On the K-theory of the coordinate axes in the plane

Lars Hesselholt

Introduction

The algebraic K-groups of an algebraic variety encode deep arithmetic informa-
tion about the variety. To wit, for non-singular varieties, the algebraic K-groups
are related to the motivic cohomology groups by means of a spectral sequence

EZ, = H'" (X, Z(t)) = Ky (X).

Indeed, this relationship was the basis of the original definition of motivic coho-
mology [1]. For singular varieties and non-reduced schemes, there is presently no
definition of a motivic cohomology theory that relates to algebraic K-theory in this
manner, but see Bloch-Esnault [2] and Riilling [19] for some work in this direction.
However, it has recently become possible to evaluate the algebraic K-groups of some
singular varieties and non-reduced schemes by using the cyclotomic trace map or
Chern class map to topological cyclic homology [6]. We here use these methods
to completely evaluate the algebraic K-groups of the coordinate axes in the plane.
The groups in degrees less than or equal to two were evaluated twenty-five years
ago by Dennis and Krusemeyer [5], but until now the groups in higher degrees have
resisted calculation. We hope that this calculation will help in developing a motivic
cohomology theory for singular varieties and non-reduced schemes.

We now describe the results of this paper in more detail. Let k be a ring, and let
A = k[z,y]/(xy) be the coordinate ring of the coordinate axes in the affine k-plane.
The K-groups of A decompose as the direct sum

Kq(A) = Kq(k) © K4(A, 1)

of the K-groups of the ground ring & and the relative K-groups of A with respect
to the ideal I = (z,y). We evaluate the groups K (A, I) completely in the case
where k is a regular IFp-algebra. The result is stated in terms of the groups of big
de Rham-Witt forms of k as follows.

THEOREM A. Let k be a regular Fy-algebra, let A = k[z,y]/(xy) be the coordinate
ring of the coordinate axes in the affine k-plane, and let I C A be the ideal generated
by x and y. Then for all integers q, there is a canonical isomorphism

Ky(A 1) & @ W00 "

m>1
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where VVmeC is the group of big de Rham-Witt j-forms of k.

The group K3(A,I) was evaluated by Dennis and Krusemeyer [5] twenty-five
years ago. But it was previously known only that the higher relative K-groups are
p-primary torsion groups [20]. The group of big de Rham-Witt j-forms Wan€ was
introduced in [14, Def. 1.1.6]. It decomposes as a product of the more familiar p-
typical de Rham-Witt j-forms VVSQi defined by Bloch-Deligne-Illusie [16]. Indeed,
by [14, Cor. 1.2.6] there is a canonical isomorphism

W0 = T w.ai,
d
where the product ranges over all integers 1 < d < m that are not divisible by p,
and where s = s(m, d) is the unique positive integer with p*~'d < m < p*d. The
structure of the groups WsQi is well-understood by [16, 1.3.9]. For example, WSQ%p
is canonically isomorphic to Z/p°Z, for j = 0, and is equal to zero, for j > 0.

Let B = k[z] x k[y] be the normalization of the ring A, and let K (A, B,I) be
the bi-relative K-theory spectrum defined to be the iterated mapping fiber of the
following diagram of K-theory spectra.

K(A)—— K(A/I)

|

K(B)—— K(B/I)

The lower horizontal map in this diagram is a weak equivalence since the ring & is
regular. It follows that also the canonical map

K(A,B,I) — K(A,I)

is a weak equivalence. We proved recently in [6, Thm. A] that for every prime p,
the cyclotomic trace map induces an isomorphism

K,(A,B,I,Z/p") = TCy(A,B,I;p,Z/p®)

and it is the bi-relative topological cyclic homology groups on the right-hand side
that we evaluate here. The method is similar to the calculation of the topological
cyclic homology of the ring of dual numbers by the author and Madsen [13, 14].
We first prove a general formula that expresses the bi-relative topological cyclic
homology groups above in terms of the RO(T)-graded equivariant homotopy groups

TR (k;p) = [SY A (T/Cprnr) 4, T(K)]r

of the topological Hochschild T-spectrum T'(k). Here T is the circle group and
C, C T is the subgroup of order r. To state the formula, which is valid for any ring
k, we let \; be the complex T-representation C(1) & - - - & C(i).

