18.727: Problem Set 9

Due: 5/9/01

1. Let X be an irreducible projective scheme over a field k. Show that $H^0(X, \mathcal{O}_X)$ is a finite extension field of k.

2. Let A be a noetherian ring, let $X = \text{Spec} A$, and let M and N be finitely generated A-modules.

 (i) Show that for all $q \geq 0$, the groups $\text{Ext}^q_{\mathcal{O}_X}(\tilde{M}, \tilde{N})$ and $\text{Ext}^q_A(M, N)$ are naturally isomorphic.

 (ii) Show that for all $q \geq 0$, the sheaves $\text{Ext}^q_{\mathcal{O}_X}(\tilde{M}, \tilde{N})$ and $\text{Ext}^q_A(M, N)$ are naturally isomorphic.

3. Let (X, \mathcal{O}_X) be a ringed space. An \mathcal{O}_X-module M is of finite type if there exists a covering $\{U_i \to X\}_{i \in I}$, and for all $i \in I$, a surjection from a finite direct sum of copies of $\mathcal{O}_X|_{U_i}$ onto $M|_{U_i}$. It is coherent if it is of finite type and if for every open subset $U \subset X$ and every homomorphism $f: (\mathcal{O}_X|_U)^n \to M|_U$, the kernel of f is of finite type on $(U, \mathcal{O}_X|_U)$. Show:

 (i) If M is a coherent \mathcal{O}_X-module and $N \subset M$ is a sub-\mathcal{O}_X-module of finite type, then N is coherent.

 (ii) If two out of three \mathcal{O}_X-modules in an exact sequence of \mathcal{O}_X-modules

 \[0 \to M' \to M \to M'' \to 0 \]

 are coherent, then so is the third.

 (iii) If M and N are coherent \mathcal{O}_X-modules, then so are $M \otimes_{\mathcal{O}_X} N$ and $\text{Hom}_{\mathcal{O}_X}(M, N)$.