \simeq T_V \varprojlim H^*(X_\alpha) \]
\[\simeq \varprojlim T_V H^*(X_\alpha) \]
\[\simeq \varprojlim H^*(X^{BV}_\alpha) \]
\[\simeq H^*(X^{BV}). \]

Using this result, we get a measure of exactly how the \(\psi \) might fail to be an isomorphism when we work in the usual category of spaces. For any space \(X \), we have
\[T_V H^*(X) \simeq T_V H^*(X^\vee) \simeq H^*(X^{BV^\vee}) \to H^*(X^{BV})^\vee. \]
In other words, the failure of \(T_V \) to compute the cohomology of mapping spaces is measured by the failure of the formation of mapping spaces to commute with profinite completion.