THEOREM B. Let k be an Fp-algebra, let A = k[z,y]/(zy) and B = klz] x k[y],
and let I be the common ideal of A and B generated by x and y. Then for all
integers q, there is a canonical isomorphism

TCy(A B, Iip) = [[Um TRy, (k:p)
where the product ranges over the positive integers d that are not divisible by p. The

analogous statement for the groups with Z/p* -coefficients is valid for any ring k.
2



The limit system on the right-hand side of the statement of Thm. B stabilizes
in the sense that the structure map
R: TR; (kip) = TREZ ., (kip)

q—A,r—1g4
is an isomorphism for ¢ < dimg(\,r-14). See Lemma 2.3 below.

If k is a regular IF-algebra, the structure of the groups on the right-hand side of
the statement of Thm. B was determined in [14, Thm. 2.2.2]; sec also [11, Thm. 16].
We recall the result in Sect. 3 below and complete the proof of Thm. A.

Finally, we mention that the analog of Thm. A for k£ a regular Q-algebra is
known. Indeed, by a recent theorem of Cortiias [4, Thm. 0.1] (which inspired us
to prove [6, Thm. A]), the trace map induces an isomorphism

Ky (A,B,]1)®Q S HC, (A®Q,B®Q,I ®Q)

and the bi-relative negative cyclic homology groups on the right-hand side were
evaluated long ago by Geller, Reid, and Weibel [7, 8]. The result is that, if k is a
regular QQ-algebra, then there is a canonical isomorphism

K (A, T) & @ ai—™"

m>1

where ch is the group of absolute Kéhler j-forms of k. This formula differs from
the formula of Thm. A in degrees ¢ > 4. Indeed, the group K4(A,I) is isomorphic
to Q2 @ k, if k is a regular Q-algebra, to Q2 & Wa(k), if k is a regular Fo-algebra,
and to Qi @®k @k, if k is a regular F,-algebra and p > 2. We also remark that,
if k is a regular Fp-algebra, and if p*~! < n < p°, then the group Ka,(4,I) has
exponent exactly p®.

The result of Thm. A was announced in [6, Thm. C].

All rings considered in this paper are assumed to be commutative. We write N
and I, for the sets of positive integers and positive integers prime to p, respectively.
We say that a map of T-spectra is an F-equivalence if the induced map of C-fixed
point spectra is a weak equivalence, for all finite subgroups C' C T.

Finally, the author would like to thank an anonymous referee for a very careful
reading of an earlier version of this paper and for a number of helpful suggestions
on improving the exposition.

1. Topological Hochschild homology

The proof of Thm. B of the introduction is based on a description of the bi-
relative topological Hochschild T-spectrum T'(A, B, I) defined to be the iterated
mapping fiber of the following diagram of topological Hochschild T-spectra.

(1.1) T(A) — T(A/I)
T(B) — T(B/I).

We refer [11] for an introduction to topological Hochschild and cyclic homology
and for further references. In this section, we shall prove the following result.
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PROPOSITION 1.2. Let k be any ring, let A = k[z,y]/(xy) and B = k[z] X kly],
and let I be the common ideal generated by x and y. Then there is a canonical
F-equivalence of T-spectra

\/ T(k) A SY A(T/Ci)4[1] = T(A, B, )
€N

where, on the left-hand side, [1] indicates desuspension.

The rings B = k[z] x k[y] and B/I = k x k are both product rings. Moreover,
topological Hochschild homology preserves products of rings in the sense that for
every pair of rings R and S, the canonical map of T-spectra

T(R x S) — T(R) x T(S)

is an F-equivalence [3, Prop. 4.20]. Hence, the canonical map from T'(A, B, I) to the
iterated mapping fiber of the following diagram of T-spectra is an F-equivalence.

(1.3) T(klz,y)/(xy)) ——— T(k)

J(mﬁ’) lA

T(k[z]) x T(kly]) —= T (k) x T(k).

