18.727: Problem Set 2

Due: 2/28/01

The purpose of this problem set is to construct the normalization of an integral scheme. We accomplish this in a series of steps.

1. Let X be an irreducible topological space. Show that every non-empty open subset $U \subset X$ is dense and that U itself is an irreducible topological space.

2. A scheme X is integral if for every open subset $U \subset X$, the ring $\Gamma(U, \mathcal{O}_X)$ is an integral domain. Show that a scheme is integral if and only if it is reduced and irreducible.

3. Let $f: X \to X'$ be a morphism between integral schemes. Show that the following are equivalent:
 (i) the image $f(X) \subset X'$ is dense;
 (ii) if $U \subset X$ and $U' \subset X'$ are affine open subsets such that $f(U) \subset U'$, then the composite ring homomorphism
 $\Gamma(U', \mathcal{O}_{X'}) \to \Gamma(f^{-1}(U'), \mathcal{O}_{X'}) \to \Gamma(U, \mathcal{O}_X)$
 is injective.

 Such a map f is called dominant. (Hint: to show that (i) implies (ii), show that if f is in the kernel, then for all $x' \in U'$, $f(x') = 0$. Conclude that $f = 0$. To show that (ii) implies (i) show that f maps the generic point of U to the generic point of U'.)

4. An integral scheme X is normal if for every affine open subset $U \subset X$, the ring $\Gamma(U, \mathcal{O}_X)$ is integrally closed (in its quotient field). Let X be an integral scheme. A dominant morphism $f: \tilde{X} \to X$ with \tilde{X} normal is called a normalization of X if it is universal with this property, i.e. if every dominant morphism $g: Z \to X$ with Z normal factors uniquely through f.

 (i) Suppose that $X = \text{Spec } R$ is affine, and let $R \to \tilde{R}$ be the canonical map from R to the integral closure of the ring R in its quotient field. Show that the induced map $\text{Spec } \tilde{R} \to \text{Spec } R$ is a normalization.

 (ii) Suppose that $\tilde{X} \to X$ is a normalization and let $U \subset X$ be an open subset. Show that the projection $U \times_X \tilde{X} \to U$ is a normalization. (Hint: Use the universal properties.)

 (iii) Show that every integral scheme X has a normalization $\tilde{X} \to X$. (Hint: Let $\{U_i\}$ be an affine open cover of X. Use (i) to find a normalization $\tilde{U}_i \to U_i$. Use (ii) to show that the schemes \tilde{U}_i can be glued together to give \tilde{X}. Show that the maps $\tilde{U}_i \to U_i$ glue to give $\tilde{X} \to X$.)