The left and right homotopy relations

We recall that a coproduct of two objects \(A \) and \(B \) in a category \(C \) is an object \(A \sqcup B \) together with two maps \(\text{in}_1 : A \to A \sqcup B \) and \(\text{in}_2 : B \to A \sqcup B \) such that, for every pair of maps \(f : A \to C \) and \(g : B \to C \), there exists a unique map

\[
f + g : A \sqcup B \to C
\]

such that \(f = (f + g) \circ \text{in}_1 \) and \(g = (f + g) \circ \text{in}_2 \). If both \(A \sqcup B \) and \(A \sqcup B' \) are coproducts of \(A \) and \(B \), then the maps \(\text{in}_1 + \text{in}_2' : A \sqcup B \to A \sqcup B' \) and \(\text{in}_1 + \text{in}_2' : A \sqcup B' \to A \sqcup B \) are isomorphisms and each others inverses. The map \(\nabla = \text{id} + \text{id} : A \sqcup A \to A \) is called the fold map. Dually, a product of two objects \(A \) and \(B \) in a category \(C \) is an object \(A \times B \) together with two maps \(\text{pr}_1 : A \times B \to A \) and \(\text{pr}_2 : A \times B \to B \) such that, for every pair of maps \(f : C \to A \) and \(g : C \to B \), there exists a unique map

\[
(f, g) : C \to A \times B
\]

such that \(f = \text{pr}_1 \circ (f, g) \) and \(g = \text{pr}_2 \circ (f, g) \). If both \(A \times B \) and \(A \times' B \) are products of \(A \) and \(B \), then the maps \((\text{pr}_1, \text{pr}_2) : A \times B \to A \times' B \) and \((\text{pr}_1', \text{pr}_2') : A \times' B \to A \times B \) are isomorphisms and each others inverses. The map \(\Delta = (\text{id}, \text{id}) : A \to A \times A \) is called the diagonal map.

Definition Let \(C \) be a model category, and let \(f : A \to B \) and \(g : A \to B \) be two maps. A cylinder object for \(A \) is a commutative diagram

![Cylinder Diagram](image)

and a left homotopy from \(f \) to \(g \) is a commutative diagram

![Left Homotopy Diagram](image)

If a left homotopy from \(f \) to \(g \) exists, we say that \(f \) and \(g \) are left homotopic and write \(f \sim^l g \). Dually, a path object for \(B \) is a commutative diagram

![Path Diagram](image)
and a right homotopy from f to g is a commutative diagram

$$
\begin{array}{c}
\text{Path}(B) \\
\downarrow \downarrow \downarrow \downarrow \\
A \xrightarrow{(f,g)} B \times B.
\end{array}
$$

If a right homotopy from f to g exists, we say that f and g are right homotopic and write $f \sim^r g$. If both a left and a right homotopy from f to g exist, we say that f and g are homotopic and write $f \sim g$.

The homotopy relations \sim^l, \sim^r, and \sim are relations on the set $\text{Hom}_C(A, B)$ of maps from A to B in C. But, in general, they are not equivalence relations. We write $\text{Hom}_C(A, B)/\sim^l$, $\text{Hom}_C(A, B)/\sim^r$, and $\text{Hom}_C(A, B)/\sim$ for the sets of equivalence classes for the equivalence relations on the set $\text{Hom}_C(A, B)$ generated by the relations \sim^l, \sim^r, and \sim, respectively.