The rings that occur in this diagram are all pointed monoid algebras. By definition,
a pointed monoid IT is a monoid in the symmetric monoidal category of pointed
sets and smash product, and the pointed monoid algebra k(II) is the quotient of the
monoid algebra k[II] by the ideal generated by the base-point of II. The diagram
of rings (1.3) is then induced from the diagram of pointed monoids

H246>H0

J,(Wb/) lA

I x I —=55 110 x 10

where I1° = {0, 1} with base-point 0, where II* = {0, 1, 2, 22, ... } with base-point 0,
and where I1? = {0, 1, z,22,...,y,y?, ... } with base-point 0 and with multiplication
given by zy = 0. The map ¢ (resp. ¢') takes the variables x and y to z and 0 (resp. to
0 and z), and the maps labeled € take the variables z, y, and z to 1.

The topological Hochschild T-spectrum of a pointed monoid algebra k(II) de-
composes, up to F-equivalence, as the smash product

(1.4) T(k) A N (I1) =5 T(k(I1))

of the topological Hochschild T-spectrum of the coefficient ring k& and the cyclic
bar-construction of the pointed monoid II. This is proved in [13, Thm. 7.1] but see
also [11, Prop. 4]. The cyclic bar-construction is the geometric realization of the
pointed cyclic set with m-simplices

NY(I)m] =TI A---AIl  (m+ 1 factors)
4



and with the Hochschild-type cyclic structure maps

di(mo AN ANTp) =T A - ATTie1 Ao A T, 0<i<m,
=T To ANTL A - ANTpp—1, 1L =m,
Si(mo N ATt) =T AN AT ANLAT L A Ay, 0<i<m,

(Mo AN+  AT) = T, Ao ATL A =+« A Tp—1.

It is a pointed T-space by the theory of cyclic sets [18, 7.1.9]. It follows that the
T-spectrum T'(A, B, I) is canonically F-equivalent to the iterated mapping fiber of
the following diagram of T-spectra.

T (k) A N (I1%) - T (k) A N (I1°)

l(am’) JA

(T(k) A N (IT)) x (T(k) A N (IIY)) == (T(k) A N (I1°)) x (T (k) A N (I1°)).

The cyclic bar-constructions of II' and II? have natural wedge-decompositions
which we now explain.

We define N (II',i)[m] to be the subset of N (II')[m] that consists of the
base-point and of the simplices 2% A - - - A z'm with 49+ - - - +14,, = 4. It is clear that
the pointed set N (IT')[m] decomposes as the wedge-sum of the pointed subsets
N (II!, i) [m] where i ranges over the non-negative integers. The cyclic structure
maps preserve this decomposition, and hence, the geometric realization decomposes
accordingly as a wedge-sum of pointed T-spaces

NI = \/ N¥T',4)

indexed by the non-negative integers. To state the analogous wedge-decomposition
of N (I12), we first recall the notion of a cyclical word.

A word of length m with letters in a set S is a function
w:{1,2,...,m} — S.

The action by the cyclic group C,, of order m on the set {1,2,...,m} by cyclic
permutation induces an action on the set of words of length m in S. A cyclical
word of length m with letters in S is an orbit for the action of C,, on the set of
words of length m in S. We write w for the orbit through w. By the period of @,
we mean the length of the orbit @. In particular, the set that consists of the empty
word is a cyclical word of length 0 and period 1.

We associate a word w(w) with letters in = and y to every non-zero element
7 € II2. A non-zero element 7 € I12 is either of the form 7 = x% or 7 = y*. In the
former case, we define w(m) to be the unique word of length ¢ all of whose letters
are z, and in the latter case, we define w(7) to be the unique word of length 7 all of
whose letters are y. More generally, we associate to every (m—+1)-tuple (7o, ..., Tm)
of non-zero elements of II the word

W(Tgy e v oy ) = w(mg) * -+ k w(7Tp,)
defined to be the concatenation of the words w(mp),...,w(mm). Now, for every
cyclical word @ with letters = and y, we define
N(I1%,@)[m] € N (I1%)[m]
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to be the subset that consists of the base-point and the elements mg A - -+ A 7y,
where (7, ..., T,) ranges over all (m + 1)-tuples of non-zero elements of IT? such
that w(mo,...,Tm) € @. As m > 0 varies, these subsets form a cyclic subset

N (I, @)[-] € N¥(I1)[-],
and we define N (I12,@) C N (II?) to be the geometric realization. It is clear
that the cyclic set N (I12)[—] decomposes as the wedge-sum of the cyclic subsets

N (112, 0)[~], where @ ranges over all cyclical words with letters 2 and y. Hence,
the geometric realization decomposes as a wedge-sum of pointed T-spaces

NY(IP?) = \/ N¥(II%, )
indexed by all cyclical words with letters x and y.

LEMMA 1.5. There is a canonical F-equivalence of T-spectra
\/ T(k) A N¥(I1?, @) & T(A, B, I),

where the wedge-sum on the left-hand side ranges over all cyclical words of period
s = 2 with letters x and y.

PrOOF. Let @ be a cyclical word of period s > 2. Then every word w € @ has
both of the letters « and y. Therefore, the compositions of the canonical map

T(k) AN NY(T%, @) — T(A)
and the maps ¢: T(A) — T(B), ¢': T(A) — T(B), and e: T(A) — T(A/I) are all
equal to the constant map. Hence, we obtain a canonical map of T-spectra
T(k) AN N (I, @) — T(A, B, 1)

and the wedge-sum of these maps constitute the map of the statement. The dia-
gram (1.3) and the F-equivalence (1.4) shows that this map is an F-equivalence. [

LEMMA 1.6. Let @ be a cyclical word of period s > 2 with letters x and y. The
homotopy type of the pointed T-space N (I1?, &) is given as follows.

(i) If © has period s = 2 and length m = 2i, then a choice of representative word
w € w determines a T-equivariant homeomorphism

SRICmI=L AL T, &5 N (12, @),
where R[Cy,] — 1 is the reduced regular representation of Cy,.

(ii) If @ has period s > 2, then N (I12,0) is T-equivariantly contractible.

PRrROOF. We refer the reader to [18] for the basic theory of cyclic sets and their
geometric realization. Let @ be a cyclical word of period s > 2 and length m = si
with letters  and y, and let w € @. We let (7, ..., Tm—1) be the unique m-tuple
of non-zero elements in IT1? such that w(m, ..., Tm_1) = w. Then the pointed cyclic
set N (T2, @)[~] is generated by the (m — 1)-simplex mg A« - - A7y, _1. Hence, there
is a unique surjective map of pointed cyclic sets

for A" — NI, @)[-]
that maps the canonical generator of the cyclic standard (m — 1)-simplex to the
generator mg A - -+ A T—1. We recall that the automorphism group of the pointed
cyclic set A™~1[—], is a cyclic group order m generated by the dual of the cyclic

operator t,,. Since the cyclic operator ¢, fixes the generator mg A -+ A 1, We
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obtain a factorization of the map f, over the quotient by the subgroup of the
automorphism group or order i = m/s,

for (A™THS)/Ci) g — N (1%, @) [,
We next recall that the geometric realization of the cyclic standard (m — 1)-simplex
is T-equivariantly homeomorphic to A™~! x T, where T acts by multiplication in the
second factor. Moreover, the homeomorphism may be chosen in such that the dual
of the cyclic operator t,, acts on A™~! by the affine map that cyclically permutes

the vertices and on T by rotation through 27 /m; see [13, Sect. 7.2]. It follows that
the map f,, gives rise to a continuous T-equivariant surjection

fu: (A" xo, T)y — NY(I1?,@).
There is a canonical C;-equivariant homeomorphism

Asfl K ek Asfl l} Amfl

)

where the group C; cyclically permutes the i factors in the join on the left-hand
side, and the map f, collapses the join of a number of codimension 1 faces of
A*~! to the base-point. If the period of @ is s = 2, then the map f., collapses the
whole boundary 9A™~! € A™~! to the base-point. Hence, in this case, we have a
T-equivariant homeomorphism

for (A™1/0A™ 1) AG T, & N (112, @).

The simplex A™~! embeds as the convex hull of the group elements in the regular
representation R[C,,]. This identifies the Cp,-space A™~1/9A™~! with the one-
point compactification of the reduced regular representation R[C),] — 1 as stated.
This completes the proof of the statement for s = 2. If the period s > 2, then there
exists a codimension 1 face ' C A®~! that is not collapsed to the base-point. We
have a canonical homeomorphism

cone(F) =5 As™!

of the unreduced cone on the face F onto the simplex A®~!. The canonical null-
homotopy of the unreduced cone induces a Cj-equivariant null-homotopy

AT s AT [0,1] = AT h sk ASTE
and since the face F' is not collapsed to the base-point by the map f,,, this induces
a T-equivariant null-homotopy
NY(IT%, @) A [0,1]4 — NV (1%, @).
This completes the proof of the statement for s > 2. (]

REMARK 1.7. The statement of Lemma 1.6 may be viewed as a topological re-
finement of the calculation in [9] of the Hochschild homology of the pointed monoid
ring Z(I1?) = Z[z,y]/(zy). Indeed, for any pointed monoid II, the reduced singular
homology groups H, (N (II); Z) and the Hochschild homology groups HH, (Z(IT))
are canonically isomorphic.

PrOOF OF ProP. 1.2. It follows from Lemmas 1.5 and 1.6 that we have an

F-equivalence of T-spectra

\/ T(k) A SRICI=Y ne, T, = T(A, B, T)
7



where the wedge sum ranges over all positive integers i. The equivalence depends on
a choice, for every cyclical word @ with letters x and y of period 2, of a representative
word w € w. We choose the representative w = zy...zy. Now, as a representation
of the subgroup C; C Cy;, the regular representation R[Cy;] is isomorphic to the
complex representation \; = C(1)@- - -@C(¢), where C(¢t) denotes the representation
of T on C through the ¢-fold power map. Hence, a choice of such an isomorphism
determines a T-equivariant homeomorphism

S Ac, Ty = GRICz:] Ac; Ty.
Moreover, since the Cj-action on A; extends to a T-action, we further have the
canonical T-equivariant homeomorphism

SN A(T/Ch)y = S Ag, Ty
that takes (w, 2C;) to the class of (271w, z). The completes the proof. O

2. Topological cyclic homology

In this section, we prove the formula for the bi-relative topological cyclic ho-
mology groups TC, (A, B, I;p) that was stated in Thm. B of the introduction. We
derive this formula from the corresponding formula for topological Hochschild ho-
mology that we proved in Prop. 1.2 above. The argument is very similar to the
analogous argument in the case of truncated polynomial algebras [12, 14, 11]. We
refer the reader to [11, 3.7] for the definition of topological cyclic homology.

We have from Prop. 1.2 an F-equivalence of T-spectra
\/ T(k) A S A (T/Ci) 1 [1] = T(A, B, D),
ieN
and we wish to evaluate the homotopy groups of the Cj,»-1-fixed point spectra. To

this end, we reindex the wedge-sum on the left-hand side after the p-adic valuation
of i € N. The left-hand side is then rewritten as

\/ T(k) A SYon=ta A(T/Cpurg) 4 [1]
deN

Vv \] \/ T(k) A S*r=ta A (T/Cprorg) 4 [1],

r=1del,
where N and I, are the sets of positive integers and positive integers that are
not divisible by p, respectively. Hence, the T-spectrum p;n_lT(A,B,I)CP"*1 is
equivalent to the wedge-sum

\/ s (T(k) A S* =10 A (T/Clprg) ) o [1]
deN

n—1
VNV g (0 s (T(R) A S5m0 A (T Clprerg)4) St ) Som [,
r=1del,
Now, for every T-spectrum 7', there is a natural equivalence of T-spectra
P T A (T ) )7 5 (T A (T/Coa) )"
and the p™th root defines a T-equivariant homeomorphism

(T/Cq)+ = p;m((T/Cpmd)Jr)cpm.
8



Hence, we can rewrite the wedge-sum above as follows.

\/ Pon s (T (k) A SPom=10)Com =t A (T/C) 4 [1]
deN

n—1

VNV 0 (s (T(R) A SY 1) A (T/Ca) ) (1]

r=1del,

We recall from [15, Lemma 3.4.1] that if T is a T-spectrum, if d € I, and if
t: {Cq} — T/Cy is the canonical inclusion, then the map

V™ 4 dV™ 0 7g(T) @ g1 (T) = 7 (T A (T/Ca) +) ™)

is an isomorphism. It follows that the group TRZ(A, B, I;p) is canonically isomor-
phic to the sum

D (TR, (k) @ TRy, (k;p))
deN

@EBEB TRyy1a, ,,(Bp) @ TR, -, (kip)).

r=1del,

(2.1)

We consider the groups TRZ(A7 B, I;p) for varying n > 1 as a pro-abelian group
whose structure map is the Frobenius map

F: TR}(A, B,I;p) — TR} (A, B, I; p).

The Frobenius map takes the summand with index d € N in the top line of (2.1) for
n to the summand with index pd € N in the top line of (2.1) for n — 1. It takes the
summand with indices d € I, and 1 < r < n—1 in the bottom line of (2.1) for n to
the summand with the same indices in the bottom line of (2.1) for n— 1. Finally, it
takes the summand with indices d € I, and » = n—1 in the bottom line of (2.1) for
n to the the summand with index d € N in the top line of (2.1) for n — 1. It follows
that the sub-pro-abelian group of TRy (4, B, I;p) given by the top line of (2.1) is
Mittag-Leffler zero, since the sum in (2.1) is finite. Hence, the projection onto the
quotient pro-abelian group of TRy (A, B, I; p) given by the bottom line of (2.1) is an
isomorphism of pro-abelian groups. The value of the Frobenius map on the bottom
line of (2.1) follows immediately from the relations FV = p and FdV = d. Indeed,
the Frobenius preserves the direct sum decomposition and restricts to the maps

F=p: TRy 1 _\(kip) — TRy 5 (ks p),
=id: TR(_»(k;p) — TRy _\(k;p),
respectively, on the first and second summand of the bottom line of (2.1).

We now assume that the group TRy, _, (k;p) is annihilated by p™, for some m.
If k is an [Fp-algebra, then this group is annihilated by p". For a general ring k, we
must instead consider the group TRy, _, (k;p, Z/p”) which is annihilated by p®. It
follows that the iterated Frobenius F™ induces the zero map from the first term in
the bottom line of (2.1) for m + n to the first term in the bottom line of (2.1) for
n. Hence, the canonical projection onto the second term on bottom line of (2.1),

TR} (A, B,I;p) — @@TRq A, (KiD),
r=1del,
9



is an isomorphism of pro-abelian groups. Here, we recall, the structure map in the
limit system on the left-hand side is the Frobenius map and in the limit system on
the right-hand side is the canonical projection. The group TRy _ r,»71d(k5p) is zero,
if ¢ < dimg(\g) = 2d, and hence, the limit group is the product !

(2.2) TFy(A, B, I;p) = [T II TRi-s, ., (k:p)-
reNdel,
We can now evaluate the bi-relative topological cyclic homology groups that are
given by the long-exact following long-exact sequence.
- — TC4(A, B, I;p) — TF,(A, B, I;p) =% TF,(A, B, I;p) — ...

Indeed, under the isomorphism (2.2), the map R corresponds to the endomorphism
of the product on the right-hand side of (2.2) that is induced from the map

R: TR! (k;p) — TR~} (k;p).

q—A,r—14 q=A,r—24

Hence, the kernel of the map R — id in (2.2) is identified with the limit

[[tmTR (kD)

del,
and the cokernel is identified with the corresponding derived limit. The following
Lemma 2.3 shows, in particular, that the limit system satisfies the Mittag-Leffler
condition. Hence, the derived limit vanishes and we obtain an isomorphism

TCy(A, B, Iip) = [[ im TRy, (k:p)
del,

as stated in Thm. B.

LEMMA 2.3. The restriction map
R: TRy, -, (ksp) — TREZ

1q r—24

(k;p)

is an isomorphism, for ¢ < 2p"~'d.
PROOF. We recall from [13, Thm. 2.2] that there is a long-exact sequence
= Hy(Cprr, T(k) A S 10) = TR, (kip) £, TRgiipMd(k;p) —

and that the left-hand groups are given by a spectral sequence

By = Hy(Cpr—1, TRy, (k;p)) = Ho(Cprr, T (k) A Shor-ta).

r—1q

The groups in the E2-term do not depend on the representation Apr—14 beyond its
dimension, and they are zero if ¢ < dimg (A\yr-14) = 2p"~'d. It follows that the map
R is an isomorphism, if ¢ < 2P d as stated. (I

3. Regular [F)-algebras

Let k be a regular Fp-algebra. The structure of the groups TRy _,(k;p) that
occur on the right-hand side of the statement of Thm. B of the introduction is
given by [14, Thm. 2.2.2], but see also [11, Thm. 11]. If A is a finite dimensional
complex T-representation, we define

0, = £, (X) = dime (A7)
10



and /_; = oo such that we have a descending sequence
0=l 2l 2l =2l >l 2 2 Lo = dime (A7),
Then the following result is [14, Thm. 2.2.2].
THEOREM 3.1. Let k be a regular F,-algebra, and let X be a finite dimensional
complex T-representation. There is a canonical isomorphism of abelian groups
P w.i ™ = TRy, (k;p)

where the sum runs over all integers m > lo, and where s = s(n,m,\) is the
unique integer such that l,_s < m < l,_1_5. The group W, is understood to be
zero for non-positive integers s. [

REMARK 3.2. It appears to be an important problem to determine the structure
of the RO(T)-graded equivariant homotopy groups
TRq (k;p) = [S* A (T/Cpn—1) 4, T(F)]r

for a general virtual T-representation «. The precise definition of RO(G)-graded
equivariant homotopy groups in given in [17, Appendix]. One might well hope
that the RO(T)-graded equivariant homotopy groups TR, (k; p) admit an algebraic
description similar to that of the Z-graded equivariant homotopy groups TRy (k; p)
given in [10, Thm. BJ.

We can now complete the proof of Thm. A of the introduction.

ProoF oF THM. A. It suffices by Thm. B to show that for positive integers d
prime to p, there is a canonical isomorphism of abelian groups
_92 ~ . .
D Wi S Lm TRy (kip)
m=0
where s = s(m, d) is the unique integer that satisfies p*~'d < m < p*d. It follows
from [13, Thm. 1.2] that the canonical projection

ligl TRS—,\pr_ld(km) - TR;‘_%”_ld(k;p)
is an isomorphism for ¢ < dimg(Apnq) = 2p™d. But for A = Ayng we have
li=c0=ly=p"d>li=p" 'd> >l =d>lhi1 =l =0.
Hence, Thm. 3.1 gives a canonical isomorphism of abelian groups
@ weoi P S TRy, (kip)
m20
where s = s(n,m,\) is the minimum of n and the unique positive integer ¢ that

satisfies p*~1d < m < ptd. The statement follows. O

REMARK 3.3. We conclude this paper with a conjecture on the relationship of
the K-groups of the rings k[x,y]/(zy) and k[t]/(t?). The element f = z — y of the
ring A = k[z,y]/(2y) is a non-zero-divisor with quotient ring A/fA = k[t]/(t?). It
follows that as an A-module A/fA has projective dimension 1, and hence we have
a push-forward map on the associated K-groups

it Kq(K[t]/(#2)) — Kq(klw,y]/(zy)).
11



The additivity theorem implies that the image of the map i, is contained in the
subgroup K,(A,I). In particular, we obtain an induced push-forward map

i Ky (k) (), (1) — Ko(Kle.y/(xy), (2,5)).

For k a regular FFj,-algebra, the relative K-groups on the right and left-hand sides
were evaluated in Thm. A and [14, Thm. A], respectively. On the one hand, there
is a natural long-exact sequence of abelian groups

Ky (k[/(2), () 2 D W, 002 L W, 002

m>1 m>1

and on the other hand, there is a canonical isomorphism of abelian groups

I P W2 5 Ky (kla, )/ (zy), (2,1))-

m2>=1

We conjecture that the composite I o 9 is equal to the push-forward map ..
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